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Abstract

Background: Gene-based analysis has become popular in genomic research because of its appealing biological
and statistical properties compared with those of a single-locus analysis. However, only a few, if any, studies have
discussed a mapping of expression quantitative trait loci (eQTL) in a gene-based framework. Neither study has
discussed ancestry-informative eQTL nor investigated their roles in pharmacogenetics by integrating single
nucleotide polymorphism (SNP)-based eQTL (s-eQTL) and gene-based eQTL (g-eQTL).

Results: In this g-eQTL mapping study, the transcript expression levels of genes (transcript-level genes; T-genes)
were correlated with the SNPs of genes (sequence-level genes; S-genes) by using a method of gene-based partial
least squares (PLS). Ancestry-informative transcripts were identified using a rank-score-based multivariate association
test, and ancestry-informative eQTL were identified using Fisher’s exact test. Furthermore, key ancestry-predictive
eQTL were selected in a flexible discriminant analysis. We analyzed SNPs and gene expression of 210 independent
people of African-, Asian- and European-descent. We identified numerous cis- and trans-acting g-eQTL and s-eQTL
for each population by using PLS. We observed ancestry information enriched in eQTL. Furthermore, we identified 2
ancestry-informative eQTL associated with adverse drug reactions and/or drug response. Rs1045642, located on
MDR1, is an ancestry-informative eQTL (P = 2.13E-13, using Fisher’s exact test) associated with adverse drug
reactions to amitriptyline and nortriptyline and drug responses to morphine. Rs20455, located in KIF6, is an
ancestry-informative eQTL (P = 2.76E-23, using Fisher’s exact test) associated with the response to statin drugs (e.g.,
pravastatin and atorvastatin). The ancestry-informative eQTL of drug biotransformation genes were also observed;
cross-population cis-acting expression regulators included SPG7, TAP2, SLC7A7, and CYP4F2. Finally, we also identified
key ancestry-predictive eQTL and established classification models with promising training and testing accuracies in
separating samples from close populations.

Conclusions: In summary, we developed a gene-based PLS procedure and a SAS macro for identifying g-eQTL and
s-eQTL. We established data archives of eQTL for global populations. The program and data archives are accessible
at http://www.stat.sinica.edu.tw/hsinchou/genetics/eQTL/HapMapII.htm. Finally, the results from our investigations
regarding the interrelationship between eQTL, ancestry information, and pharmacodynamics provide rich resources
for future eQTL studies and practical applications in population genetics and medical genetics.
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Background
In the post-genome era, numerous genetic variations
such as single nucleotide polymorphism (SNP) and rare
variant have been discovered in international genomic
projects such as the International HapMap Project [1-5],
the ENCODE Project [6-8], and the 1000 Genomes Pro-
ject [9,10]. The speedy and extensive discovery of genetic
markers has facilitated not only a deeper understanding
of the genomic makeup, but also an increased resolution
for disease gene mapping. Genome-wide association stud-
ies have successfully identified thousands of genetic marker
loci associated with downstream phenotypes, including dis-
ease susceptibility and quantitative traits [11-15]. However,
a considerable proportion of the identified genetic loci are
not located in protein-coding regions, suggesting that these
genetic variants do not influence phenotypes through a
change of gene function [16,17].
An expression quantitative trait locus (eQTL) is a genetic

variation that regulates gene expression levels through a
cis-regulatory (i.e., local regulation) and/or trans-regulatory
(i.e., distant regulation) mechanism [18,19]. The import-
ance of eQTL for an elucidation of disease etiology has
been thoroughly documented [20-22]. Recent studies have
revealed an enrichment of eQTL in the identified asso-
ciation signals, implying that gene regulation can be used
to explain one of the major mechanisms regarding how
genetic variants contribute to phenotypes [16,17,20,23].
The mechanism of eQTL regulation functions as a bridge
between upstream genetic variation and downstream phe-
notypes; eQTL can control the transcript expression of
functional genes through DNA binding, mRNA splicing,
and noncoding RNA expression in transcriptional regula-
tion, thereby conferring the alterations of downstream
phenotypes [17].
Previous eQTL mapping studies have interconnected

DNA-level markers and mRNA-level markers based on the
various sources of human sample materials including
blood [21], cell lines [24-27], and tissues [21,22,28] from
the general population [24,25] or disease groups [20,29,30].
Several public eQTL databases for human genomic studies
were established, including Genevar (http://www.sanger.ac.
uk/resources/software/genevar/) [31], GTEx (http://www.
ncbi.nlm.nih.gov/gtex/GTEX2/gtex.cgi) [32], seeQTL
(http://www.bios.unc.edu/research/genomic_software/seeQTL/)
[33], and the eQTL Browser at the Pritchard Lab (http://eqtl.
uchicago.edu/cgi-bin/gbrowse/eqtl/). In addition, a number
of studies have focused on mapping eQTL for non-
human species such as yeast [34,35], Drosophila [36,37],
and mice [38,39].
Most of the available studies have discussed eQTL

mapping in a simple scenario in which they only modeled
the relationship between single gene expression and a sin-
gle SNP at a time [20,24,26,28,31,39-45]. In this simple
case, an eQTL regulation can be evaluated through
examining whether gene expression levels differ with re-
spect to 2 alleles. Two-point linkage analysis [21,24] and
single-locus association analysis [25,26] were performed to
identify locus-based eQTL based on SNPs from low-
density and high-density genotyping platforms, respect-
ively. These studies have sketched the relationship of gene
expression and eQTL but could be further improved by
incorporating information from inter-marker correlation
such as linkage disequilibrium in proximal SNPs and gen-
etic interactions in distant SNPs.
Recent studies turned to correlate single gene expres-

sion with multiple SNPs simultaneously, whereby SNPs
were chosen into a final model using sophisticated pro-
cedures of variable selection. Different statistical models,
including analysis of variance [46], linear regression [35],
and their generalizations such as penalized regression
[47], have been considered before. These studies have
gained a higher statistical power in detecting eQTL as
well as increased the proportion of the variation of gene
expression explained by multiple eQTL. However, the
gene expression variation is still not thoroughly identi-
fied based on the findings of previous eQTL studies.
With the advent of microarray and sequencing tech-

nologies, the amount of high-resolution gene expression
and SNP genotype data available has increased. Micro-
array data was used in this study. In a gene-expression
microarray such as the Illumina’s gene expression bead
chips [48] and Affymetrix’s gene expression gene chips
[49], beads or probes are designed to measure the expres-
sion levels of multiple transcripts by targeting various
transcriptional regions of a gene. In a SNP microarray
such as Illumina’s SNP bead chips [50,51] and Affymetrix’s
SNP gene chips [52,53], multiple probes are interrogated
to measure the fluorescence intensities of SNP probe se-
quences and used to call the genotypes of SNPs. All tran-
script probes and all SNP genotypes targeting the genomic
regions in a same gene can be simultaneously considered
to gain a complete understanding regarding the interrela-
tionship of gene expression and SNPs when mapping the
eQTL that regulate the gene. This necessity motivated us
to jointly correlate multiple transcript expression levels for
a gene with multiple SNPs in the same gene.
This study used gene-based eQTL mapping. The concept

of a gene-based association test has been broadly applied
to genome-wide association studies [54-58], pharmacogen-
omics studies [59,60], and genetic diversity studies [61].
Gene-based analysis has become popular in genomic re-
search because of its superior biological and statistical
properties compared with those of a single-locus analysis.
The strengths of a gene-based method include the follow-
ing: 1) a higher power for the detection of minor-effect
genes is gained by considering a joint effect of multiple
markers; 2) the multiple-testing problem is alleviated by
reducing the number of statistical tests; 3) an effect of
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locus heterogeneity is diluted and the results are more
reproducible by analyzing and inferring an entire gene
instead of a single marker; and 4) the results provide a dir-
ect interpretation in linking the association signals to
genes [56,62]. Moreover, because a gene itself is a natural
biological unit in genomes, genes provide a natural and
feasible unit for forming neighboring SNPs as a marker
set. To our knowledge, our study is the first genome-wide
eQTL mapping study that jointly models multiple tran-
script probes and multiple SNP markers in a gene-based
concept.
This study used a gene-based partial least squares

