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Introduction

Influenza vaccines have been a great public health priority1 and 
their future is man-made constructs created using molecular 
biology tools. Compared with other types of influenza vaccines, 
live attenuated influenza vaccines (LAIV) possess major advan-
tages because of administration convenience and potency of the 
immune response.2 There are alternative approaches which can 
lead to viral attenuation and be utilized for LAIV design.3

Since the late 1960s, cold-adapted temperature-sensitive (ca/
ts) LAIVs have become an important vaccination instrument in 
the USSR. The ca/ts phenotype leads to impaired growth at an 
elevated temperature of approximately 39°C4-9 while permitting 
viral growth at lower temperatures. Molecular mechanism(s) 
causing the ca/ts phenotype in influenza A viruses remain 
unclear. Significant effort was devoted to explaining temperature 
sensitivity through mutations in the coding regions and amino 
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acid changes. Jin et al. found that certain non-silent mutations 
in PB1, PB2 and NP might lead to temperature-sensitivity when 
induced in A/Ann Arbor/6/60.6 According to Song et al., three 
non-silent mutations in PB1 and one non-silent mutation in PB2 
might lead to the ts phenotype.4 Youil et al. investigated several 
A/Leningrad/134/17/57 subclones and found that the most tem-
perature-sensitive one had amino acid changes in the PB1, PA 
and NS1 genes.10 Furthermore, Snyder et al. found that it can 
be sufficient to induce the temperature-sensitive phenotype by 
replacing the two segments of coding for PA and M1/M2 of a 
wild type virus with those of A/Ann Arbor/6/60.11 Interestingly, 
in all these cases at least one subunit of the viral polymerase (PA, 
PB1 and PB2) is affected.

In addition to the attempts to explain the ca/ts phenotype 
through mutations in viral proteins, there were also reports 
implicating RNAs in temperature sensitivity. A promising find-
ing was made by Dalton et al.,12 suggesting that, at an elevated 
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Thurner et al.26 to investigate secondary structure conservation 
in Picornaviridae and Flaviviridae, respectively, and by Chursov 
et al.27 for elucidating sequence-structure relationships in yeast 
mRNAs. However, so far, partition functions have not been used 
to assess and compare structural RNA perturbations caused by 
temperature elevation.

Based on partition functions, we have developed a technique 
to identify RNA sequence regions where probabilities of nucleo-
tide coupling change the most with temperature elevation. We 
demonstrate that dense areas of altered nucleotide coupling 
are not identical for closely related wt and ca/ts RNAs. Thus, 
although, we cannot predict the exact RNA structures, we know 
that these structures are changing differently with temperature 
elevation.

Results

The propensity of nucleotides to appear in double-stranded con-
formations depends on temperature. As seen in Figure 3, all 
nucleotides change their base-pairing probabilities upon tem-
perature elevation from 32°C to 39°C, with transitions from a 
double-stranded to a single-stranded conformation being expect-
edly more frequent (see Table 2). Between 62.8% and 75.2% of 
positions in each mRNA change their probability to be coupled 
to a lower value. Furthermore, between 3.9% and 10.9% of 
nucleotides in each mRNA change their base-pairing probabili-
ties significantly (more than three standard deviations below or 
above the mean over all seven temperature increments between 
33–39°C and 32°C (see the Materials and Methods section and 
Table 3). In all but one mRNAs, the majority of significantly 
changing positions (between 52% and 88.6%) shows a decrease 
in their base-pairing probability, whereas this percentage is some-
what lower (42.1%) for NS2 Arb/ca.

For each mRNA, we computed a density plot of signifi-
cantly changing positions along the sequence as described in the 
Materials and Methods section (Fig. 2; Figs. S1–19). From these 
plots, it becomes immediately apparent that strongly tempera-
ture-sensitive positions are not evenly or randomly distributed 
along the sequence but rather aggregate in clusters. The num-
bers of clusters defined by the density-based algorithm for each 
mRNA are presented in Table 4. The only mRNA where no clus-
ters were detected is NS2 Len/wt. The average length of clusters 
varies between 15.9 and 61.0 positions (Table 5) and the average 
density of significantly changing positions in the clusters is in the 
range of 22% to 53% (Table 6). Overall, very short clusters are 
required by the DBSCAN algorithm to have a very high density 
while the density in longer clusters can be as low as 21% (Fig. 4).

