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Abstract

The spread of SARS-CoV-2, like that of many other pathogens, is governed by heterogeneity. “Su-
perspreading,” or “over-dispersion,” is an important factor in transmission, yet it is hard to quantify.
Estimates from contact tracing data are prone to potential biases due to the increased likelihood of
detecting large clusters of cases, and may reflect variation in contact behavior more than biological het-
erogeneity. In contrast, the average number of secondary infections per contact is routinely estimated
from household surveys, and these studies can minimize biases by testing all members of a household.
However, the models used to analyze household transmission data typically assume that infectiousness
and susceptibility are the same for all individuals or vary only with predetermined traits such as age.
Here we develop and apply a combined forward simulation and inference method to quantify the degree
of inter-individual variation in both infectiousness and susceptibility from observations of the distribution
of infections in household surveys. First, analyzing simulated data, we show our method can reliably
ascertain the presence, type, and amount of these heterogeneities with data from a su�ciently large
sample of households. We then analyze a collection of household studies of COVID-19 from diverse
settings around the world, and find strong evidence for large heterogeneity in both the infectiousness
and susceptibility of individuals. Our results also provide a framework to improve the design of studies
to evaluate household interventions in the presence of realistic heterogeneity between individuals.

Introduction

In the early months of the COVID-19 pandemic, contact tracing e↵orts revealed that superspreading events —
when a single infected individual transmits to a large number of secondary individuals — play an important
role in the spread of SARS-CoV-2 [1–6]. According to a systematic review, 21/26 studies quantifying
SARS-CoV-2 superspreading reported significant over-dispersion in transmission and found that between
1% to 39% of individuals were responsible for 80% of secondary infections (with estimates for the negative
binomial dispersion parameter k ranging from 0.01 to 0.72) [7]. Superspreading has also been recognized as a
key feature of transmission dynamics for a wide variety of other infections including SARS [8,9], MERS [10],
smallpox [8], ebola [11], tuberculosis [12–14], and HIV [15]. These dynamics highlight the limitations of
summarizing transmission patterns using only average quantities, like the basic reproductive number, R0 [16].
More generally, individuals may vary in both their infectiousness (propensity for onward transmission if
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infected) and susceptibility (propensity to become infected given exposure). This heterogeneity is caused
by a mix of of host behavior, host-pathogen interactions within the body, and environmental factors [8,
11, 17–35]. For example, variation in infectiousness can stem from heterogeneity in the number, type, and
intensity of an index individual’s contacts; [27]; heterogeneity in pathogen shedding in respiratory, genital
or fecal excretions [28–34]; infectious period duration [8, 11, 35], and pathogen survival outside the host
body [36,36–39]. Host susceptibility has been observed to vary based on immune status (due to genetics [17],
age [23], disease (e.g., AIDS [40]), medication (e.g., [24, 25]), temperature (e.g., [41]), or previous exposure
due to infection or vaccination [26]) and other phenotypes (e.g., [18–22]). Models have demonstrated that
variation in infectiousness plays a crucial role in determining the extinction probability of an outbreak
following introduction into a new population [8], the final size of an epidemic [16], the e�cacy of contact
tracing [42], the rate of emergence of pathogen variants [43], and the optimal allocation of measures to
prevent infection or reduce transmission [44]. Variation in host susceptibility a↵ects the epidemic growth
rate, the herd immunity threshold and the final epidemic size [26, 45, 46], and provides opportunities for
targeting preventative measures such as vaccination [44,47–52].

While characterizing variation in infectiousness and susceptibility is a critical part of designing accu-
rate mathematical models and e↵ective public health interventions, it is di�cult to quantify in practice.
Population-level epidemic growth patterns that are used to infer R0 (e.g., [53,54]) can rarely uniquely iden-
tify variation among individuals. Contact tracing studies are the most common tool used to estimate the
degree of variation in infectiousness, but they su↵er from possible biases. Chains of infection may be un-
derestimated when relying on individuals naming known contacts, but at the same time, superspreading
events may be more likely to be detected by surveillance e↵orts than “normal” chains of infection due to
the number of individuals they involve [7,55]. Lloyd-Smith found that joint estimation of R0 and the degree
of variation in infectiousness was particularly di�cult with certain types of censoring present in outbreak
data [56]. Variation caused by host behavior — like travel patterns — as opposed to biological or environ-
mental causes might have an outsized e↵ect on these studies. Public policy measures such as mask mandates
can increase the fraction of transmission stemming from superspreading events, as those events are likely
to involve greater risk and fewer precautions [55]. Mild cases of disease can involve lower viral load and
therefore lower probability of onwards transmission but also a lower probability of detection, which may
further bias estimates of heterogeneity (e.g. [57]).