(PLS) method to correlate the multiple transcript probes
and multiple SNP markers. The original PLS method
had been applied to gene expression data analysis for more
than 10 years [63-65] and started to apply to genome-wide
association study in the past few years [66-68]. However,
the original PLS method did not consider gene informa-
tion. This study developed a gene-based PLS that incorpo-
rated gene information into the original PLS to connect
multiple transcript probes and multiple SNP markers in a
genome-wide eQTL mapping study.
In addition to characterizing the distribution of eQTL

in human genomes, this study also elucidated applications
of ancestry-informative eQTL in population genetics and
pharmacogenetics studies. Neither study has discussed
ancestry-informative eQTL nor investigated their roles
in pharmacogenetics before. In population genetics,
ancestry-informative marker (AIM) is a type of genetic
information marker that can be used for tracing the an-
cestral ethnicity of people. AIMs can be used to esti-
mate the population indices such as allele frequency,
genetic diversity, population differentiation, and admix-
ture proportions for a characterization of the genetic
background of study populations [69-74]. In addition,
AIMs can also been used to infer ancestral or continen-
tal origin for criminal or victim identification in forensic
sciences [70,75,76]. Short tandem repeat polymorphism
markers [77,78], SNP markers [71,79-82], gene expres-
sion [82], and other types of biomarkers [83] have been
employed for this purpose. This study especially inter-
ested in the capacity of eQTL for this purpose because
identification of ancestry-informative eQTL can explain
the regulatory mechanisms of genes and might correlate
to protein product and functional changes in different
ethnic populations.
This study also established panels of AIMs by using

eQTL. In this study, data from 4 HapMapII populations
were analyzed. Obtaining perfect AIM panels that can
distinguish samples among the continental populations
such as Africans, Caucasians and Asians [82] was not
unexpected, but distinguishing samples from closely
related populations, such as those from the Chinese and
Japanese in this study was challenging. Therefore, we
focused on classification analysis for these 2 relatively
proximal Asian populations. If the method is effective, it
can be further applied to study populations from much
closer lineages. No studies have attempted to establish
panels of AIMs by using eQTL.
Ancestry-informative eQTL are also useful in pharma-

cogenetics. In pharmacogenetics studies, genetic loci that
influence adverse drug reactions, drug responses, and drug
biotransformation have been identified and investigated
[84,85]. Population-based pharmacogenetic association
studies have been carried out and successfully identified
several relevant pharmacogenetic loci [86,87]. However,
previous studies have also demonstrated the changes of
adverse drug reactions and drug responses [88-90] and
drug biotransformation [91,92] by genetic ancestry. Phar-
macogenetic association study should be conducted care-
fully to avoid results confounded by genetic heterogeneity
of populations. Ancestry-informative eQTL can be used
to reduce the false-positive or false-negative findings in
pharmacogenetic association studies [70,82,93]: 1) ancestry-
informative eQTL can be used as a covariate in a phar-
macogenetic association analysis for adjusting for genetic
substructures as a result of reduced false positives (i.e.,
to diminish spurious association); and 2) ancestry-
informative eQTL can be used to classify individuals
with different genetic backgrounds into homogenous
groups for analysis as a result of reduced false nega-
tives (i.e., to increase true association).
Pharmacogenetic markers can be applied to predict

adverse drug reaction and drug response for personalized
medicine [94]. A famous example is the application of
the HLA-B1502 allele in carbamazepine-induced Stevens-
Johnson syndrome [95]. Seizure patients who carry the
HLA-B1502 allele incur a severe adverse drug reaction
if they take carbamazepine for the treatment of seizure.
However, this allele is only prevalent in Asian popula-
tions, not in Caucasian populations. Other markers are
required to predict adverse drug reaction in Caucasian
populations. Taken as a whole, the identification of
ancestry-informative eQTL can assist clinicians regarding
drug delivery and gain insights into pharmacodynamics
and pharmacokinetics mechanisms in populations, and
can also be used for correcting for population stratification
or admixtures in a genome-wide association study of
pharmacogenetics. Integrative analysis of eQTL, ancestry
information, and pharmacogenetics is critical and warrant
an urgent investigation.

Methods
Sample materials
This study analyzed 210 independent people from the
International HapMapII Project [1-4]. The people con-
sisted of 30 married African couples from Yoruba in
Ibadan (YRI), 30 married Caucasian couples of European-
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descent residing in Utah (CEU), and 90 Asian people,
including 45 Han Chinese people in Beijing (CHB) and
45 Japanese people in Tokyo (JPT). The Epstein-Barr
virus-immortalized lymphoblastic cell lines of the 210
HapMapII samples were obtained from Coriell Cells
Repositories (http://ccr.coriell.org/). For information re-
garding the preparation of DNA samples for SNP geno-
typing experiments and RNA samples for gene expression
experiments, please refer to the references [1-4,27,40].

SNP genotyping and data pre-processing
All 210 samples were genotyped using an Affymetrix
Human Mapping 500 K Set (Affymetrix Inc., Santa
Clara, CA, USA) [1-4]. This SNP chip provided genotype
data for 500,568 SNPs on 23 pairs of human chromo-
somes. The Bayesian Robust Linear Model with Mahala-
nobis Distance Classifier [96] was used for calling SNP
genotypes. The SNP genotype data are publicly available
on the International HapMap Project website (http://
hapmap.ncbi.nlm.nih.gov/). The annotation of the SNPs
on the Affymetrix Human Mapping 500 K was derived
from the NetAffx annotation update 28 (version: dbSNP
Build 128) that is publicly available on the Affymetrix
website (http://www.affymetrix.com/).
The genotype data was preprocessed and analyzed for

each of the 4 ethnic populations (YRI, CEU, CHB, and
JPT). First, this study focused on autosomal SNPs; there-
fore, non-autosomal SNPs were removed. Second, poor-
quality SNPs were removed if their genotype call rates
were lower than 0.9, their minor allele frequencies were
lower than 0.01, or they departed from Hardy-Weinberg
equilibrium (HWE). Here, we claimed that a SNP vio-
lated the HWE if the P-value of a permutation-based
HWE test [97] was lower than 0.001 after being adjusted
using a false discovery rate procedure [98]. Finally, the
inter-gene SNPs were removed from this gene-based
eQTL mapping study. Throughout this paper, the genes
containing those intra-gene SNPs are called “S-genes”,
which means “sequencing-level genes”. The flow chart of
the pre-processing of genotype data is described in the
upper-left corner of Figure 1. In the subsequent SNP
analyses, an additive coding of SNP genotype was used.