Furthermore, we found that patterns of cluster occurrence 
exhibit substantial differences between the wild type strains and 
their cold-adapted, temperature-sensitive mutants, as exemplified 
in Figure 1 for a subsequence of the PA mRNA. In this case, a 
cluster of significantly changing positions is observed in Len/17/
ca but not in Len/wt. This figure demonstrates that a perturba-
tion of mRNA structure begins at a temperature of approximately 
37°C. Out of 218 clusters of temperature-sensitive positions, 126 
clusters are present in both wt and ca/ts strains, 38 clusters are 

temperature, viral polymerase tends to dissociate from the 
cRNA-promoter, thereby leading to a decreased vRNA synthesis 
while the synthesis of cRNA and mRNA remains approximately 
constant. A decrease in the synthesis of vRNA related to temper-
ature sensitivity, which also maintained mRNA synthesis, was 
described by Chan et al.9 In a more general vein, RNAs can serve 
as intracellular thermometers.13 For example, a thermosensitive 
RNA switch was implicated in the propagation of tick-borne 
encephalitis virus.14 Recent publications suggest that, apart from 
RNA abundance, RNA structures may play a comparably impor-
tant role. The importance of mRNA secondary structures for 
expression of influenza virus genes was recently demonstrated by 
Ilyinskii et al.15 Therefore, identification of previously unknown 
influenza RNA structures16 and the analysis of their functional 
roles are areas of increasing interest.17-19

We hypothesized that changing temperature causes pertur-
bations in mRNA secondary structures, which contributes to 
the cold-adapted, temperature-sensitive phenotype. To test this 
hypothesis, we have developed a new in silico method of analysis 
to reveal if the structures of two closely related RNA molecules 
would react differently to temperature elevation. Unfortunately, 
it is not possible to reliably calculate exact structures of each RNA 
molecule at two temperatures, compare the differences between 
the two structures, and then evaluate whether or not these differ-
ences are identical for two RNAs. First of all, at each particular 
temperature an RNA molecule may have different co-existing 
structures. Furthermore, since the number of possible structures 
increases rapidly with the length of the input sequence, the preci-
sion of RNA structure predictions suffers. Another limitation of 
RNA secondary structure predictions is that taking pseudoknots 
into account makes the task non-deterministic polynomial-time 
hard (NP-hard).20 In this particular case NP-hard means that 
growth of RNA length elevates time necessary for computation 
to a restrictive duration. However, in support of our hypothesis, 
one does not need to know the exact structures before and after 
perturbation to conclude that the two structures have reacted 
differently. For example, if two windows are broken into a dif-
ferent number of pieces by soccer balls, we need to know nei-
ther the shapes of the windows and nor the exact forms of the 
pieces to conclude that the perturbations of the two glasses are 
not identical.

An ensemble of RNA structures can be represented via a parti-
tion function,21,22 which is a sum of Boltzmann factors over every 
possible secondary structure. In using partition functions, one 
can calculate the probability for each nucleotide to be coupled 
within a double-stranded conformation.23,24 An advantage of 
partition functions is that they take into account not just the 
minimum free energy structure, but rather an ensemble of ener-
getically favorable structures. Thus, if one adenine would be 
bound to a particular uracil within a single highly likely struc-
ture, while another adenine would couple with ten uracils within 
ten less likely structures, parameters for these two adenines may 
be the same. Although partition functions are not precisely 
accurate, they are much more accurate than in silico predictions 
of the actual RNA structures. Partition functions were used 
instead of actual structures, for example, by Witwer et al.25 and 
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length of these ca/ts associated clusters is in the range of 8 to 
19 positions and the density of significantly changing positions 
in them varies between 32% and 80% (Table 7). All the clus-
ters that can be associated with ca/ts phenotype are indicated 
in Figure 4D. The existence of such clusters suggests that the 
ca/ts phenotype may be associated with specific perturbations 
in mRNA secondary structures. Importantly, in all three ca/ts 
mutants, there are clusters located in the polymerase genes (PA 
or PB2), in line with previous reports where polymerase genes 
were consistently associated with the temperature-sensitive 
phenotype.4,6,10,11

Discussion

Temperature-sensitive mutants were reported for a variety of 
viruses.39-42 Several studies have demonstrated that thermody-
namic stability of certain RNA structures is critical for virus rep-
lication.43-45 Temperature-sensitive, anti-viral and anti-bacterial 
vaccines remain to be promising public health instruments.46-48 
So far, cold-adapted temperature-sensitive anti-influenza vaccines 
have arguably made the largest contribution to the prevention of 
this infection around the world. Still, molecular mechanism(s) 
underlining the ca/ts influenza phenotype is poorly understood. 
Here, we have explored the hypothesis that ca/ts properties of 
known influenza strains can be (at least partially) explained by 
temperature-induced perturbations of mRNA structure.