Household transmission studies are a common tool in infectious disease epidemiology that sidestep many
of these possible biases. Households are a context where it is known – or can be reasonably assumed –
that all individuals are in close contact with each other and where infection status can be ascertained for
the entire group. However, household studies typically only focus on calculating the average probability of
infection per contact, known as the secondary attack risk (SAR). Simple estimates of the SAR assume all
infected secondary contacts are caused directly by the primary case (reviewed in [58], examples in [59, 60]),
while other studies account for multiple generations of infections using the ‘Reed-Frost’ or ‘chain binomial’
model [61]. When household studies evaluate heterogeneity at all, it is commonly by stratifying cases by
a pre-specified individual trait (like host age) [62]. Reed-Frost models have been extended to “multitype”
versions in which distinct classes of individuals have di↵erent infectivities [63, 64] and “collective” versions
where infectiousness varies continuously across individuals [63,65,66], and have been used to estimate jointly
the SAR and variation in infectiousness for the 1918 influenza pandemic [67], 2009 “swine flu” (H1N1) [68],
and COVID-19 [69,70]. A stochastic, discrete-generation model chain binomial has the benefit of admitting
analytic solutions for the outbreak size distribution in a finite, well-mixed population like a household, and
is often mathematically equivalent to continuous time models [63,71]. However, its use requires the absence
of any parameter dependence on calendar time [63] and is therefore unsuitable in circumstances where
interventions such as availability of vaccines/therapeutics, out-of-home isolation, or changes in household
composition play a substantial role in infection dynamics [63] (e.g. [72]).

In this study we develop a method to simultaneously estimate the SAR and the degree of heterogeneity
in infectiousness and susceptibility from household transmission studies, using arbitrary models of disease
dynamics and arbitrary distributions of individual-level traits. Our approach combines direct model simu-
lation with formal likelihood-based parameter inference. We can consistently estimate key epidemiological
parameters with modest computational resources, with the precision of parameter estimates and the power
to identify the impact of interventions increasing with both study size and the inclusion of households with
more than two individuals. We find that ignoring heterogeneities, when they exist, can lead to biased es-
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timates of the SAR. Applying this method to multiple existing households studies of COVID-19 in diverse
settings, we quantify both types of transmission heterogeneity. We hypothesize that studying the variability
of pathogen spread within households can limit the sources of measured heterogeneity to those sources that
are tied most closely to host-pathogen interactions and biology.

Methods

Model of transmission within households

The focus of our model is a population in which individuals are divided up into households of di↵erent
sizes (Figure 1C). Each household is assumed to be a well-mixed population with a single introduction of
infection. We consider diseases with finite infectious periods (e.g., diseases that lead to eventual recovery
and immunity) and assume the outbreak within each household is complete by the end of the study period.
These assumptions are valid when the study period is long relative to the infectious period, and when risk
of transmission from the community is much smaller than the risk of transmission from within a household.
Our direct simulation method allows for relaxation of these assumptions if desired. We track the number of
individuals within each household who were ever infected (final epidemic size).

When an infected individual and a susceptible individual are in the same household, the average prob-
ability per unit time that infection passes between them is �, but the specific rate varies between pairs of
individuals due to the individual-level heterogeneity in per-contact infectiousness and per-contact suscepti-
bility. We summarize the transmission potential of an infection with the household secondary attack risk
(SAR), defined as the average probability of infection per household contact caused by a single initial intro-
duction of the pathogen (i.e., not taking into account chains of infection beyond the initial ! secondary).
The mathematical relationship between the SAR and � depends on the nature of the variation in infectious-
ness and susceptibility across individuals, as well as on the distribution of the duration of infectious periods
(see Supplementary Methods).

Our inference framework allows for the specification of any model of transmission within households. For
simplicity and for consistency with standard methods for the simulation of COVID-19 dynamics, we choose
to model transmission with a stochastic SEIR (susceptible, exposed, infectious, recovered) process. We
assume that the times spent in the exposed and infectious states follow lognormal distributions, a long-tailed
distribution chosen because it simplifies the calculation of expected secondary infections (see Supplemental
Methods). For the latent period, we choose parameters of the distribution such that the average length is
3.5 ± 2.5 days, and for the infectious period, we choose them so that the length is 6 ± 2.5 days (consistent
with Zhao et al. [73] and references therein).

Modeling heterogeneity in infectiousness and susceptibility

Under our model, each individual in a household is assigned two traits: one that determines their relative
per-contact infectiousness and one that determines their relative per-contact susceptibility (Figure 1). In
the population, these traits are continuously-valued random variables. Beyond these traits, individuals are
identical and we assume the distributions of traits are independent of factors such as age or biological sex.