Gene expression experiment and data pre-processing
The gene expression levels of the 210 HapMapII sam-
ples were measured using Illumina’s Sentrix Human-6
Expression BeadChip (Illumina Inc., San Diego, CA, USA)
[27,40]. This bead chip provided 47,289 transcript probes
targeting 17,087 genes for the human genome (4 control
probes were removed in the beginning). The procedures
used for the quantification and normalization of gene ex-
pression levels are described in the Supporting Online
Materials [40]. The normalized gene expression data are
publicly available in the Gene Expression Omnibus (GEO)
database (http://www.ncbi.nlm.nih.gov/geo/) (Series acces-
sion number GSE6536). The annotation of gene expres-
sion probes on Illumina’s Sentrix Human-6 Expression
BeadChip was derived from the GEO annotation (acces-
sion number GPL2507; version: UCSC HG 18) available in
the GEO database (http://www.ncbi.nlm.nih.gov/geo/).
The gene expression data was preprocessed according

to the procedures suggested in the original papers of this
data set [27,40]. The main procedures are briefly de-
scribed as follows. First, the top probes with the highest
within-population variability were separately selected for
the 4 populations (YRI, CEU, CHB, and JPT) separately.
The probes that intersected in the lists of the 4 popula-
tions were collected. Second, all the probes were ranked
by the within-population variability of gene expression
in each population. The rank difference in each pair of
populations was calculated and the top of the probes
with the greatest rank differences was selected. Third,
the union set of the 2 aforementioned probe lists was
considered. Fourth, we focused on the biologically vali-
dated transcripts from the RefSeq database and removed
the transcripts from the UniGene and Gnomon databases
whose target genes were obtained from using algorithm
predictions. Finally, we focused on autosomal transcripts;
non-autosomal transcripts were removed. Throughout
this paper, the genes targeted by transcript probes are
called “T-genes”, which means “transcript-level genes”.
The flow chart of the pre-processing of gene expression
data is described in the upper-right corner of Figure 1.

Gene-based eQTL mapping
We applied a gene-based PLS method to correlate the
multiple transcript probes for a T-gene and multiple SNPs
on an S-gene. Mapping for SNP-based eQTL becomes a
special case if a PLS analysis is performed to correlate the
transcript expression levels of genes with a single SNP.
The analysis was performed using a SAS macro we devel-
oped, which was modified from the SAS procedure, PROC
PLS (SAS Inc., Cary, NC, USA) (Additional file 1). The
gene-based PLS method is also provided (Appendix). We
implemented a 7-fold cross-validation procedure to calcu-
late the root mean predicted residual sum of squares
(PRESS) for each number of extracted genetic factors, and
the number of extracted genetic factors that had the mini-
mum root mean PRESS was chosen. To avoid over-fitting
because of the inclusion of too many genetic factors in a
model, the van der Voet’s test [99] was applied to deter-
mine a final model with a reduced number of extracted
genetic factors. The final model had the least genetic
factors with a root mean PRESS that was insignificantly
larger than the model with the minimum root mean
PRESS. A set of SNPs on an S-gene was defined as
“gene-based eQTL” (g-eQTL) if the number of ex-
tracted genetic factors in the final model was greater or

http://ccr.coriell.org/
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Figure 1 Flow chart of data pre-processing and ancestry-informative g-eQTL mapping.
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equal to 1, and the variation in the S-gene and T-gene
accounted for by the factor(s) was non-zero. A g-eQTL is
cis-regulatory if the S-gene where the g-eQTL is located
and the T-gene that is regulated by the g-eQTL are the
same gene; otherwise, the g-eQTL is trans-regulatory. The
correlation between the g-eQTL (S-gene) and the regu-
lated gene (T-gene) was measured using the coefficient
of canonical correlation. The flow charts of an eQTL
mapping, an identification of ancestry-informative eQTL
associated with drug or drug biotransformation (described
in the next subsection), and an identification of key
ancestry-informative eQTL with a high predictive ability
for ethnic groups (or termed as “ancestry-predictive
eQTL”) (described after the next subsection) are sum-
marized in the bottom of Figure 1.

Identification of the ancestry-informative eQTL associated
with adverse drug reactions and drug responses
A 3-step procedure was used to identify ancestry-
informative eQTL associated with adverse drug reactions
and drug responses. In the first step, ancestry-informative
eQTL was identified. We collected the eQTL identified in
our eQTL mapping analysis and examined whether they
exhibited differential allelic distributions in the study pop-
ulations by using Fisher’s exact test. In the analysis of the
contingency table, the first variable was the allele type of
an eQTL (2 allele types of a SNP) and the second variable
was the ethnic groups being studied (4 populations: YRI,
CEU, CHB, and JPT). An eQTL was claimed as ancestry-
informative if after being adjusted using a false discovery
rate procedure [98], the adjusted P-value of the Fisher’s
test was smaller than 0.05. In the second step, we collected
the SNPs associated with drugs. We collected all the SNPs
reported to have adverse drug reactions (SNP-ADR) and
the SNPs associated with drug responses (SNP-FX) in the
DrugBank database (http://www.drugbank.ca/). Simultan-
eously, we also examined if those SNPs in pharmacogenet-
ics used in this study were also interrogated by using the
Affymetrix Human Mapping 500 K Set. In the final step,
the ancestry-informative eQTL associated with adverse
drug reactions and drug responses were obtained by
taking the intersection of the ancestry-informative eQTL
identified in the first step and the SNPs in pharmacogenet-
ics collected in the second step. When we identified
genome-wide eQTL associated with adverse drug reac-
tions and drug responses, we chose the intersection of
genome-wide eQTL and the SNPs associated with drugs.

Identification of the ancestry-informative eQTL associated
with drug biotransformation
First, we collected the eQTL identified in our eQTL
mapping analysis. Second, we compiled the drug bio-
transformation genes reported in the literature [91]; they
consisted of genes with encoding phases I and II drug-
metabolism enzymes, the cytochrome P450 drug metab-
olizing enzymes, and the genes responsible for drug
transporters, transcription factors, among others. Third,
we extracted the cis-acting and trans-acting eQTL that
regulated the drug biotransformation genes in our data.
Finally, the identified eQTL that regulated the drug bio-
transformation genes were examined whether they were
ancestry-informative by using Fisher’s exact test.

