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Abstract 32 

HIV-1 must overcome multiple innate antiviral mechanisms to replicate in CD4+ T 33 

lymphocytes and macrophages. Previous studies have demonstrated that the APOBEC3 34 

(A3) family of proteins (at least A3D, A3F, A3G, and stable A3H haplotypes) contribute to 35 

HIV-1 restriction in CD4+ T lymphocytes. Virus-encoded virion infectivity factor (Vif) 36 

counteracts this antiviral activity by degrading A3 enzymes allowing HIV-1 replication in 37 

infected cells. In addition to A3 proteins, Vif also targets other cellular proteins in CD4+ T 38 

lymphocytes, including PPP2R5 proteins. However, whether Vif primarily degrades only 39 

A3 proteins or has additional essential targets during viral replication is currently unknown. 40 

Herein, we describe the development and characterization of A3F-, A3F/A3G-, and A3A-41 

to-A3G-null THP-1 cells. In comparison to Vif-proficient HIV-1, Vif-deficient viruses have 42 

substantially reduced infectivity in parental and A3F-null THP-1 cells, and a more modest 43 

decrease in infectivity in A3F/A3G-null cells. Remarkably, disruption of A3A–A3G protein 44 

expression completely restores the infectivity of Vif-deficient viruses in THP-1 cells. These 45 

results indicate that the primary function of Vif during HIV-1 replication in THP-1 cells is 46 

the targeting and degradation of A3 enzymes.  47 
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Importance 48 

HIV-1 Vif neutralizes the HIV-1 restriction activity of A3 proteins. However, it is currently 49 

unclear whether Vif has additional essential cellular targets. To address this question, we 50 

disrupted A3A to A3G genes in the THP-1 myeloid cell line using CRISPR and compared 51 

the infectivity of wildtype HIV-1 and Vif mutants with the selective A3 neutralization 52 

activities. Our results demonstrate that the infectivity of Vif-deficient HIV-1 and the other 53 

Vif mutants is fully restored by ablating the expression of cellular A3A to A3G proteins. 54 

These results indicate that A3 proteins are the only essential target of Vif that is required 55 

for HIV-1 replication in THP-1 cells.  56 
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Introduction 57 

The apolipoprotein B mRNA editing enzyme polypeptide-like 3 (APOBEC3, A3) family of 58 

proteins comprise seven single-strand DNA cytosine deaminases (A3A–A3D and A3F–59 

A3H) in humans (1-3). A3 enzymes have broad and essential roles in innate antiviral 60 

immunity against parasitic DNA-based elements (4-6). Retroviruses are sensitive to A3 61 

enzyme activity due to the obligate step of reverse transcription during viral replication 62 

that produces single-stranded cDNA intermediates. These viral cDNA intermediates can 63 

act as substrates for A3 enzymes, as demonstrated by C-to-U deamination resulting in 64 

G-to-A mutations in the genomic strand. To date, the best-characterized substrate of A3 65 

enzymes is human immunodeficiency virus type 1 (HIV-1). In CD4+ T lymphocytes, four 66 

A3 proteins (A3D, A3F, A3G, and stable A3H haplotypes) restrict HIV-1 replication by 67 

mutating viral cDNA intermediates and by physically blocking reverse transcription (7-14). 68 

A3 enzymes have a preference for specific dinucleotide motifs (5′-CC for A3G and 5′-TC 69 

for other A3 enzymes) at target cytosine bases, which appear as 5′-AG or 5′-AA mutations 70 

in the genomic strand (7, 8, 15, 16). 71 

Virus-encoded virion infectivity factor (Vif) functions in disrupting the activity of A3 72 

enzymes. Vif forms an E3 ubiquitin ligase complex that degrades A3 enzymes through a 73 

proteasome-mediated pathway (2, 3, 17, 18). The central domain of this complex is a Vif 74 

heterodimer with the transcription factor, CBF-β, which stabilizes Vif during disruption of 75 

A3 protein activity (19, 20). Vif also suppresses the transcription of A3 enzymes by 76 

hijacking RUNX/CBF-β complex (21). In addition to these Vif-dependent mechanisms, 77 

HIV-1 reverse transcriptase and protease have been shown to disrupt the activity of A3 78 

enzymes via Vif-independent mechanisms (22, 23). Recently, functional proteomic 79 
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analyses have demonstrated that Vif has several target proteins, including the PPP2R5 80 

family of proteins, in CD4+ T cell lines and lymphocytes (24, 25). These findings indicate 81 

that Vif may have additional essential target proteins during HIV-1 replication in infected 82 

cells. 83 

We previously reported that endogenous A3G protein contributes to HIV-1 84 

restriction in a deaminase-dependent manner in THP-1 cells (26). Although disruption of 85 

the A3G gene nearly eliminates viral G-to-A mutations, Vif-deficient HIV-1 virions have 86 