The most important consequence of heterogeneity in infectiousness is over-dispersion in the expected
number of secondary infections caused by each individual. As a result, it is common to quantify the hetero-
geneity in infectiousness in terms of the distribution of expected infections. Following Lloyd-Smith et al., it is
common to model the distribution as a negative binomial distribution with “dispersion parameter” k [8]. We
take an alternative approach [15, 74] and quantify heterogeneity with p80, defined as the (smallest) fraction
of individuals responsible for 80% of secondary infections on average (Figure 1, Supplemental Methods).
When p80 = 80%, each individual is equally infectious. For p80 < 80%, a smaller fraction of individuals
is responsible for a greater portion of secondary infections (i.e. the distribution is over-dispersed [55, 74]).
We model the distribution of relative infectiousness in the population as a lognormal random variable with
natural-scale mean of 1, and we numerically solve for the variance given a desired value of p80.

We describe variation in relative susceptibility through the quantity s80, the smallest fraction of the
population that must be infected in order to reduce the total remaining susceptibility by 80% of its initial
total. This approach is based on the fact that as an infection spreads through a population with heterogeneous
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Figure 1: Model schematic for individual-level heterogeneity and household transmission stud-

ies. A) The e↵ect of variation in infectiousness (left) and susceptibility (right) on an imagined chain of
infections across two generations of spread. Grey = uninfected, Blue = infected. Darker color = more
susceptible/infectious. B) Left: Probability density function for relative individual infectiousness and rep-
resentation of relationship between p80 (shaded area), relative infectiousness (x-axis), and the fraction of
infections from people at least that infectious (y-axis). Right: Probability density for relative susceptibility,
and representation of relationship between s80 (shaded area), relative susceptibility (x-axis), and fraction
of total susceptibility held by people at least that susceptible (y-axis). C) Left: Possible infection chains,
simulated by the model, that give rise to the final observed outbreak size in a household. Right: Example
dataset comprised of the distribution of household outbreak sizes.
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susceptibilities, the average susceptibility in the uninfected population decreases over time as more susceptible
individuals are infected first with greater probability. When s80 = 80%, all individuals are equally susceptible.
If s80 = 20%, then the most susceptible 20% of individuals are responsible for 80% of the total susceptibility.
If they were all infected, the average susceptibility of uninfected individuals would be 20% of its initial mean.
We model susceptibility variation as another lognormal random variable with mean 1, and we calculate the
variance based on the specified s80. When infection is first introduced into a household, the index individual
is randomly assigned with probability in proportion to the susceptibility of each household member.

Parameter inference

To make inferences, we calculate the likelihood of observing a particular dataset under the proposed model
of household transmission for each possible set of model parameters (✓), and then find the set of parameters
that maximizes this likelihood function. The relevant data consists of the number of infections in each
household in a cohort, where households can be grouped by number of members (Figure 1C). Formally, the
data consists of a set of yn,k, the total number of households of size n observed to have k infections.

We calculate the probability pM (n, k, ✓) under our model M that a single household of size n observes
k infections after a single introduction by simulating a large volume of households of size n forward in time
from their initial state and treating the frequency of occurrences for the di↵erent k’s as the probability of
observing that many infections. Then, the likelihood of observing the full dataset given the model, L(Y, ✓),
is given by the multinomial:

L ({yn,k}|✓) =
nmaxY

n=2

nY

k=1

pM (n, k, ✓)yn,k (1)

By varying the model parameters ✓, we construct a likelihood surface. The maximum likelihood estimate
of the parameter values (MLE) is the position of ✓ that produces the greatest likelihood out of all tested
combinations of parameter values. The likelihood surface can be viewed as a (discrete) probability density
function of a posterior probability distribution in a Bayesian framework by making the assumption of uniform
priors on all parameters and then normalizing. To calculate 95% confidence intervals (equivalently, credible
intervals), we rank each tested ✓ value set from most probable to least probable, include ✓ values in order of
descending probability until at least 95% of the overall probability is represented, and then determine the
extreme values for each parameter.

In this paper the unknown parameters that we infer are (1) p80, (2) s80, and (3) the average transmission
rate � — although we actually infer a transformation of �, SAR, the average secondary attack risk in
the population (Supplemental Methods). For inference on real data from COVID-19 outbreaks and for
benchmarking tests on simulated data, we assumed that the other model parameters – the duration of the
latent period and infectious period – are known exactly (i.e. not inferred).

Results

The e↵ect of heterogeneity on household outbreaks

Simulating the spread of infection in households, we found that the average risk to a susceptible contact
(SAR), the amount of inter-individual variation in infectiousness (p80), and the amount of inter-individual
variation in susceptibility (s80) each a↵ect the final size of household outbreaks in distinct ways (Figure
2). Predictably, we observed that a greater SAR increases the frequency with which an outbreak caused
by a single introduction will spread to other individuals in a household and consequently lowers the within-
household extinction probability (i.e., the frequency of outbreaks of size 1) and increases the frequency of
larger outbreaks (Figure 2A).