It was, therefore, our intention to compare mRNAs at each of 
the temperatures of interest. However, despite the fact that sig-
nificant attempts have been made toward theoretical predictions 
of RNA structure based on energy calculations24,34,49 and co-vari-
ation analysis,50,51 it is still not possible to calculate secondary 
structures of mRNAs accurately using currently available algo-
rithms. At the same time, experimental technologies to deter-
mine RNA structures are only beginning to emerge52,53 and are 
barely available for a broad spectrum of research projects. Thus, 
we had to develop an indirect computational method aimed to 
assess if two RNA molecules change their shapes differently in 
response to temperature elevation.

At each temperature, we calculate probability vectors that 
contain, for each nucleotide position, the probability to be 
coupled with another nucleotide within the same RNA, form-
ing a double-helix structure. Apparently, this coupling is tem-
perature-sensitive, with increasing temperature generally leading 
to a reduced likelihood of “weak” structures. Thus, (1) differ-
ent structures may constitute an ensemble for the same RNA at 
different temperatures, and/or (2) at different temperatures the 
same structures may be present with different abundance. Both 
of these options are valid and may coexist because, in each given 
cell, multiple copies of the same RNA molecules may be distrib-
uted between alternative shapes.

The fact that the base-paring probability at each position 
within a probability vector changes with temperature elevation 
does not necessarily indicate that structural perturbations (or re-
distribution of alternative RNA structures) equally involve each 
nucleotide. Thus, we selected only those nucleotide positions 
that exhibited the most significant changes of their coupling 

present in wt strains but absent in ca/ts mutants, and 54 clus-
ters are present in ca/ts mutants but absent in the wt counterpart 
(Fig. 4 and Supplemental Data).

The existence of clusters unique for ca/ts strains raises the 
question whether such clusters are associated with the mutations 
inducing the ca/ts phenotype or whether random mutations 
unrelated to the ca/ts phenotype would be as likely to induce 
these clusters. Likewise, one can ask whether the disappearance 
of some clusters present in wt strains from ca/ts mutants may be 
caused by particular ca/ts associated mutations. The best way to 
approach this problem would be to test whether or not the same 
pattern of cluster occurrence would be observed while compar-
ing the wt strains investigated here with a high number of natu-
rally occurring influenza virus strains as similar to the wt strains 
as their ca/ts mutants. However, there are currently not enough 
naturally occurring strains with the same extent of similarity to 
the wt as possessed by the ca/ts mutants.

We therefore compared wt sequences with computer-gen-
erated mutants possessing random synonymous mutations 
unrelated to the phenotype of interest. This analysis revealed 
existence of only one cluster that is present in wt strain (Len/wt) 
but absent in ca/ts mutant and could be attributed to introduc-
ing specific mutations causing the ca/ts phenotype (Table 7). 
The length of this cluster is 140 nucleotides and the density of 
significantly changing positions in it equals 38%. At the same 
time, there are nine clusters (one in Arb/ca, three in Len/17/ca, 
and five in Len/47/ca) present in ca/ts mutants, and not present 
in wt, that cannot be observed in the pool of in silico gener-
ated random mutants with statistically significant P-values. The 

Figure 1. Comparison of significantly changing positions between 
the PA mRNA of Len/wt (upper 7 rows) and Len/17/ca (lower 7 rows). 
Each row corresponds to a difference vector v32–33,  …, v32–39 containing 
changes of base pairing probabilities between 32°C and a particular 
higher temperature. Positions in which base paring probabilities signifi-
cantly change with temperature elevation in both sequences and those 
where these changes only affect one of the phenotypes are marked 
blue and orange, respectively. Only the first 40 bases of each sequence 
are shown; position numbers of the coding sequence are indicated at 
the top of the alignment.
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of mutations, one could conclude that the cluster disappearance 
and ca/ts behavior are associated. For all such clusters except 
one, a high number of computer-generated mutants, which are 
extremely unlikely to be ca/ts, also demonstrate disappearance 
of the same clusters. Thus, these clusters may simply correspond 
to temperature-sensitive regions within particular influenza 
mRNAs unrelated to ca/ts phenotype. Nevertheless, we did 
observe one cluster, which is associated with the ca/ts phenotype 
with statistically significant P-value. This cluster is present in 
the wt strain. It disappears specifically in the ca/ts mutant, but 
remains in the computer-generated mutants possessing the same 
number of mutations as the ca/ts one.

