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Simple Summary: Exogenous glutamate administration to yearling-anestrous goats enhanced not
only ovarian function (i.e., ovulation rate and antral follicle number) but also denoted undoubted
effects at the hypothalamic-pituitary level, augmenting LH pulsatility. Our results show not only
the use of glutamate as a clean alternative but also as an interesting reproductive strategy to amplify
ovarian function, considering goats as an animal model. While this should enlarge the possibility of
escalating our knowledge regarding the hypothalamic-pituitary-gonadal modulation by glutamate,
such research outcomes may also embrace potential translational implications.

Abstract: The potential effect of intravenous administration of glutamate on the ovarian activity and
the LH secretion pattern, considering the anestrous yearling goat as an animal model, were assessed.
In late April, yearling goats (n = 20) were randomly assigned to either (1) Glutamate supplemented
(GLUT; n = 10, Live Weight (LW) = 29.6 ± 1.02 kg, Body Condition (BCS) = 3.4 ± 0.2 units; i.v. sup-
plemented with 7 mg GLUT kg−1 LW) or (2) Non-supplemented (CONT; n = 10; LW = 29.2 ± 1.07 kg,
BCS = 3.5 ± 0.2 units; i.v. saline). The oats were estrus-synchronized; blood sampling (6 h × 15 min)
was carried out for LH quantification. Response variables included pulsatility (PULSE), time to first
pulse (TTFP), amplitude (AMPL), nadir (NAD), and area under the curve (AUC) of LH. Ovaries were
ultra-sonographically scanned to assess ovulation rate (OR), number of antral follicles (AF), and total
ovarian activity (TOA = OR + AF). LH-PULSE was quantified with the Munro algorithm; significant
treatment x time interactions were evaluated across time. The variables LW and BCS did not differ
(p > 0.05) between the experimental groups. Nevertheless, OR (1.77 vs. 0.87 ± 0.20 units), TOA
(4.11 vs. 1.87 ± 0.47 units) and LH-PULSE (5.0 vs. 2.2 pulses 6 h-1) favored (p < 0.05) to the GLUT
group. Our results reveal that targeted glutamate supplementation, the main central nervous system
neurotransmitter, arose as an interesting strategy to enhance the hypothalamic–hypophyseal–ovarian
response considering the anestrous-yearling goat as an animal model, with thought-provoking while
promising translational applications.
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1. Introduction

In goats, the seasonal variations in ovarian activity are the direct result of changes
in the release of the gonadotropin-releasing hormone (GnRH) secretion, mainly exerted
through the changing actions of the photoperiod [1,2]. Indeed, the photoperiod is the main
environmental cue that modulates reproductive seasonality [3,4], altering the negative
feedback exerted by estradiol (E2) upon the luteinizing hormone (LH) secretion [5,6]. The
increased negative feedback of E2 on LH secretion has been accepted as the mechanism
responsible for seasonal reproduction in most small ruminants [5,6]. In addition, glutamate
(GLUT) has been recognized as the main, fast-acting excitatory neurotransmitter of the
central nervous system (CNS), regulating most of the excitatory synaptic transmissions in
the brain, while also involved in several biological processes [7]. GLUT-receptors have been
localized in the diverse hypothalamic nuclei, some of which are key to the reproductive and
neuroendocrine functions [8]. Moreover, the functional glutamatergic systems have been
demonstrated in non-neural peripheral tissues, such as the heart, kidney, and gonads [7,8].
At a central level, the glutamatergic systems (i.e., ligand-receptors), have been involved
in the control of pulsatile GnRH secretion, and the pre-ovulatory surge of gonadotropins
(LH and FSH) [9]. Interestingly, the glutamatergic neurons that have been associated in
the control of the GnRH neurons are also responsive to kisspeptin, an essential peptide in
the regulation of the hypothalamic–pituitary–gonad (HPG) axis, promoting an increase
in GnRH pulses [8–10]. While domestic sheep and goats have shown great potential as
large animal models, sheep have been mainly used to perform preclinical and translational
studies in reproductive research, while goats have been used in a more limited fashion [10].
We hypothesized a positive effect of the intravenous GLUT-supplementation upon ovarian
function through an improved release profile of LH, considering the anestrous-yearling goat
as the animal model. Thus, this study was designed to solve such a working hypothesis.