Variation in infectiousness (more superspreading) increases “feast or famine” dynamics: outbreaks are
more likely to go extinct, and more likely to infect all household members provided that they do not go
extinct (Figure 2B). Susceptibility variation, in contrast, increases the probability of extinction but also
concentrates the distribution of final sizes at intermediate numbers of infections and reduces the probability
that the entire household is infected (Figure 2C). Since a more susceptible individual is proportionally more
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Figure 2: The e↵ect of heterogeneity in infectiousness and susceptibility on the distribution

of infections in a household outbreak. Histograms of simulated infection outcomes (including index
case) in households of di↵erent sizes after a single introduction of a pathogen. x-axis: number of infections
in household. y-axis: frequency that that number of infections is observed in all households with at least
one infection. (A): Comparison of infections in households of size 2 (left column) and size 5 (right column)
for di↵erent values of the average secondary attack risk (SAR). (B) Simulated infections with SAR = 20%
and di↵erent amounts of infectiousness variation (more when p80 is smaller: darker purple). (C): Simulated
infections for SAR = 20% and di↵erent amounts of susceptibility variation (more when s80 is smaller: darker
green).
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likely to be the site of introduction, other household members have on average lower susceptibility and a
reduced risk of secondary infection. Susceptibility variation therefore impacts the outbreak size even in
households of size 2 for a fixed average infection probability (SAR).

As an example, in a household of size 5 with SAR = 20% and no variation in infectiousness or suscepti-
bility, an outbreak results in a single infection 43% of the time, 3 infections 6% of the time, and 5 infections
33% of the time. In the same household when the most infectious 20% of individuals are responsible for 80%
of secondary infections (p80 = 20%), the frequency of outbreaks of size 1, 3, and 5 becomes 58%, 4%, and
27%. Alternatively, if there is variation in susceptibility such that the most susceptible 20% of individuals
hold 80% of the population’s total susceptibility (s80 = 20%), the frequency of outbreaks of size 1, 3, and
5 becomes 55%, 13%, and 5%. These distinct patterns in the final size distribution of household outbreaks
suggest that it is possible to infer the SAR and the heterogeneities simultaneously from data.

Inferring heterogeneity parameters from household outbreak sizes

Before trying to infer heterogeneity from real-world data collected in studies of household outbreaks, we first
confirmed that our inference method could recover the input parameters used to generate simulated data.
We evaluated scenarios where only one kind of heterogeneity was present, as well as scenarios where there
was heterogeneity in both traits (Figure 3). We found that the SAR can be accurately and precisely inferred
regardless of the kinds and amount of heterogeneity present, provided that the model is correctly specified.
For simulated datasets of 5,000 individuals with high heterogeneity in both traits, the maximum likelihood
estimate (MLE) of the SAR was within 5% points of the true value (20%) 95% of the time. For any individual
simulated dataset with 5,000 individuals, the uncertainty in the estimated SAR was around ±7% points.
However, when the model used for inference doesn’t incorporate heterogeneity while it is present in the
data-generating dynamics, significant bias is introduced into the estimate of the SAR — particularly when
a high degree of susceptibility variation is present. For the simulated datasets with SAR = 20% described
above, the MLE estimates with a misspecified model were centered on ⇡ 19% in the absence of susceptibilty
variation and ⇡ 11% in its presence).

Unbiased estimates of the degree of heterogeneity in infectiousness (p80) or susceptibility (s80) can also be
inferred from simulated data, albeit with significantly more uncertainty even for larger sample sizes (Figure
3A,B). For example, for simulated datasets of 5,000 individuals, a value of p80 = 20% could be inferred to
within 18% points in 95% of cases (32% points if both heterogeneities are present) and s80 = 20% to within
20% in 95% of cases (34% if both heterogeneities are present).

For smaller sample sizes, the presence or absence of each type of heterogeneity can be determined reliably
even if their exact value cannot be inferred. When one kind of heterogeneity was absent from simulated data
(s80 = 80% or p80 = 80%) and the other was present, the best estimates for the absent heterogeneity reliably
suggested that at most slight variation was present. For samples of 1,000 individuals where p80 = 80%, 65%
of estimates for that parameter fell in the range 60%  p80  80%. For s80 = 80%, 75% of the estimates
fell in that range. The maximum likelihood estimates for the parameter describing the heterogeneity that
was in fact present even more reliably indicated moderate to extreme heterogeneity. For p80 = 20% and
s80 = 80%, the best estimate for p80 was less than 40% in 94% of cases. For p80 = 80% and s80 = 20%, s80
was less than 40% in 96% of estimates.