probabilities. We do not assert that if in two closely related RNA 
molecules the most temperature-sensitive positions coincide; 
these two RNA molecules undergo identical temperature-induced 
structural RNA perturbations. However, it is probably safe to 
assume that if two RNA variants manifest different nucleotide 
positions as the most temperature-sensitive ones within the prob-
ability vector, temperature elevation influences the structures of 
these RNA molecules in a different way. Thus, we have proposed 
here a new technique aimed at identifying mutations that influ-
ence temperature-dependent RNA behavior. The central finding 
upon which our approach is based is that temperature-sensitive 
positions are not randomly distributed along the length of RNA 
but rather form distinct clusters. We speculate that such clusters 
of temperature-sensitive positions may be located within RNA 
domains that change their shapes particularly strongly with tem-
perature elevation. Although developed for a particular purpose, 
our method can be applied for studying the role of RNA struc-
ture perturbations in a wide range of temperature-related bio-
logical phenomena, such as the evolution of warm-bloodedness, 
thermophilic adaptation of prokaryptic organisms, or suscepti-
bility of parasites and pathogens to increases in host temperature.

Differences in clusters of temperature-sensitive positions are 
a potential indicator that RNA structures of mutants react dif-
ferently to temperature change. This raises the question whether 
these differences can be a causative factor for (or, at least, associ-
ated with) the unique ca/ts behavior of the particular influenza 
virus strains under study. We identified three types of clusters 
of temperature-sensitive positions that are (1) present in both wt 
and ca/ts mutants, (2) present in wt, but absent in ca/ts mutants, 
and (3) absent in wt, but appear in the ca/ts mutants. We, there-
fore, first tested whether the disappearance of some clusters in 
the mutants can indicate that they are causative for a rare pheno-
type, ca/ts. If these clusters would disappear in ca/ts mutants but 
remain in non-ca/ts RNA variants possessing the same number 

Figure 2. Distributions of significantly changing positions along the PB2 mRNAs of Arb/wt and Arb/ca. A sliding window of size 20 was moved in steps 
of 1 position over the vector v32–39 and the percentage of significantly changing positions in the window was calculated for each possible starting 
position. The resulting density plots are depicted in Figure 2A and Figure 2C. Location of clusters of significantly changing positions identified by the 
DBSCAN algorithm are depicted in Figure 2B and Figure 2D with gray color. Synonymous and non-synonymous mutations are depicted in Figure 2B 
and Figure 2D with red and blue vertical lines, respectively.

Figure 3. The histogram of differences of the probability values of 
nucleotides to be in a double-stranded conformation for PB1 Arb/wt 
upon temperature change between 32°C and 39°C. The vector of prob-
abilities for 32°C was subtracted from the vector for 39°C.
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underlying mechanism of the ca/ts behavior of influenza virus. 
Further research in this direction might contribute to the rational 
design of live-attenuated influenza vaccines.

Materials and Methods

Sequences. In our analysis, we have used the cold-adapted, 
temperature-sensitive mutants A/Ann Arbor/6/60 (Arb/ca) 
stemming from the wild type (Arb/wt) with the same name 
and the two mutants A/Leningrad/134/17/57 (Len/17/ca) and 
A/Leningrad/134/47/57 (Len/47/ca) stemming from the wild 
type (wt) A/Leningrad/134/57 (Len/wt). Since information on 
the location of UTRs was not available, only coding regions 
were used for the analysis. Information on the locations and 
sequences of coding regions was retrieved from EMBL-ENA 
(European Nucleotide Archive).28 However, these sequences were 
adapted according to the publications where they originally were 
reported29,30 since the mutations annotated in the database were 
not in agreement with those papers, and no further references 
were given. The files containing final sequences, used in the cur-
rent analysis, are presented in the Supplementary Data.