Identification of the key ancestry-predictive eQTL
A 2-step procedure was used to identify key ancestry-
predictive eQTL satisfying the following 2 conditions:
1) the eQTL can regulate ancestry-informative tran-
scripts, and 2) the eQTL can distinguish samples from
different populations. In the first step, we identified
ancestry-informative transcripts, which were differen-
tially expressed in the study populations. We adapted a
rank-score-based multivariate nonparametric method
(MNM) [100] for a gene-based association test to iden-
tify ancestry-informative transcripts. In the analysis, the
response variables were multivariate gene expression
levels of transcript probes for a T-gene and the inde-
pendent variable was the ethnic groups of interest. The
transcript probes for a T-gene were defined as ancestry-
informative when the adjusted P-value of the MNM test
was lower than 0.05 by using a false discovery rate
procedure [98].
In the second step, we identified the key ancestry-

predictive eQTL that regulated the ancestry-informative
transcripts. We collected all the s-eQTL and g-eQTL as-
sociated with ancestry-informative transcripts identified
in the first step. Incorporating a forward selection proced-
ure, we then chose key ancestry-predictive eQTL from the
collection of ancestry-informative eQTL by using statis-
tical discriminant analysis, using BIASLESS software [82].
Here we focused on the discussion of the results in CHB
and JPT populations because these closely related popu-
lations were more difficult to classify in the sample
classification analysis compared to the other 2 distant
populations, YRI and CEU. We performed classification
analyses by using 3 eQTL sets: 1) the eQTL found in
CHB or JPT (i.e., union), 2) eQTL found in CHB and
JPT (i.e., intersection), and 3) eQTL found only in CHB
and JPT (i.e., differences). The main statistical procedures
in each classification analysis are described as follows.
We implemented a 10-fold cross-validation procedure.

In each cross-validation, a flexible discriminant analysis
was used to build a classification model with the highest
testing accuracy by sequentially selecting the eQTL with
the maximum increment of training accuracy in the eQTL
list. The eQTL with the minimum within-population and
between-population sum of squares ratio for genotypic
values was selected if more than one eQTL had the same
training accuracy. The procedure continued until the

http://www.drugbank.ca/
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training accuracy reached 1.0 or the increment of training
accuracy was less than 0.001. The model with the highest
training accuracy was then used to classify individuals in
the testing dataset and the testing accuracy was calculated.
The previous steps were repeated until each of the 10 sub-
sets of data had been analyzed as a testing dataset, result-
ing in 10 classification candidate models. Finally, among
the 10 classification models, the model with the highest
testing accuracy was selected as the optimal classification
model.

Results
SNP data pre-processing
In this study, we started with a removal of 11,812 (11,812,
11,812, and 11,812) non-autosomal SNPs from the YRI
(CEU, CHB, and JPT) population. Next, we sequentially
removed 4,407 (3,369, 3,147, and 4,466) low-call-rate SNPs,
43,334 (76,198, 95,230, and 97,686) non-polymorphic SNPs,
and 174 (215, 36, and 39) HWE-violated SNPs. We further
removed 257,141 (239,123, 227,543, and 225,352) inter-
gene SNPs. The final remains were 183,700 (169,851,
162,800, and 161,213) SNPs for our subsequent analysis.
The union of the 4 SNP sets in the 4 study populations
contained 204,214 distinct SNPs (the upper-left corner of
Figure 1).
SNP-to-gene mapping was performed according to the

physical positions of SNP and gene expression markers
from the aforementioned SNP and gene annotations and
the seq_gene.md file in NCBI 36.3. A SNP was assigned
to all the genes if the SNP were mapped to multiple
genes by annotations. In this study, 204,214 SNPs were
mapped to 16,964 S-genes, which was the combination
of 16,437 genes in YRI, 16,012 genes in CEU, 15,807
genes in CHB, and 15,779 genes in JPT (the upper-left
corner of Figure 1).

Gene expression data pre-processing
First, the top 18,000 probes with the highest within-
population variability were selected in each of the 4 ethnic
populations (YRI, CEU, CHB, and JPT). The intersection
set of the 4 probe lists for highest within-population vari-
ability contained 15,292 probes. Second, in each popula-
tion, the gene expression variability of probe was ranked
and the top 1% of probes (473 probes) with the greatest
variability of ranks was selected. Of the 2,838 probes with
the greatest variability of ranks in 6 pairwise comparisons
of the 4 populations, 2,023 were distinct probes. A total of
17,307 distinct probes were identified in the 2 aforemen-
tioned probe lists; in other words, 8 probes were over-
lapped in the 2 sources of probes. Of the 17,307 probes,
we removed 2,769 non-RefSeq probes (1,646 probes from
UniGene and 1,123 probes from Gnomon) and then
removed 2,510 non-autosomal transcript probes (2,053
probes without chromosome information and 457 probes
targeting genes located on sex chromosomes). Finally,
12,028 transcript probes for 11,124 T-genes were used for
the subsequent analysis (the upper-right corner of
Figure 1).

Gene-based eQTL mapping
We performed gene-based eQTL mapping by analyzing
16,964 S-genes and 11,124 T-genes in the 4 study popula-
tions, where 8,529 genes overlapped. The analysis revealed
302, 235, 239, and 259 T-genes regulated by g-eQTL
through a cis-acting mechanism in the YRI, CEU, CHB,
and JPT populations, respectively. Twenty-five of the T-
genes were simultaneously identified in all of the 4 study
populations: APIP, C8orf32, CAPZA1, EFCAB2, ENTPD1,
FAHD1, FAM119B, HLA-DQA1, LOC339804, LOC388335,
MASTL, MED29, NT5C3L, PDPR, PKHD1L1, SERPINB10,
SLFN5, SNX11, SPG7, SQSTM1, ST7L, TIPRL, TRIM4,
TSGA10, and ZNF230. The analysis revealed 205, 192,
193, and 193 cis-regulatory g-eQTL contained in the cor-
responding S-genes of the 25 T-genes in the YRI, CEU,
CHB and JPT populations, respectively. The analysis also
identified 11,094, 11,102, 11,110, and 11,117 T-genes regu-
lated by g-eQTL through a trans-acting mechanism in the
YRI, CEU, CHB, and JPT populations, respectively.

Identification of the ancestry-informative eQTL associated
with adverse drug reactions and drug responses
In the first step, we identified ancestry-informative g-eQTL.
Based on 203,618 distinct g-eQTL (180,181, 165,080,
152,909, and 142,371 g-eQTL, derived from YRI, CEU,
CHB and JPT, respectively), the Fisher’s exact tests identi-
fied 181,655 g-eQTL with a differential allelic distribution
in 4 populations; therefore, these were ancestry-informative
(159,458, 144,670, 133,429, and 124,072 g-eQTL from
YRI, CEU, CHB, and JPT, respectively). Over 80% of the
identified g-eQTL were ancestry informative. A similar
pattern of ancestry information enrichment was also
observed in s-eQTL.
In the second step, we collected the drug-associated

SNPs reported in DrugBank. Fifty distinct SNPs related
to adverse drug reactions (from the “SNP-ADR” table in
DrugBank) and 25 distinct SNPs related to drug response
(from the table of “SNP-FX” in DrugBank). Three SNPs
(rs1045642, rs5030655, and rs3892097) were related to
both adverse drug reactions and drug responses. Among
the 72 distinct SNPs in pharmacogenetics, only 4 SNPs
were interrogated in the Affymetrix Human Mapping
500 K Set used in this study. After excluding one SNP
(rs1799853) without chromosome information and remov-
ing one SNP located on a sex chromosome (rs4825476),
the remaining 2 SNPs were rs1045642 and rs20455.
We found that rs1045642 and rs20455 were ancestry-

informative SNPs in the first step. In other words,
whether or not ancestry information was considered in
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advance, this study identified rs1045642 and rs20455 as
eQTL associated with adverse drug reactions and/or
drug response. Rs1045642 is located in the ATP-binding
cassette B1 gene (ABCB1), aliased as Multi-drug resistance
gene 1 (MDR1) on the chromosome 7q21.12. Rs1045642 is
an ancestry-informative eQTL (P = 2.13E-13, using Fisher’s
exact test) associated with adverse drug reactions to ami-
triptyline and nortriptyline [101] and drug responses to
morphine [102]. This eQTL regulates 7, 28, and 9 T-genes
in YRI, CHB, and JPT, respectively. Rs20455, which is lo-
cated in KIF6 on the chromosome 6p21.2, is also an
ancestry-informative eQTL (P = 2.76E-23, using Fisher’s
exact test) associated with drug responses to pravastatin
and atorvastatin [103]. This eQTL regulates 15, 45, 9, and
45 T-genes in YRI, CEU, CHB, and JPT, respectively.