When both kinds of heterogeneities are present (Figure 3C), the necessary sample size for a precise
measurement of all three parameters is large, upwards of thousands of households. Some of the uncertainty
in the parameter governing heterogeneities in transmission dynamics comes from a degree of mutual non-
identifiability between these parameters and the SAR in smaller households (Supp Figure S1).

Overall, these analyses suggest that reasonable estimates of the amount of inter-individual variation in
susceptibility and infectiousness can be made given a large enough cohort of households, and that even with
smaller sample sizes the presence versus absence of these heterogeneities can be inferred.

Quantifying heterogeneities in household studies of COVID-19

We next used our inference procedure to estimate jointly the household SAR, the variation in infectiousness
(p80), and the variation in susceptibility (s80) from three di↵erent studies of COVID-19 spread in house-
holds [69, 75, 76]. We chose studies that included hundreds or more households with at least one infection,
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Figure 3: Maximum likelihood estimates for SAR and degree of heterogeneity on simulated

data in a variety of parameter regimes. Simulated datasets were generated with 1,000, 5,000, or 10,000
individuals divided among households with a household size distribution taken from the United States census.
A) Simulated data includes only variation in infectiousness (p80). B) Simulated data includes only variation
in susceptibility (s80). C) Simulated data includes variation in both infectiousness and susceptibility. For
(A)-(C), the left panel shows the likelihood surface describing the probability of the model parameters given
a simulated dataset (yellow is more likely, blue is less likely). This two dimensional surface marginalizes
over the third, not shown, parameter. The red dot shows the true input parameter value. The three middle
panels show the distribution of maximum likelihood estimates (MLEs) for the three parameters of interest
- the secondary attack risk (SAR), the variation in infectiousness (p80), and the variation in susceptibility
(s80). For each panel, the colored horizontal line is the actual value of the parameter used to generate the
simulated data, and the white dot is the mean of the individual MLEs. The rightmost panel shows the MLE
for the SAR if heterogeneities are not included in the model inference framework. Parameters were estimated
for 1,750 di↵erent simulated datasets. Other model parameters were fixed as described in the Methods.
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where there was likely to be a complete or high ascertainment rate of infections within the house, and
with publicly-available data reporting the full distribution of household outbreak sizes (see Supplement for
more details). These included a recruited cohort study by Bi et al. measuring seroprevalence in the city of
Geneva, Switzerland between April and June 2020 [69]; a household contact-tracing study with PCR testing
conducted by Dattner et al. in Bnei Brak, Israel between March and April 2020 with follow up serological
testing conducted between May and June 2020 [75]; and an analysis of the surveillance database for PCR-
positive cases in the province Ontario, Canada conducted by Tibebu et al. between July and November
2020 [76](Figure 4). The maximum likelihood estimates and 95% confidence intervals for the inferred values
of each of the three transmission parameters are reported in Table 1.

Fit with both kinds of heterogeneity Original report

Population SAR p80 s80 SAR

Geneva, Switzerland [69] 26% [12%, 37%] 4% [2%, 80%] 18% [0%, 80%] 17%‡ [13%, 22%]
Bnei Brak, Israel [75] 34% [31%, 37%] 80% [64%, 80%] 2% [0%, 6%] 36%† [34%, 38%]
Ontario, Canada [76] 23% [22%, 24%] 16% [14%, 18%] 2% [0%, 4%] 19%† [19%, 20%]

Table 1: Estimating parameters of COVID-19 transmission heterogeneity from household stud-

ies. Estimates for household secondary attack risk (SAR), degree of infectiousness variation (p80), and
degree of susceptibility variation (s80) in three study populations (maximum likelihood estimate with 95%
confidence intervals). † SAR reported as a simple fraction of secondary contacts infected over total secondary
contacts (discounting the follow up serological survey in the case of the results from Bnei Brak [75].) ‡ SAR
reported as the best fit value from a chain binomial model with no heterogeneity.

Of the three studies considered, the study conducted in Geneva had the most complete ascertainment
of infection status but featured the fewest households. 2,267 households were enrolled, and only 181 had
at least one seropositive individual with at least one secondary contact (i.e. the household size was greater
than or equal to two). Households tended to be small. Among the households of interest, the average size
was 3.0 and only 35% had four or more individuals (Figure 4). We estimated a household SAR of 26%
(95% CI 12-37%). This was greater than the 17.3% (95% CI 13.1%-21.7%) reported in the original study
though more uncertain, consistent with our results with simulated data concerning bias when heterogeneities
are ignored (Figure 3). Extreme heterogeneity in both infectiousness and susceptibility was inferred from
the data, though the estimates had high uncertainty, due to the lack of mutual identifiability between
parameters (Supp Figure S3). This finding is also consistent with the results from testing our inference
approach on simulated data, which demonstrated that a large number of households is necessary to estimate
both heterogeneities precisely.