The influenza A genome is composed of eight segments encod-
ing 12 proteins: three polymerase subunits (PB1, PB2, and PA), 

Applying the same computational approach, we then tested 
if appearance of clusters of temperature-sensitive positions in 
ca/ts mutants, which are lacking in wt, is a phenotype-specific 
phenomenon. Based on comparisons with computer-generated 
mutants, we have demonstrated that nine particular clusters are 
unlikely to appear in mutants other than ca/ts. Thus, we hypoth-
esize that changes in RNA structure caused by raising tempera-
ture could be a potential factor contributing to the molecular 
mechanisms of the temperature-sensitive and/or cold-adapted 
phenotype in influenza A.

Direct experimental evidence both on secondary structures of 
mRNAs and their interactions partners will be required to eluci-
date the exact role of temperature-induced structural changes in 
the acquisition of the ca/ts phenotype. For example, it is conceiv-
able that conformational changes of influenza mRNA may play 
a role through altering the RNA ability to associate/dissociate 
with proteins and other molecules. Also, it cannot be ruled out 
that temperature-induced structural changes in the untranslated 
regions, which we have not considered in our analysis, contrib-
ute to the ca/ts phenotype. The current scarcity of sequence 
data for temperature-sensitive strains and their wild type coun-
terparts notwithstanding, we here propose the hypothesis that 
temperature-induced structural RNA perturbations may be an 

Figure 4. Density of significantly changing positions in determined clusters vs. length. (A) Clusters that occur only in wt mRNAs but are not statistically 
significant (37). (B) Clusters occurring in both wt and ca/ts mRNAs (126). (C) Clusters that occur only in ca/ts mutants but are not statistically significant 
(45). (D) Statistically significant clusters (9 of them occur only in ca/ts mutants and 1 of them occurs only in wt mRNA). Different colors show different 
numbers of clusters that have identical values of length and density. Black, one cluster; red, two clusters; green, three clusters; blue, four clusters.
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it appeared at some temperature and remained to be such at all 
higher temperatures.

Comparison of significantly changing positions between 
wt and ca/ts strains. To test whether significant temperature-
induced structural changes in secondary RNA structures are the 
same or different for wild type strains and their cold-adapted, 
temperature-sensitive counterparts, we designed a visualization 
method allowing simultaneous comparison of temperature-
induced changes for two RNAs. For example, Figure 1 depicts a 
comparison of significantly changing positions between Len/wt 
and Len/17/ca for a subsequence of the PA mRNA.

Visualization of significantly changing positions demon-
strated that such positions are not evenly distributed along the 
sequences but rather have a tendency to aggregate into clusters, 
i.e. regions with a high density of significantly changing posi-
tions. As a tool to analyze such clusters, we employed density 
plots obtained by sliding a 20-base long window over the vec-
tor v

32–39
 and calculating the percentage of significantly changing 

positions in the window for each possible starting position. For 
example, Figures 2A and 2C depict density plots for the PB2 
mRNAs of Arb/wt and Arb/ca, respectively.

Identification of clusters of temperature-sensitive positions. 
We further sought to provide a definition of clusters of changing 
positions for each RNA, focusing on the difference vectors v

32–39
. 

To these difference vectors, we applied the density-based spatial 
clustering of applications with noise (DBSCAN) algorithm.36,37 
This algorithm needs two parameters as input, a distance thresh-
old r and a density threshold MinPts. For a given set of points D 
(in our case the set of significantly changing positions in mRNA 
according to the difference vector v

32–39
), the density of every 

point p
i
 from D is calculated as the number of points q

i
 that are 

within a radius r around p
i
. If q

i
 > MinPts, then the point p

i
 is 

classified as a core point. If the distance between two points is less 
than r, then they are said to be directly-connected. Two points are 
considered density-connected if they are connected to core points 
and these core points are, in turn, density-connected. A cluster 
is constructed as a maximally connected component of the set of 
points that have a distance of smaller than r to some core point. 
We used the implementation of DBSCAN from the scikit-learn 
Python module38 with a distance threshold r equal to 11 and a 
density threshold MinPts equals 4.