Identification of the ancestry-informative eQTL of drug
biotransformation genes
Among the 143 drug biotransformation genes collected
from the literature [91], only 139 drug biotransformation
genes had data available in the Illumina’s Sentrix Human-
6 Expression BeadChip. We identified several s-eQTL that
regulated drug biotransformation genes. In CEU, 5 drug
biotransformation genes (CAT, CYP4F2, SLCO1B3, SPG7,
and TAP2) were cis-regulated by 11 s-eQTL and 76 drug
biotransformation genes were trans-regulated by 21,213
s-eQTL. In YRI, 5 drug biotransformation genes (ABCC4,
GSTO1, PTGS1, SPG7, and ADK) were cis-regulated by
22 s-eQTL and 76 drug biotransformation genes were
trans-regulated by 20,981 s-eQTL. In CHB, 5 drug bio-
transformation genes (TAP2, SLC7A7, SPG7, CYP4F2,
and CBR3) were cis-regulated by 8 s-eQTL and 76 drug
biotransformation genes were trans-regulated by 20,314
s-eQTL. In JPT, 3 drug biotransformation genes (TAP2,
SLC7A7, and SPG7) were cis-regulated by 9 s-eQTL and
76 drug biotransformation genes were trans-regulated
by 17,659 s-eQTL. Moreover, we found that all of the
identified cis-acting s-eQTL that regulated drug bio-
transformation genes were ancestry-informative. Among
the identified trans-acting s-eQTL that regulated drug
biotransformation genes, 18,583 (87.60%), 18,521 (88.28%),
17,717 (87.22%), and 15,271 (86.48%) of which were
ancestry-informative in CEU, YRI, CHB, and JPT,
respectively.
We also identified g-eQTL that regulated drug bio-

transformation genes. In CEU, 3 drug biotransformation
genes (CAT, SLCO183, and SPG7) were cis-regulated and
76 genes were trans-regulated by 1,964 S-genes (16,050
g-eQTL). In YRI, 3 drug biotransformation genes (GSTO1,
PTGS1, and SPG7) were cis-regulated and 76 genes
were trans-regulated by 1,634 S-genes (12,783 g-eQTL).
In CHB, 3 drug biotransformation genes (TAP2, SPG7,
and CBR3) were cis-regulated and 76 genes were trans-
regulated by 2,113 S-genes (18,506 g-eQTL). Finally, in
JPT, 3 drug biotransformation genes (TAP2, SLC7A7,
and SPG7) were cis-regulated and 76 genes were trans-
regulated by 1,803 S-genes (15,046 g-eQTL). We found
that 35 (97.22%), 29 (96.67%), 15 (88.24%), and 22 (88%)
cis-acting g-eQTL that regulated drug biotransformation
genes were ancestry-informative in CEU, YRI, CHB,
and JPT, respectively. Among the identified trans-acting
g-eQTL that regulated drug biotransformation genes,
14,075 (87.69%), 11,206 (87.66%), 16,059 (86.78%), and
13,089 (86.99%) of which were ancestry-informative in
CEU, YRI, CHB, and JPT, respectively.

Identification of key ancestry-predictive g-eQTL
In the first step, we identified ancestry-informative tran-
scripts. The MNM tests revealed 6,241 targeted T-gene
differentially expressed in 2 proximal populations, CHB
and JPT. All the cis-acting and trans-acting g-eQTL for
the 6,241 ancestry-informative transcripts were collected.
In CHB, 881 cis-acting g-eQTL on 112 S-genes and
146,421 trans-acting g-eQTL on 14,976 S-genes were
identified. In JPT, 1,214 cis-acting g-eQTL on 132 S-genes
and 133,439 trans-acting eQTL on 14,479 S-genes were
identified. In summary, 114,851 g-eQTL on 13,714 S-
genes were shared in both populations (i.e., intersection)
and 149,943 g-eQTL on 15,436 S-genes occurred in CHB
or JPT populations (i.e., union) (Figure 2). Moreover,
23,197 g-eQTL on 1,078 S-genes were CHB-specific and
12,448 g-eQTL on 644 S-genes were JPT-specific, and 3
SNPs overlapped in the 1,722 population-specific S-genes.
In the second step, we selected key ancestry-predictive

g-eQTL from the sets of g-eQTL identified in “CHB or
JPT”, “CHB and JPT”, or “CHB-specific or JPT-specific”
through a classification analysis, using BIASLESS software.
The 3 classification analyses selected 5, 5 and 6 ancestry-
informative eQTL for separating individuals from the CHB
and JPT populations with a testing accuracy of 0.8750,
0.7778, and 0.6667, respectively (Figure 2). In the analysis
of “CHB or JPT”, the key ancestry-predictive eQTL were
SNP_A-2083414 (rs7045959), SNP_A-4237482 (rs770576),
SNP_A-1786325 (rs12637414), SNP_A-2103497 (rs7757158),
and SNP_A-4287876 (rs12551120). In the analysis of “CHB
and JPT”, the key ancestry-predictive eQTL were
SNP_A-2083414 (rs7045959), SNP_A-4243814 (rs2976396),
SNP_A-1966487 (rs1561296), SNP_A-2221278 (rs2074066),
and SNP_A-4235987 (rs731952). In the analysis of “CHB-
specific or JPT-specific”, the key ancestry-predictive eQTL
were SNP_A-4258319 (rs10956197), SNP_A-1802004
(rs17807611), SNP_A-1862135 (rs4244011), SNP_A-
2174896 (rs17644158), SNP_A-4244409 (rs1001021),
and SNP_A-4224685 (rs7302554).

Comparison of ancestry-informative g-eQTL and s-eQTL
We also implemented s-eQTL mappings and examined
their performance in inferring population ancestry. In



Figure 2 Results of classification analysis for identifying AIMs based on g-eQTL found in “CHB or JPT”, “CHB and JPT”, or “CHB-specific
or JPT-specific”.
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CHB, 177 cis-acting s-eQTL on 170 S-genes and 156,349
trans-acting s-eQTL on 15,615 S-genes were identified. In
JPT, 212 cis-acting s-eQTL on 202 S-genes and 153,101
trans-acting s-eQTL on 15,507 S-genes were identified.
In summary, 145,107 s-eQTL on 15,212 S-genes were
shared in both CHB and JPT populations and 155,452
s-eQTL on 15,562 S-genes occurred in the CHB or JPT
populations. Moreover, 5,743 s-eQTL on 2,734 S-genes
were CHB-specific and 4,602 s-eQTL on 2,253 S-genes
were JPT-specific.
In the sets of eQTL for “CHB or JPT”, “CHB and JPT”,

and “CHB-specific or JPT-specific”, the numbers of over-
lapping g-eQTL and s-eQTL were 149,533, 108,147, and
3,362, respectively. Compared with the analysis based on
g-eQTL only, if key ancestry-predictive eQTL were chosen
from only s-eQTL, testing accuracy increased to 0.8750,
0.8750, and 0.7778 for “CHB or JPT”, “CHB and JPT”, or
“CHB-specific or JPT-specific”, respectively (Figure 3). If
key ancestry-predictive eQTL were chosen from a com-
bination of g-eQTL and s-eQTL, the testing accuracy
further increased to 0.8750, 0.8889, and 0.8750 (Figure 4).