The second dataset we analyzed was from Bnei Brak, a densely populated city in Israel, and featured many
large households (637 total households were considered, 62% of which had 4 or more members; Figure 4).
Households entered the study when a symptomatic individual reported their illness to a healthcare provider
and receiving a PCR-based diagnosis. Using our framework, we inferred an SAR of 40%, no infectiousness
variation, and extreme susceptibility variation. However, we found that the best fit parameters failed to
reproduce the observed pattern of infections (Figure 4C). For larger household sizes, the model overpredicts
both the fraction of household outbreaks with no secondary transmission and the fraction resulting in near
complete infection, whereas the data show more outbreaks of intermediate size. As such, despite the fact
the best estimates for the three parameters have low uncertainty, no conclusion can be drawn about the
presence or amount of heterogeneity in this population.

The largest dataset we considered came from the provincial public health surveillance database of the
province of Ontario, Canada, and included 28,994 households with at least one infection and at least two
residents (Figure 4B). All positive PCR tests in the province were linked back to addresses and then used
to estimate the number of infections in each household. While this passive approach risks incomplete
ascertainment of the infection status of individuals in a household, the widespread availability and high
uptake of PCR tests in the province during the study period, especially for contacts of cases, suggest that
this data may still provide a good estimate of the true household outbreak size. The maximum likelihood
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Figure 4: Estimating transmission heterogeneity parameters from household studies of COVID-

19. (A) Timing of study (highlighted region) compared to incidence in the region throughout 2020 (daily
cases per 10,000 inhabitants, 7-day rolling average) [69, 75–79]. (B) Frequency of di↵erent household sizes
in the study among households with at least two members and at least one observed infection. The study
by Tibebu et al. in Ontario included 358 households with more than 8 residents, but this data was not
publicly available and so those households were excluded [76]. (C) Comparison of the observed distribution
of household epidemic sizes (# infections) in the study (orange) with the average distribution of infections
from forward simulation based on the model with the inferred maximum likelihood parameters (blue).
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Absolute SAR reduction: 0.15 0.10

Heterogeneity: None Medium High None Medium High

Household size /
size distribution # Individuals Power

2
200 79% 73% 71% 39% 34% 32%
1000 99% 98% 98% 59% 48% 44%

4
200 96% 89% 84% 65% 53% 47%
1000 >99% >99% >99% 90% 78% 76%

America
200 92% 86% 82% 56% 47% 46%
1000 >99% 99% 99% 85% 77% 77%

Guatemala
200 97% 88% 83% 65% 50% 46%
1000 >99% >99% >99% 85% 76% 78%

Table 2: Power to measure e↵ects of household interventions on transmission. We consider a
household intervention that reduces the SAR from its baseline value in Group 1 (fixed at 25%) to a lower
value in Group 2 (either 15% or 10%). 2000 simulated studies were conducted for each combination of
parameters. Power is calculated using a one-sided confidence interval with significance of ↵ = 10%. In
the scenario with “medium” heterogeneity, s80 = p80 = 50%. In the scenario with “high” heterogeneity,
s80 = p80 = 20%. The distribution of household sizes for the American population was based on Census
Bureau statistics [83]. For Guatemala, the approximation was based on the United Nations database of
household composition [84]
.

estimate for the household SAR was 23%. Our results also suggest the presence of substantial heterogeneity
in infectiousness — with 16% of individuals being responsible for an average of 80% infections — and
extreme heterogeneity in susceptibility — with 2 percent of individuals responsible for 80% of the overall
susceptibility. The distribution of household infections predicted by the best fit parameters from our inference
closely resembled the observed infections, suggesting our model describes the data well (Figure 4C).

Application to the design of household intervention studies

Households are a useful setting to quantify the impact of interventions to reduce disease transmission, such as
behavior change, personal protective equipment, vaccines, or treatment [60,80,81]. Since household cohorts
are costly, it’s useful to calculate how many participants will be needed to detect the expected e↵ect of a
given intervention reliably (i.e., to “power” the study) [82]. When substantial inter-individual heterogeneity
is present, there’s reason to believe that the sample size needed detect an e↵ect will be larger than predicted
based on models that don’t include heterogeneity. Using forward simulations and our inference framework,
we analyzed the power of an imagined study of a household intervention that reduces the SAR between a
control group (assumed SAR = 25%) and an intervention group (assumed SAR < 25%)(Table 2). Note that
these power calculations concern to ability to detect the presence of an e↵ect, not the ability to ascertain
the precise SAR in either the control or intervention group.