Generation of randomly mutated mRNAs. In order to assess 
whether the appearance of clusters of temperature-sensitive posi-
tions is specific for mutations inducing the ca/ts phenotype or 
whether random mutations unrelated to ca/ts phenotype would 
be as likely to induce these clusters, we adopted an approach 
similar to that employed in our previous paper.27 For each wt 
mRNA, a data set consisting of 1000 mutant sequences was 
generated in silico. Each in silico generated variant contained 
the same number of mutations as the respective ca/ts mutant. 
All computer-generated mutations were synonymous ones and 
introduced into the sequences randomly. It is safe to assume 
that none (or extremely few) of the randomly generated in silico 
mutants would possess the ca/ts phenotype if tested in vitro and/
or in vivo. Significantly changing positions in the sequences 

a small proapoptotic mitochondrial protein (PB1-F2), hemagglu-
tinin (HA), neuraminidase (NA), the nucleoprotein (NP), the 
matrix protein M1, an integral membrane protein M2, and the 
two nonstructural proteins NS1 and NS2.31 Recently, Wise et al. 
showed that PB1 gene segment also encodes a twelfth gene prod-
uct, N-terminally truncated version on the polypeptide, N40.32 
Sequences for NA and HA were not taken into consideration 
since these segments do not stem from attenuated viruses in the 
reassortant live vaccines, and thus cannot be associated with the 
temperature-sensitive phenotype. For all other genes, the num-
bers of single nucleotide polymorphisms (SNPs) in the coding 
sequences of the ca/ts mutants compared with their wild type 
counterparts are presented in Table 1.

Identification of significantly changing positions. For the 
first step, we wanted to identify those nucleotides within each 
mRNA that are the most prone to changing their coupling pat-
tern with temperature elevation. These nucleotides would cor-
respond to the most temperature labile positions within RNA 
chains. To achieve this goal, we proposed and implemented a new 
technique as discussed here.

At each particular temperature, an RNA sequence consisting 
of N nucleotides can be presented by a vector of probabilities 
(hereinafter referred to as “probability vector”) for each nucleo-
tide to be in a double-stranded conformation at this tempera-
ture. Thus, we substitute a sequence of N ribonucleotides with a 
sequence of N real numbers between 0.0 and 1.0. Then, we calcu-
late the probability vectors for each of the influenza mRNAs for 
the temperatures 32°C up to 39°C (in increments of 1°C) using 
the RNAfold tool from the Vienna RNA package (v.1.8.5)23,24,33-

35 with the command line option –noLP that disallows base 
pairs that can only occur as helices of length 1. Performing the 
above described procedure, eight probability vectors were gener-
ated for each mRNA. Seven difference vectors v

32–33
, …, v

32–39
 

were calculated from the probability vectors for 33°C to 39°C 
for the same RNA and the vector at 32°C, containing the set 
of differences between the value for each position of the prob-
ability vector at higher temperature and the value for the same 
position at lower temperature. These positions in difference vec-
tors of each mRNA that possess values more than three standard 
deviations apart from the mean calculated over all values of the 
seven difference vectors were considered temperature-sensitive. 
Such “significantly changing” positions are presumed to result 
from perturbations in secondary RNA structures due to the tem-
perature elevation. Furthermore, to filter out possible calculation 
artifacts, we considered a position temperature-sensitive only if 

Table 1. The number of SNPs in the coding sequences of the ca/ts mu-
tants compared with their wild type counterparts.

Strain M1 M2 NP NS1 NS2 PA PB1 PB2

Arb/ca 0 1 2 1 1 3 7 7

Len/17/ca 1 2 0 0 1 3 3 1

Len/47/ca 1 2 1 0 1 3 4 3

The sequences of the ca/ts mutants of the M1, M2, NS2 and PA genes in 
Len/17/ca and Len/47/ca are identical.
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from the artificial data sets were determined as described above 
and used to calculate clusters of changing positions by apply-
ing the DBSCAN algorithm. Clusters from computer-generated 
sequences were compared with the clusters from naturally occur-
ring wt and ca/ts mutants.