The SAS macro for eQTL mapping using a gene-based
PLS analysis
We provided a SAS macro for gene-based and SNP-based
eQTL mapping (Additional file 1). The gene expression
data were saved in separated files organized by T-genes
and the genotype data of SNPs were saved as separated
files by S-genes. For convenience, if the numbers of the
transcripts in T-genes are the same, the gene expression
data of those T-genes can also be arranged in the same file.
Similarly, if the numbers of SNPs on S-genes are the same,
the genotype data of those S-genes can be saved in the
same file. In each data file of a T-gene, the first 2 columns
are the T-gene name and sample ID followed by the
gene expression data of multiple transcript probes in
this T-gene. In each S-gene data file, the first 2 columns
are the S-gene name and sample ID followed by the
genotype data (0, 1, or 2) of multiple SNPs in this S-gene.
The main command line of the SAS macro was the
following:

%macro gbPLSðTgene ¼; Sgene ¼; nProbe ¼;

nSNP ¼;Out ¼Þ

Users must specify the “filename of gene expression
data of T-genes”, “the filename of genotype data of S-
genes”, “the number of transcript probes in T-genes”,
“the number of SNPs on a S-gene”, and “the output file-
name” in the command line after the symbol “=”. We
also provided an illustrative example. In this example, we
examined the association between the gene expression of



Figure 3 Results of classification analysis for identifying AIMs based on s-eQTL found in “CHB or JPT”, “CHB and JPT”, or “CHB-specific
or JPT-specific”.

Figure 4 Results of classification analysis for identifying AIMs based on the combination of g-eQTL and s-eQTL found in “CHB or JPT”,
“CHB and JPT”, or “CHB-specific or JPT-specific”.
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7 T-genes that each of them had 4 transcripts (Additional
file 2) and genotype data of 43 S-genes that each con-
tained 28 SNPs (Additional file 3). The gene expression
data were saved using the filename “GE”. The genotype
data were saved using the filename “SNP”. The outputs
were saved using the filename “OUTPUT”. The command
line for this example is written as follows:

%macro gbPLSðTgene ¼ GE; Sgene ¼ SNP;

nProbe ¼ 4; nSNP ¼ 28;

Out ¼ OUTPUTÞ;

Users can also run a SNP-based eQTL mapping using
this SAS macro by providing a genotype file that con-
tains the data of a single SNP.

The eQTL data archives
The population-specific eQTL data archives for the 4
study populations (YRI, CEU, CHB, and JPT) were
established in this study. To facilitate the search of
eQTL results, 3 Excel files (Additional files 4, 5, and 6),
that summarize the relationships between T-genes, S-
genes, and eQTL, were prepared and are also accessible
at the website (http://www.stat.sinica.edu.tw/hsinchou/
genetics/eQTL/HapMapII.htm).

Conclusion and discussion
In conclusion, our research makes several contributions
for future eQTL studies. Regarding methodology, we
augment a gene-based PLS procedure into the strategies
for mapping eQTL. Moreover, we also provide a SAS
macro for an efficient identification of s-eQTL and g-
eQTL. In biology, our eQTL mapping study provides
detailed cis-acting and trans-acting connections be-
tween T-genes and S-genes/loci. The results reveal the
relevance and complexity of gene regulation in the hu-
man genome. The data archives, which provide the link
between gene expression and eQTL according to ethnic
populations, have been established and made freely avail-
able. Moreover, we also observed ancestry information
enriched in eQTL. Finally, in applications, our results
illustrate that eQTL provide crucial information not
only for disease mechanism in medical genetics but
also for population ancestry in population genetics as
well as for adverse drug reactions, responses, and biotrans-
formation in pharmacogenetics. Furthermore, integrating
s-eQTL and g-eQTL increases the proportion of variability
explained and the testing accuracy of prediction.
Performing PLS analysis identified the most substantial

PLS factors that simultaneously explain both the variation
of multiple response variables and the variation of mul-
tiple explanatory variables as much as possible. In this
study, we investigated eQTL by using a gene-based PLS,
where the response variables were transcripts in a T-gene
and the explanatory variables were SNPs in an S-gene.
Our method can jointly model multiple transcript
probes and multiple SNP markers in a gene-based con-
cept. Conventionally, the simple linear regression ana-
lysis that considers single transcript and single SNP
marker is still most frequently used for a mapping of
eQTL. It is well documented that PLS analysis outper-
forms the simple or multiple linear regression analysis,
particularly for the following 2 situations: 1) when the
number of observations (n) is smaller than the number
of variables (p) (i.e., a problem of small n and large p);
and 2) when co-linearity exists in explanatory variables.
In practice, these situations occur in genome-wide eQTL
mapping studies.
In this gene-based eQTL mapping study, the transcript

expression levels of a T-gene were correlated with SNPs
on an S-gene through a method of gene-based PLS.
Gene-based eQTL mapping for g-eQTL is reduced to
SNP-based eQTL mapping for s-eQTL if the transcript
expression levels of genes were correlated with a single
SNP in PLS analysis. In a comparison of SNP-based eQTL
and gene-based eQTL mapping using PLS, these 2 types
of eQTL mapping have their respective merits and the re-
sults are complementary. First, the SNP-based PLS identi-
fied more cis-acting regulators than the gene-based PLS
did; 1,077 and 706 cis-acting genes were identified by the
SNP-based PLS and gene-based PLS, respectively. How-
ever, a number of cis-regulators can be identified only by
using the gene-based PLS; 136 cis-acting genes (75 in YRI,
56 in CEU, 55 in CHB, and 46 in JPT) could not be
identified by using only SNP-based PLS. Second, SNP-
based eQTL mapping is particularly suited for identifying
ancestry-predictive eQTL that carry population-specific
alleles for distant ethnic groups such as YRI and CEU.
In this situation, a gene-based eQTL mapping can also
be used to identify the ancestry-informative eQTL, but
also inevitably includes other SNPs in the same gene.
However, if the goal is to identify the AIMs of closely
related populations, population-specific alleles in eQTL
might not be available. In this case, when we can com-
bine the eQTL from both s-eQTL and g-eQTL, the test
accuracy for sample classification is higher than the results
based only on s-eQTL or g-eQTL.
In this study, we identified the ancestry-informative