In the absence of heterogeneity, we estimated that a study of 1,000 individuals divided into households
of size 2 had 99% power to detect a reduction in SAR from 25% to 10% but only 59% power to detect a
reduction from 25% to 15%. With a smaller study size of only 200 individuals, the powers were reduced to
79% and 39%, respectively.

We found that the amount of heterogeneity in the relative susceptibility and infectiousness of individuals
in the study households had a minor and e↵ect on the power of a study to detect a change in SAR. For
the study with 200 individuals described above, the power to detect a reduction from 25% to 10% was 8%
points lower (79% versus 71%) in the presence of high heterogeneity in both susceptibility and infectiousness
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(s80 = p80 = 20%) as compared to no heterogeneity. To detect a reduction in SAR from 25% to 15%,
the power was 7% points lower (39% versus 32%). This relatively minor di↵erence was consistent with the
outcome of our experiments with simulated data, which showed that the SAR can be reliably inferred for
any combination of heterogeneities present in the data-generating dynamics.

When comparing study designs with the same total number of individuals divided into households of
di↵erent sizes, we found that households of size 4 produced significantly greater power for all the tested
reductions in SAR and amounts of heterogeneity. For example, to detect a reduction in SAR from 25%
to 15% in the absence of heterogeneity with 1,000 individuals in a study, a population divided among 250
households of size 4 provides 90% power, as compared to 59% power from the same number of individuals
divided among 500 households of size 2. The relative advantage of the larger households increased as the
amount of heterogeneity present increased. Larger households enjoy greater powers because the presence
and e↵ect of the heterogeneities can be more clearly separated from the role of the SAR (Figure 2). In
contrast, in households of size 2, increasing s80 has an indistinguishable e↵ect from decreasing SAR, which
can obscure the di↵erence in SAR between the control and the intervention arms.

Early results of our method on simulated data suggested that the precision of the MLE was determined
in part by the exact distribution of sizes of the households. To determine the e↵ect that this size distribution
played in power calculations, we compared two realistic size distributions, one roughly based on American
households with size greater than 1 (average size 3.0) and the other based on Guatemalan households with
size greater than 1 (average size 4.4). The same power calculations performed for groups of people divided
according to these distributions indicated that power increases with average household size. The powers
calculated from American household sizes were between the powers for a study composed exclusively of
households of size 2 and those for a study with exclusively households of size 4. The powers calculated from
Guatemalan households sizes were nearly identical to powers calculated from a sample of households of size
4. For all the studies that included households of size greater than 2, there was a greater decrease in power
as heterogeneity increased compared to studies with only households of size 2.

Overall, these results demonstrate that despite the need for large sample sizes to quantify the degree of
infectiousness or susceptibility variation in household studies (Figure 4), more moderate study sizes can still
be used to accurately quantify the SAR (Figure 4) and to estimate the e↵ect of interventions to reduce SAR
(Table 2) even in the presence of these heterogeneities.

Discussion

We found that variation in the susceptibility and infectiousness of individuals has a significant impact on
disease outbreaks within small, well-mixed populations such as households, and that the degree of this
variation can be inferred from household transmission studies that report only the final outbreak size in
each home. The inference method we developed combines exact forward simulation of any dynamic model
– as opposed to existing methods that rely on simplified models with analytic solutions – with maximum
likelihood estimation, and uses only modest and generally accessible computational resources. We showed
that our inference approach can produce unbiased estimates of the household secondary attack risk (SAR),
as well as the heterogeneity among individuals in both susceptibility to infection and transmissivity once
infected. We found that when heterogeneity is present in the data-generating dynamics but unaccounted for
in the parameter inference, estimates of the SAR become biased — especially as the amount of susceptibility
variation increases. However, we identified several challenges in inferring inter-individual variability from
household studies. There was high uncertainty in estimates of heterogeneity when the study population
contained fewer than a few thousand individuals (highly-cited household studies of COVID-19 transmission
have 500-1000 individuals [85, 86]). We observed that households of size two were generally uninformative
about the heterogeneity present in susceptibility and infectiousness.

We made several important assumptions in our model. Like many other household transmission studies,
we assumed that all households are well-mixed populations. More realistically, some individuals may have
more intense contacts with others and secondary contacts of individuals known to be infected can take various
levels of precaution to avoid infection. This contact heterogeneity could conflate our estimates of variation
in infectiousness or susceptibility, meaning it is still possible that the inferred heterogeneity is caused by a
mixture of behavior, biology, and host-pathogen interaction. Another key assumption was that there are no
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cases of multiple importations into households, meaning our results are most applicable to circumstances in
which risk from the community is low and risk from household contacts is high. Lastly, we assumed that the
distributions of relative susceptibility and infectiousness were agnostic to individuals’ biological traits such
as age, sex, or prior immunity, and thus were identically and randomly distributed across individuals in all
households. However, because our approach allows for an arbitrary model of infection spread, each of these
limitations could easily be addressed in future work.