2. Materials and Methods
2.1. Location, Ethical-Welfare Issues, and Animal Management

The present study was carried out in northern Mexico (26◦ N, 103◦ W; 1120 m), in
an intensive, commercial goat production system. Yearling anestrous Alpine-Saanen-
Nubian × Criollo goats (n = 20), with an average live weight (LW) of 29.17 ± 1.02 kg
and body condition score (BCS) of 3.45 ± 1.02 units, were involved. The experiment was
conducted along the natural anestrous season, during April and May, i.e., under long-day
photoperiodic conditions. The LW and BCS (from 1 = emaciated to 5 = obese) were weekly
recorded before feeding by an experienced technician. All of the experimental procedures
were completed following the recommendations for ethical use, care, and welfare of animals
in research at global [11] and national [12] levels, and they were institutionally authorized
(UACH-DGIP-REBIZA-IBIODEZA/15-510-400-2).

2.2. Experimental Design

At the end of April, the animals were individually housed in pens and they were ran-
domly assigned to two experimental groups: (1) Glutamate (GLUT; n = 10) and (2) Control
(CONT; n = 10). The LW and BCS were similar in both GLUT (29.1 ± 1.02 kg, 3.4 ± 0.2 units)
and CONT (29.2 ± 1.07 kg, 3.5 ± 0.2 units) groups. All of the animals received a basal diet
twice per day (07:00 and 16:00), consisting of alfalfa hay (14% crude protein, 4.7 MJ/kg),
corn grain (11.2% crude protein, 9.9 MJ/kg), and corn silage (8.1% crude protein, 6.7 MJ/kg),
balanced to cover their net energy requirements for maintenance [13]. Additionally, the
GLUT-goats were supplemented every third day during the experimental period, with an
intravenous injection of glutamate (L-glutamate, Merck-C5H9NO4-art-101791; from day
34 pre-estrus to day 17 post-estrus). Animals had ad libitum water access and shaded areas.
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The composition values of the components of the basal diet (Dry Matter (DM)% basis)
were obtained from representative samples taken throughout the experimental period and
analyzed based on the formerly defined techniques [14].

2.3. Estrus Synchronization, Blood Sampling, and LH Determinations

The estrus synchronization was initiated 23 days after the beginning of the experiment.
Intravaginal progestogen-impregnated sponges containing 45 mg of fluorogestone acetate
(Chronogest®; Intervet International B.V., Boxmeer, Holland) were inserted for 10 days;
one day before the sponge withdrawal, the goats received an i.m. dose of 75 µg of D-
cloprostenol (Prosolvin-C®, Intervet International B.V., Boxmeer, Holland). Five goats per
group were randomly selected 24 h after the sponges’ withdrawal (−1 day); blood samples
were collected at 3 h after the morning feeding. A volume of 10 mL of blood was collected
every 15 min for 6 h by jugular venipuncture using sterile vacuum tubes (Corvac; Kendall
Health Care, St. Louis, MO, USA) and allowed to clot at room temperature for 30 min. The
blood was centrifuged (1500× g, 15 min) to obtain serum, and then it was decanted and
stored into polypropylene microtubes (Axygen Scientific, Union City, CA, USA) at −20 ◦C
until assayed. The peripheral serum LH concentrations were measured in duplicate by
radioimmunoassay, as previously described [15]. The assay sensitivity was 0.2 ng/mL
and intra-assay variation coefficient for LH quantification was 10%; the Munro algorithm
was used to identify the LH pulses [16]. While the LH basal levels were quantified as the
average of the lowest obtained values [17,18], the area under the curve (AUC) of LH was
also determined.

2.4. Ultrasonographic Evaluation of Ovarian Activity

On day 17 post-estrus (coincident with the end of the luteal phase), an ultrasonographic
assessment was carried out by a qualified operator to monitor the ovarian activity, using an
ultrasound scanner (Toshiba Medical Systems Ltd., Crawley, UK), equipped with a 7.5 MHz
linear-array transducer. The ovaries were scanned to record the number of corpus luteum
(which indicate the ovulation rate, OR) and the antral follicles (AF; those ≥ 5 mm) [19].
Then, the total ovarian activity (TOA) was considered as AF + OR, recorded in both of
the ovaries in each animal within the experimental group. The main activities performed
during the experimental period are depicted in Figure 1.