Statistical tests. For each particular cluster of interest identi-
fied in wt and/or the ca/ts mutants, the frequency of its occurrence 
in the in silico generated mutants was calculated. Using these fre-
quencies we conducted a statistical analysis to test if occurrence/
disappearance of a particular cluster is associated with the ca/ts 
phenotype. For each cluster, which we observed in a ca/ts mutant 
but not in the wt, we tested the null hypothesis (H

0
) that the 

probability to observe this cluster among the computer generated 
sequences was 5% or higher. Conversely, for each cluster, which 
was observed in the wt but not in ca/ts strain, the null hypoth-
esis (H

0
) was that the probability to observe this cluster was less 

than 95%. In other words, a low frequency means that a cluster, 
which we observe in naturally occurring ca/ts strain although 
it is absent in the wt, is unlikely to occur by chance. Thus, the 
appearance of this cluster is likely to be associated with the ca/ts 
phenotype. Similarly, the fact that a cluster was present in the wt 
but disappeared in the ca/ts mutant can only be explained by the 
ca/ts phenotype if the probability to observe this cluster in the 
random mutants is 95% or higher.

To that end, we used one-sided binomial tests. The signifi-
cance level for the test was Bonferroni-corrected by dividing the 
significance level of 5% by the total number of clusters in that 
sequence. H

0
 was rejected for P-values lower than the adjusted 

significance level. For these calculations, a cluster was considered 
to be ‘present’ in an artificial sequence if that sequence contained 

Table 3. The number of nucleotides in each mRNA where the base pairing probability decreases (increases) significantly (more than three standard 
deviations from the mean over all temperature differences between 33°C to 39°C compared with 32°C) upon temperature change between 32°C and 
39°C compared with other nucleotides in the same mRNA

Strain M1 M2 NP NS1 NS2 PA PB1 PB2

Arb/wt −/− 19/8 88/36 42/25 31/4 58/26 130/95 133/83

Arb/ca −/− 13/12 78/34 29/18 8/11 102/50 100/57 132/68

Len/wt 46/17 17/8 49/34 −/− 15/12 84/53 129/84 130/72

Len/17/ca 50/16 19/13 −/− −/− 23/6 114/39 125/60 131/62

Len/47/ca 50/16 19/13 48/39 −/− 23/6 114/39 123/60 137/52

Table 2. The number of positions in each mRNA where the probability of nucleotides to be in a double-stranded conformation decreases (increases) 
upon temperature elevation from 32°C to 39°C

Strain M1 M2 NP NS1 NS2 PA PB1 PB2

Arb/wt −/− 207/87 1045/452 445/209 231/135 1452/699 1433/841 1537/743

Arb/ca −/− 211/83 1007/490 440/214 258/108 1437/714 1510/764 1531/749

Len/wt 534/225 221/73 900/507 −/− 233/133 1467/684 1428/846 1552/728

Len/17/ca 525/234 219/75 −/− −/− 248/118 1462/689 1525/749 1578/702

Len/47/ca 525/234 219/75 899/508 −/− 248/118 1462/689 1510/764 1622/658

There are no positions at which the probability to be paired upon temperature change between 32°C and 39°C remains unchanged. Here, and in all 
subsequent tables for those mRNAs that were not considered in the analysis due to the absence of mutations, values are not shown.

Table 4. The number of clusters in each mRNA as determined by the 
DBSCAN algorithm

Strain M1 M2 NP NS1 NS2 PA PB1 PB2

Arb/wt - 1 7 5 3 5 12 9

Arb/ca - 1 8 4 1 10 9 11

Len/wt 4 1 6 - 0 10 15 11

Len/17/ca 5 1 - - 2 11 9 10

Len/47/ca 5 1 8 - 2 11 10 10

Table 5. Average cluster length in each mRNA

Strain M1 M2 NP NS1 NS2 PA PB1 PB2

Arb/wt - 42.0 24.9 27.0 18.3 19.4 37.8 58.1

Arb/ca - 58.0 15.9 21.5 45.0 28.6 34.9 34.9

Len/wt 22.5 42.0 26.5 - - 25.0 34.9 39.9

Len/17/ca 19.8 61.0 - - 23.0 21.5 38.9 33.3

Len/47/ca 19.8 61.0 19.5 - 23.0 21.5 35.0 29.0

Table 6. Average density of significantly changing positions inside 
clusters in each mRNA

Strain M1 M2 NP NS1 NS2 PA PB1 PB2

Arb/wt - 0.43 0.39 0.38 0.45 0.37 0.44 0.39

Arb/ca - 0.38 0.53 0.36 0.22 0.34 0.43 0.42

Len/wt 0.41 0.40 0.36 - - 0.38 0.37 0.41

Len/17/ca 0.46 0.38 - - 0.26 0.48 0.44 0.41

Len/47/ca 0.46 0.38 0.46 - 0.26 0.48 0.44 0.44
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