eQTL associated with adverse drug reactions and drug
responses. We identified rs1045642 (C3435T) on ABCB1
as an ancestry-informative eQTL associated with adverse
drug reactions and drug responses; Rs1045642 is a C/T
polymorphism with an ancestral allele C. The allele fre-
quency of the ancestral allele varied significantly across
populations (P = 2.13E-13, using Fisher’s exact test); the al-
lele frequencies in YRI, CEU, CHB, and JPT were 0.892,
0.458, 0.600, and 0.511, respectively. Previous studies have
observed that this SNP associated with nortriptyline-
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induced postural hypotension in patients treated for
major depression [101] and morphine pain relief in
cancer patients [102].
The ABCB1 gene encodes a P-glycoprotein. Activating

this protein blocks drugs from entering the brain from the
blood and also reduces the transportation of drugs out of
the brain across the blood-brain barrier. Patients who
carry the TT genotype tend to have lower gene expression
of ABCB1, which reduces the activity of the encoding
p-glycoproteins. Therefore, a reduced p-glycoprotein
activity results in a relative accumulation of nortriptyline
in the brain [101], thereby increasing the risk of postural
hypotension in patients with treated with nortriptyline.
However, suppression of p-glycoproteins also results in the
accumulation of morphine in the brain, thereby enhancing
the drug’s analgesic effects and pain relief [102].
Another ancestry-informative eQTL that was identi-

fied to be associated with drug response was rs20455
(Trp719Arg) on the kinesin family member 6 (KIF6)
gene located on the chromosome 6p21.2. Rs20455 is a
C/T polymorphism, where C is the ancestral allele. The
frequency of the ancestral allele C dramatically varies
according to populations (P = 2.76E-23, using Fisher’s
exact test); the allele frequencies in YRI, CEU, CHB, and
JPT are 0.931, 0.358, 0.556, and 0.400, respectively. Pre-
vious studies have revealed that rs20455 is associated
with myocardial infarction [103] and coronary heart
disease [103-105]. The missense change in the 719th
codon from CGG to TGG alters the encoded amino acid
to change from arginine (Arg) to tryptophan (Trp).
People who carry the C allele(s) (719Arg) of rs20455
tend to have an increased risk of coronary heart diseases
[103-106] relative to the T allele (Trp719). Our results
indicated that people of African descents have a consid-
erably higher frequency of the C allele of rs20455 than
people of other populations do. This result is consistent
with the high prevalence of cardiovascular diseases in
populations of African-descent; for example, a previous
survey revealed that the risk, prevalence, and mortality
rates for cardiovascular disease are higher in African
Americans than in Americans of other ethnic ancestries
[107,108]. In addition, cardiovascular disease patients
who carry the C allele(s) of rs20455 have an improved
response to statin drugs such as pravastatin and ator-
vastatin, but no improvement was observed in non-
carriers [103,105,106,109].
How KIF6 influences the risk of cardiovascular disease

and pharmacoresponse in statin drugs remains unclear.
Several hypothetical mechanisms were proposed and
await further investigation. For example, a missense sub-
stitution of the C allele of rs20455 with the T allele results
in an amino acid change from Arg to Trp. The change
might influence the affinity for transported cargo mole-
cules and/or the motor activity of the KIF6 protein and
then influence the risk of cardiovascular disease and
pharmacoresponse to statin [110].
This study also identified the eQTL that regulates the

drug biotransformation genes [91,92]. Spastic paraplegia
7 (SPG7) was simultaneously identified as a cis-regulated
biotransformation gene in all the HapMapII populations.
This gene encodes a mitochondrial metalloprotease
protein and was observed to be associated with docetaxel
and thalidomide toxicities [111]. Transporter 2, ATP-bing
cassette, sub-family B (TAP2) is a cis-regulated gene in
CEU, CHB, and JPT, and Solute carrier family 7 (SLC7A7)
is a cis-regulated gene in CHB and JPT. These 2 genes
play a role in drug transportation [91,92]. Cytochrome
P450, family 4, subfamily F, polypeptide 2 (CYP4F2) was
identified as a cis-regulated gene in CEU and CHB. This
gene belongs to the cytochrome P450 superfamily of en-
zymes, which is well known as the most crucial system
of drug metabolism and bioactivation [112]. A previous
study showed that CYP4F2 can alter the required warfarin
dose [113].
This study can be extended to several directions. First,

this study analyzed the gene expression and SNP data
from microarray experiments. With the advent of sequen-
cing technology, the number of gene expression and SNP
markers will dramatically increase in the future and re-
searchers will be able to analyze more data from RNA
sequencing and DNA sequencing experiments to gain
more detailed information regarding gene regulation.
However, we foresee that a sequencing-based eQTL
mapping study will require intensive demands regard-
ing computational facilities and time, and a substantial
amount of space for recording the relations of gene
expression and eQTL. An efficient algorithm for PLS
will be crucial in this type of data analysis and a well-
designed data warehouse will be required for storing
the enormous amount of eQTL relations in the human
genome.
Second, the type of biological specimen used in exper-

iments might influence gene expression. This study pro-
vides a proof-of-concept method for eQTL mapping.
The current results are still limited by the use of a single
cell type, lymphoblastoid cell lines (LCL). LCL-based
eQTL studies were recognized as essential materials for
studying eQTL in providing the genetic mechanism of
gene regulation [114]. However, because of the tissue-
specific feature of eQTL, the findings of this study
might not be applicable to other tissues and organs. We
plan to extend our study to other types of tissue by ana-
lyzing data from the GTEx project [32]. It is worthwhile
to compare the results from using LCL and other types
of tissue sample and discuss the tissue-specific and tissue-
shared patterns of gene regulation.
Third, the eQTL identified in this study might be limited

by the small to moderate number of samples and ethnic
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populations available in the HapMapII project; therefore,
the results should be further examined using additional
samples from additional populations and require increased
biological verifications. Currently, we are studying the re-
lation of gene expression and eQTL of additional samples
from additional populations by analyzing the data of the
International HapMapIII Project, which contains 1,184
samples from 11 global populations [5,115].
Fourth, this study employed a set-based method of

eQTL mapping. The gene is a natural and plausible unit,
but not the only unit. We will extend our gene-based con-
cept to incorporate the pathway information from Kyoto
Encyclopedia of Genes and Genomes [116] and the gene
ontology information of from the Gene Ontology project
[117] for set-based eQTL mapping. The results will in-
clude insights into the regulatory network of the human
genome and reveal more clues regarding disease etiology
and population evolution.
Finally, this study only discussed mRNA regulation.