Figure 1. Time-line of activities performed during the experiment, including the estrous synchro-
nization protocol and the targeted glutamate i.v.—supplementation every third day along with the
experimental period, (L-glutamate, from day 34 pre-estrus to day 17 post-estrus). Blood sampling
(every 15 min × 6 h) for LH quantification was performed 24 h prior to the estrus day (day 0). Later,
ovarian ultrasonographic assessment was carried out on day 17 post-estrus to study the relationship
between the TOA and LH secretion pattern. All the experimental units had ad libitum water access
and shaded areas in each pen.
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2.5. Statistical Analyses

The variables LW, BCS, OR, TOA, and serum LH concentrations were evaluated using
the PROC-MIXED of SAS (SAS Institute Inc., Cary, NC, USA), for repeated measures across
time in the same animal. Each goat within the experimental group was defined as the
experimental unit. The experimental treatment (i.e., GLUT or CONT) and the sampling
day (i.e., Time) were analyzed using mixed linear model procedures and the estimation
technique of restricted maximum likelihood (PROC MIXED). While time was considered as
the repeated measure, the treated goats were defined as the repeated subject and regarded
as the random error term [20]. In the case of mean significant differences of the analyzed
response variables across time, these were solved through the LSMEANS-LSD option
of PROC GLM. Since the LH pulse frequency showed a non-parametric distribution, a
Kruskal–Wallis test was used to analyze the variable LH-PULSE. The response variables
were evaluated for normality using the Shapiro–Wilk test, and log10, transformed for basal
and mean LH concentrations as well as for LH pulse amplitude. When a significant effect
of the treatment x time interaction occurred, the data were compared across time. Pearson’s
correlations were used to check the associations among the variables LW, BCS, and OR.
Non-transformed data are shown and expressed as least-square means ± standard error
(SE). All of the statistical analyses were carried out using the procedures and options of
SAS (SAS Inst. Inc., V9.1, Cary, NC, USA); significant differences between means were set
at p < 0.05.

3. Results

The comparison of LW and BCS at the beginning (29.4 ± 1.02 kg and 3.4 ± 0.17) and
the end of the experimental period (35.13 ± 1.07 kg and 3.4 ± 0.2) did not differ between
the experimental groups (p > 0.05). Interestingly, however, the differences (p < 0.05) were
observed for OR and TOA (1.77 vs. 0.87 ± 0.20) and (4.11 vs. 1.87 ± 0.47), respectively,
favoring the GLUT-treated group. Moreover, an increased LH-PULSE (5.0 vs. 2.2 pulses
6 h−1, p < 0.05) also favored the GLUT-treated group (Table 1). The LH-pattern release
across time, along with OR and TOA, are shown in Figure 2. Further, positive correlations
occurred between LW1 and BCS1 (r2 = 0.71; p < 0.01), BCS and TOA (r2 = 0.7, p < 0.05), AF
and OR (r2 = 0.61, p = 0.01), and OR and TOA (r2 = 0.87, p = 0.001).

Table 1. Least-square means regarding LW and BCS at the onset of treatments (-initial) and at the
ultrasound scanning (-ultrasound), ovulation rate (OR), total ovarian activity (TOA), and LH profile
across time (pulsatility, time to first pulse, amplitude, nadir and AUC) in goats supplemented with
glutamate (GLUT) and non-supplemented (CONT) groups.