Household infection studies must make trade-o↵s in recruitment method, sample size, testing methodol-
ogy, and index case definition because of the constraints of time, funding, and feasibility. We applied our in-
ference procedure to three diverse studies of household spread of SARS-CoV-2, but found that only Ontario’s
vast provincial database of positive PCR tests allowed us to make reliable estimates of the individual-level
variation in infectiousness and susceptibility. For the Geneva-based household serosurvey [69], we could not
narrow down precise estimates of heterogeneity, likely due to the small sample size. Our tests on simulated
data suggested thousands of individuals were needed for precise estimation. For the Bnei Brak study [75],
we found that even the best-fit model did not describe the data well, suggesting that additional sources of
heterogeneity in either the infection or recruitment/testing process violated assumptions of our model. These
results underscore the indispensable role that data from broad public health surveillance plays in modeling
disease spread.

Estimations from the Ontario dataset suggested moderate levels of infectiousness variation and high
levels of susceptibility variation, with 16% (95% CI 14-18%) of individuals responsible for 80% of secondary
infections and 2% (95% CI 0-4%) of individuals responsible for 80% of population-level susceptibility. The
close agreement between the distribution of household outbreak sizes in the observed data and those predicted
by the best-fit model gives good reason to think that the presumed model of disease spread and individual
variation described the true dynamics well. Even so, we found that a growing discrepancy between the
observed and predicted number of households with many but not all individuals infected as household size
increased. The passive surveillance approach used in this study is unlikely to yield full infection histories in
each household, which may partially explain why our model overpredicts large household outbreaks. Further
work is needed to examine the possible bias introduced by incomplete ascertainment of infection status.
Contrary to the hypothesis of Tibebu et al. [76], our estimated SAR for this dataset was higher than the
crude estimate assuming all non-index cases were infected by the primary case, even though our model
allows for infections to spread over multiple generations. This fact highlights the importance of accounting
for heterogeneity explicitly in order to develop a clear picture of the risk to the household contact of an
infected individual.

In the case of SARS-CoV-2, age plays a role in determining susceptibility and infectiousness. In their
analysis of data from Bnei Brak, Dattner et al. [75] found strong evidence that children are less susceptible
than adults. The city of Bnei Brak has a young population, with 51% of individuals under the age of
20. Our model drastically underpredicted infections in households of size 2 and overpredicted infections in
large households. Declining to stratify the population by age in our inferences may have contributed to
these problems with the model fit because larger households tend to contain more children and thus have a
younger average age than smaller households. The enrollment process and follow up condition (return visits
for testing secondary contacts were only made when a household contact reported symptoms) may also be the
source of disagreement between data and model in this setting. Since individuals in larger households are at
greater risk (due to having a large number of close contacts who are themselves at risk), under-ascertainment
of infection status may censored the tail of final size distribution.

An extension of our work could take a combined approach where susceptibility varies across the population
but there is a di↵erent risk factor according to an individual’s age group. Another extension could correlate
susceptibility variation with household size to test the hypothesis that age primarily complicates our model
by violating the assumption that individuals in households of di↵erent sizes are considered identical. Still,
it’s been noted that having a priori knowledge of the meaningful subdivisions of a population for infection
risk is especially challenging and unreliable in the study of emerging pathogens [27]. Our approach avoids the
unreliability of a priori stratification by modeling the individual di↵erences in a continuous — rather than
a discrete — way. The high level of heterogeneity in susceptibility we inferred from COVID-19 household
data highlights the utility of this approach to detect heterogeneity at the scale of a population even in the
absence of known risk factors.

Our framework for estimating heterogeneity and overall rates of infection within a household is relevant
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not only because of what estimates imply about disease spread within a larger population, but also because
of what they tell us about transmission in this vital setting for the control of epidemics. We found that even
a small study can precisely estimate the SAR in the presence of heterogeneity among individuals provided
that the study allows for the possibility of heterogeneity in its model of disease dynamics. Our analysis of
the power of a study to detect a di↵erence in SAR indicates that the presence of heterogeneity does not
make an inference of SAR impossible. The flexibility o↵ered by the ability to do inference with arbitrary
dynamic models of infection is additionally useful because it allows our framework to be extended in the
future to many kinds of household interventions such as masking or therapeutics for SARS-CoV-2 and other
respiratory pathogens.
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