To thoroughly understand regulation mechanisms, other
mechanisms of gene regulation such as micro RNA and
long non-coding RNA regulation, and epigenetic mecha-
nisms such as DNA methylation, histone modification,
and chromatin remodeling must be discussed.
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Appendix
The method of eQTL mapping, using a gene-based
PLS analysis
Here we describe the procedure for implementing an
eQTL mapping method, using a gene-based PLS. With-
out loss of generality, we discuss the case of a T-gene
containing t transcripts and an S-gene containing s SNPs.
In notation, matrix T denotes an n by t matrix of tran-
script data, where the element in the ith row and jth
column is the expression level of the jth transcript of
the ith individual. Matrix S denotes an n by s matrix of
SNP data, where the element in the ith row and jth
column takes a value of 0, 1, or 2 for genotype AA, Aa,
or aa, respectively, for the jth SNP of the ith individual.
PLS is used to identify a number of factors that can

explain the variation of response variables (T) and explain
the variation of explanatory variables (S) as much as
possible [118]. In general, the SNP matrix S and transcript
matrix T can be expressed as a linear regression model of
latent factors FS (dimensions: n by r) and FT (dimension:
n by r) respectively as follows:

S ¼ FSLS þ ES ðA1Þ
T ¼ FTLT þ ET ðA2Þ

where LS (dimensions: r by s) and LT (dimensions: r by t)
are loading matrices and ES (dimensions: n by s) and ET

(dimensions: n by t) are error terms. Consider that FT
can be rewritten as a linear model of FS as follows:

FT ¼ FSLF þ EF ðA3Þ
where LF (dimensions: r by r) is a new loading matrix
and EF (dimensions: n by r) is a new error term. From
Equations (A2) and (A3), we obtain

T ¼ FSLF þ EFð ÞLT þ ET

¼ FS LFLTð Þ þ EFLT þ ETð Þ ðA4Þ
From Equations (A1) and (A4), we obtain

T ¼ S–ESð Þ LSð Þ−1 LFLTð Þ þ EFLT þ ETð Þ
¼ S LSð Þ−1 LFLTð Þ� �

þ EFLT þ ETð Þ–ES LSð Þ−1 LFLTð Þ� �

¼ SBPLS þ EPLS

where BPLS = (LS)
−1 (LF LT) and EPLS = (EF LT + ET) – ES

(LS)
−1 (LF LT) are the regression coefficient matrix and

error matrix in the PLS prediction model, respectively.
Basically, factors FS = S WS and FT = T WT are linear

combinations of SNP variables and transcript variables,
where the weight values WS and WT in the linear combi-
nations can be calculated iteratively by maximizing the
covariance of FS and FT. The maximization procedure
can be performed using a nonlinear iterative partial least
squares algorithm. First, an initial value of WS is assigned
to calculate FS = S WS. Second, we regress S on FS and re-
gress T on FS to obtain an estimate of the S-loading
matrix LS in Equation (A1) and T-loading matrix LF LT
in Equation (A4), respectively. Third, the procedure is
iterated to obtain the first PLS factor FS to maximize
the covariance of FS and FT. Fourth, we deflate the S
and T matrices by using S - FS LS and T - FS (LF LT), re-
spectively. Finally, the S and T matrices are replaced
with the deflated matrices S - FS LS and T - FS (LF LT),
respectively, in the first 3 steps to extract the next PLS
factor.

Additional files

Additional file 1: A SAS macro for eQTL mapping, using a
gene-based PLS analysis.

Additional file 2: Title: Example of gene expression data – A file
contains gene expression data from 7 T-genes in which each of

http://www.stat.sinica.edu.tw/hsinchou/genetics/eQTL/HapMapII.htm
http://www.stat.sinica.edu.tw/hsinchou/genetics/eQTL/HapMapII.htm
http://www.biomedcentral.com/content/supplementary/1471-2164-15-319-S1.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-15-319-S2.sas7bdat
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them has 4 transcripts. Description: This SAS data file contains 315 rows
(45 individuals “times” 7 T-genes) and 6 columns. The first two columns
are the names of T-gene and the names of people followed by the gene
expression values of the 4 transcripts in order.

Additional file 3: Title: Example of genotype data – A file contains
genotype data from 43 S-genes in which each of them contains 28
SNPs. Description: This SAS data file contains 1,935 rows (45 people
“times” 43 S-genes) and 30 columns. The first 2 columns are the names
of S-gene and the names of people followed by their genotypic values
(0, 1, or 2) for 28 SNPs in order.

Additional file 4: Title: Data archive 1 - Summary of the regulatory
S-genes (g-eQTL) for each T-gene from our gene-based PLS analysis
according to population. Description: This Excel file provides a table
that summarizes the regulatory S-genes (g-eQTL) for each T-gene from
our gene-based PLS analysis by population. The table consists of 3
components and each row represents a T-gene. The first component
provides “T-gene name”: each gene is named by its gene symbol
followed by an Entrez gene ID. For example, the gene symbol and gene
ID of the first gene in this table are 2′-PDE and 201626. The second
component provides the “data availability” of a gene expression and SNP:
“1” indicates the data is available and “NA” indicates the data is not
available in the g-eQTL mapping. The third component provides the
g-eQTL names that regulated T-genes through a cis- or trans-regulatory
mechanism according to population. For each population, the first
column records if a cis-acting regulation was occurred in the T-gene (“1”
indicates a cis-acting relation was identified and “NA” indicates there was
no cis-acting relation). The second column summarizes all the trans-
acting S-genes that regulate a T-gene. Each S-gene is named by its gene
symbol followed by an Entrez gene ID, and multiple S-genes are
separated by commas.

Additional file 5: Title: Data archive 2 - Summary of T-genes
regulated by each S-gene from our gene-based PLS analysis
according to population. Description: This Excel file provides a table
that summarized the T-genes regulated by each S-gene from our
gene-based PLS analysis by population. The table consists of 3
components and each row represents an S-gene. The first component
provides the “S-gene name” and “Probe_Set”: each S-gene is named by
its gene symbol followed by an Entrez gene ID. All the SNPs contained in
each S-gene are listed in the “Probe_Set” column; multiple SNPs are
separated by commas. The second component provides the “data
availability” of gene expression and SNP, and “1” indicates that the data is
available and “NA” indicates it is not available in the g-eQTL mapping.
The third component provides the names of T-genes regulated by
S-genes through a cis- or trans-regulatory mechanism according to
population. For each population, the first column records whether a
cis-acting regulation occurred in an S-gene (“1” indicates a cis-acting
relation was identified and “NA” indicates there was no cis-acting
relation). The second column summarizes all trans-acting T-genes regulated
by an S-gene. Each T-gene is named by its gene symbol followed by an
Entrez gene ID, and multiple T-genes are separated by commas.

Additional file 6: Title: Data archive 3 - Summary of T-genes
regulated by each eQTL on chromosome 1 from our SNP-based PLS
analysis according to population. Description: This Excel file provides a
table that summarized the T-genes regulated by each eQTL from our
SNP-based PLS analysis by population. The table consists of 3
components and each row represents an eQTL. The first component
provides the “SNP ID (Probe_Set)”, “Gene symbol”, and “Gene ID”: each
eQTL is named by the SNP probe set. The gene symbol and Entrez gene
ID of the gene where an eQTL was located are provided. The second
component provides the “data availability” of the SNPs: “1” indicates that
the data is available and “NA” indicates it is not available in the g-eQTL
mapping. The third component provides the names of T-genes regulated
by eQTL through a cis- or trans-regulatory mechanism according
population. For each population, the first column records whether a
cis-acting regulation occurred in an S-gene (“1” indicates a cis-acting
relation was identified and “NA” indicates there was no cis-acting
relation). The second column summarizes all the trans-acting T-genes
regulated by an eQTL. Each T-gene is named by its gene symbol
followed by an Entrez gene ID, and multiple T-genes are separated by
commas. Because of the constraint of file size, only eQTL on chromosome
1 is provided in this Excel file. The results regarding eQTL on other
chromosomes are accessible at the website (http://www.stat.sinica.edu.
tw/hsinchou/genetics/eQTL/HapMapII.htm).
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