GLUT CONT S.E. 1

LW-initial (kg) 29.60 a 29.24 a 1.02
BCS-initial (units) 3.4 a 3.5 a 0.17
LW-ultrasound (kg) 35.06 a 35.21 a 1.07
BCS-ultrasound (units) 3.5 a 3.2 a 0.20
Ovulation rate (units) 1.77 a 0.87 b 0.20
Total ovarian activity (units) 4.11 a 1.87 b 0.47
LH pulsatility, pulses/6 h (units) 5.0 a 2.2 b 0.60
LH time to first pulse (min) 35.0 a 81.0 a 31.99
LH amplitude (ng) 2.35 a 1.16 a 0.70
LH nadir (ng) 0.43 a 0.20 a 0.11
LH AUC (arbitrary units) 72.6 a 40.0.0 a 21.5

a,b Least-square-means without a common superscript, differ (p < 0.05) 1 Most conservative standard error
is presented.
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Figure 2. Serum LH concentrations (ng/mL) across time (left), and OR (units) and TOA (units)
(right) in glutamate-supplemented (GLUT) and non-supplemented (CONT) goats.

4. Discussion

The results obtained backs both our working hypothesis as well as our animal model;
the intravenous supply of glutamate to anestrous-yearling goats as an animal model
endorsed the increases in both ovulation rate and total ovarian activity, while it simul-
taneously generated rises in LH pulsatility, considering the anestrous-yearling goat as
an animal model. Whereas, no differences occurred between the experimental groups
regarding LW and BCS, in addition, the response variables time of the first LH pulse, the
LH amplitude, LH-nadir, and LH-AUC were also not different between the groups. This
neuroendocrine and physiologic scenario suggests that the glutamate supplementation to
yearling-anestrous goats exerted a positive effect upon the hypothalamic centers responsi-
ble for GnRH, and, thereafter, upon the anterior pituitary, augmenting the LH pulsatility.
The specific site of action of glutamate along the hypothalamic–pituitary–ovarian contin-
uum, as well as its role within the neuronal pathway responsible for the inhibitory effects
of E2 during seasonal anestrus in goats, await to be elucidated.

The ability of E2 to inhibit the release of GnRH and LH is the mechanism responsible
for the variation in ovarian activity during anestrous [21]. Such E2-negative action upon
the LH-pulse generator is facilitated by a group of neurons located in the retrochiasmatic
area of the hypothalamus, known as the A15 dopaminergic neurons [22]. These neurons
release dopamine and through the dopamine type 2 receptor (D2R), which are present in the
kisspeptinergenic neurons of the arcuate nucleus (ARC), inhibit the release of the peptide
kisspeptin, resulting in a decrease in GnRH and LH pulses during the anestrous season [5].
Most of the brain cells use glutamate as the main fast-acting excitatory neurotransmit-
ter [7]. This neuroexcitatory amino acid and its receptors are distributed throughout the
CNS and diverse parts of the body, including the ovary [23]. Likewise, glutamatergic
and kisspeptinergenic neurons have been involved in different physiological processes,
including reproductive ones, such as the activation of the hypothalamic axis, particularly
in the production of the preovulatory GnRH-LH peak [24].

The GnRH neurons are stimulated by glutamate through the activation of the ionotropic
receptors, as N-methyl-D-aspartate (NMDA), and amino-3-hydroxyl-5-methyl-4-isoxazole-
propionate (AMPA) [25]. In goats, the glutamate administration has shown positive effects
upon diverse reproductive outcomes. The previous studies of our group have exposed that
the glutamate supply diminishes the E2-negative feedback exerted on the hypothalamus–
pituitary axis, modulating ovarian function and metabolic hormone synthesis [10]. The
results of our study suggest that the responses generated by glutamate administration could
have acted upon the ionotropic ovarian receptors [26,27], increasing the ovulatory response.
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Besides, the glutamate supply may have promoted the increase in metabolic hormones
and growth factors key to ovarian function, increasing follicular cell proliferation, and
augmenting E2 synthesis [10]. Such a neurophysiological and endocrine scenario should
have promoted a positive E2-effect upon the hypothalamus–pituitary axis, increasing the
GnRH-LH pulsatility, and activating, in turn, ovarian activity.

Indeed, these results suggest that, in yearling-anestrous goats supplemented with intra-
venous glutamate, the inhibitory E2-feedback upon the hypothalamus–pituitary axis would
be considerably diminished. Such an administration of glutamate probably acted some-
where along the neuronal continuum responsible for blocking GnRH secretion during the
natural anestrous season, decreasing the action of dopamine on the kisspeptin-producing
neurons, while enhancing the activation of the hypothalamic centers responsible for GnRH
synthesis and secretion. The last, in turn, may have increased the LH-pulse, while augment-
ing the ovarian activity. Whereas diverse studies support the positive effects of glutamate
administration upon the reproductive outcomes in diverse species, either male [28] or
female [10,24,29,30], other studies have also demonstrated an interesting interplay between
glutamatergic signaling and sexual male-to-female behavior [28,31].

Some components of the rams’ sexual behavior such as ano-genital sniffing, vocal-
izations, mounting, intromission, and ejaculation are also observed in rodents [32–34].
Preceding studies of our research group demonstrated that parenteral glutamate supply
enhanced male sexual behavior, both appetitive and consummatory, either in adult [32]
or pubertal [33] rams. Recent reports have also shown that glutamatergic neurons in the
ventral tegmental area of the lateral hypothalamus are activated by, and required for, innate
defensive reactions [35]. Moreover, GnRH stimulates the LH release via glutamatergic
receptors expressed in the hypothalamic kisspeptin neurons in both peripubertal [36] and
adult [37] females. Such amplified glutamatergic neuron transmission effect is enhanced
because of the co-expression of kisspeptin, neurokinin-B, and dynorphin, the so-called
glutamatergic KNDy neurons, which drive the episodic release of GnRH [38,39]. Besides,
increases in the ARC Kiss1, and Pdyn expression were positively correlated not only with
gonadotropin secretion and follicular growth, but also with an augmented positive energy
balance [40].

Based on the obtained research outcomes from our study, and merged with those gen-
erated by others previously discussed, a sensible question is, how to align these outcomes
with a translational perspective? In humans, female infertility is one of the main public
health problems worldwide [41]; whereas female infertility represents 37% of the causes
in infertile couples [42], the most common factors causing women reproductive dysfunc-
tions mainly involve ovulatory disorders (25%) and ovarian dysfunctions (50%) [43]. Such
women’s reproductive failures have also been linked, unfortunately, to mental, emotional,
and physical issues [44]. The clinical management of infertility has included active ovarian
stimulation treatments [45] to lessen a poor ovarian response or primary ovarian insuffi-
ciency; the key aim is to diagnose and then be able to manage women’s infertility [46]. As
noted, ovine and, to a lesser extent, caprine, have been used as large animal models for
diverse research purposes. The use of the former ranges from the generation of therapeutic
agents in the mammary glands, up to their use in human genetic disorders and regenerative
medicine, as well as the edition of their genomes using CRISPR-based systems for diverse
translational purposes [47]. Hence, building on the diverse research outcomes generated
from the various goat research models presented along with this discussion, and consid-
ering the need to develop basic biomedical research for studying the neurophysiological
functions and dysfunctions along with the hypothalamic–pituitary–ovarian axis to upgrade
women’s reproductive fitness, our research outcomes undoubtedly unveiled the interesting
role that goats can play as a successful experimental animal model.

5. Conclusions

The targeted glutamate intravenous administration to anestrous-yearling goats pos-
itively influenced not only the ovarian function (i.e., ovulation rate and antral follicle
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number) but also undeniably denoted effects at the hypothalamic–pituitary level (i.e., an
augmented LH pulse). Such a neurophysiological complex scenario was certainly not ob-
served in the control group. Our results show the use of glutamate to be a clean, green, and
ethical alternative, substituting the use of exogenous hormones, while providing an inter-
esting reproductive strategy to augment the activity of the hypothalamic–pituitary–ovarian
continuum (HPOC). Our research outcomes should enlarge the possibility of escalating the
knowledge about the action of a targeted neurotransmitter supply, such as glutamate, upon
the endocrine and physiological mechanisms involved in the enhancement of the HPOC
response, through the use of a goat animal model. Certainly, the research outcomes that
stemmed from this study, using the goat as an experimental model, should augment the
confidence in the design of biomedical reproductive studies. Besides, a potential glutamate-
modulated cross-talk among the CNS and the HPOC requires clarification. Undoubtedly,
the obtained results from this study await and deserve to be tested in clinical trials with
potential translational applications.
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