50% lower infectivity than wildtype HIV-1 or mutants selectively lacking A3G degradation 87 

activity (26). These results indicated that Vif-mediated inhibition of A3G and at least one 88 

additional A3 protein is required for efficient HIV-1 replication. 89 

In the present study, we evaluate the effects of other A3 proteins on HIV-1 90 

infectivity by developing and characterizing A3F-, A3F/A3G-, and A3A-to-A3G-null THP-91 

1 cells using HIV-1 Vif mutants with selective A3 neutralization activities. In comparison 92 

to wildtype HIV-1, Vif-deficient HIV-1 infectivity is strongly inhibited in A3F-null THP-1 93 

cells and modestly inhibited in A3F/A3G-null THP-1 cells. In contrast, an HIV-1 Vif mutant 94 

selectively lacking A3F degradation activity had comparable infectivity to wildtype HIV-1 95 

in A3F-null THP-1 cells and 50% infectivity in parental THP-1 cells, indicating that A3F 96 

protein contributes to HIV-1 restriction in THP-1 cells. Furthermore, Vif-deficient HIV-1 97 

infectivity is comparable to wildtype HIV-1 in A3A-to-A3G-null THP-1 cells. These results 98 

demonstrate that A3 proteins are the primary target of HIV-1 Vif during virus replication 99 

in THP-1 cells. 100 

 101 

Results 102 
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Endogenous A3H is not involved in HIV-1 restriction in THP-1 cells. 103 

THP-1 cells express significant levels of A3B, A3C, A3F, A3G, and A3H mRNA (26). The 104 

results of our previous study indicated that A3G and at least one additional A3 protein are 105 

involved in HIV-1 restriction in THP-1 cells (26). Variations in the amino acid sequence of 106 

A3 family proteins are known to influence HIV-1 restriction activity (27), and the A3H gene 107 

is the most polymorphic of all human A3 genes (10, 22, 28, 29). The A3H allele is grouped 108 

into stable and unstable haplotypes according to the combination of amino acid residues 109 

at positions 15, 18, 105, 121, and 178 (10, 22, 28, 29). Stable A3H haplotypes are active 110 

against HIV-1 whereas unstable A3H haplotypes have absent or minimal activity as they 111 

encode proteins with low stability (9, 10, 22, 29, 30). To determine A3H genotypes, we 112 

sequenced A3H cDNA from THP-1 cells. Sequencing data identified an unstable 113 

haplotype in the THP-1 genome, termed A3H hapI (Fig. 1A). These data suggest that 114 

endogenous A3H protein has minimal restriction activity against Vif-deficient HIV-1 in 115 

THP-1 cells. 116 

The A3H hapI results in expression of an unstable protein that has weak anti-HIV-117 

1 activity (28, 29, 31). However, this protein is enzymatically active and has an HIV-1 118 

restriction phenotype similar to the stable A3H haplotype, A3H hapII, when both proteins 119 

are expressed at the same levels (31). In addition, A3H protein expression levels are 120 

upregulated during HIV-1 infection (10, 22), and A3H hapI is resistant to Vif-mediated 121 

degradation (32). Accordingly, we evaluated whether the expression of A3H hapI is 122 

associated with HIV-1 restriction in THP-1 cells. To address this question, we utilized HIV-123 

1 Vif mutants that selectively degrade stable A3H (hyper-functional Vif; hyper-Vif) or lack 124 

stable A3H degradation (hypo-functional Vif; hypo-Vif) (Fig. 1B). IIIB Vif displays an 125 
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intermediate phenotype (Fig. 1B). Of note, hyper-Vif, hypo-Vif, and IIIB Vif have full 126 

neutralization activity against A3D, A3F, and A3G proteins (10). VSV-G pseudotyped HIV-127 

1 Vif mutants were produced from HEK293T cells and infected into SupT11 and THP-1 128 

cells to create virus-producing cells (see Pseudo-single cycle infectivity assays in 129 

Material & Methods). The produced viruses were then used to measure viral infectivity 130 

in TZM-bl cells, evaluate packaging of A3 proteins by western blotting, and analyze the 131 

frequency of G-to-A mutations. As shown in Fig. 1C (top panel), hyper-Vif HIV-1, hypo-132 

Vif HIV-1, and IIIB Vif HIV-1 (IIIB) produced in THP-1 cells had similar viral infectivity. 133 

While Vif did not degrade A3H protein in THP-1 cells, it was not packaged into viral 134 

particles (Fig. 1C, bottom panel). Next, to determine whether G-to-A mutations were 135 

introduced into proviral DNA, we recovered proviral DNA from SupT11 cells after infection 136 

with each HIV-1 mutant produced from THP-1 cells and sequenced the pol region of these 137 

proviruses. Sequencing data demonstrated that hyper-Vif HIV-1, hypo-Vif HIV-1, and IIIB 138 

Vif HIV-1 had minimal G-to-A mutations preferred by A3H protein (GA-to-AA signature 139 

motif) in proviral DNA (Fig. 1D and E), indicating that endogenous A3H protein expressed 140 

in THP-1 cells is not involved in HIV-1 restriction. In contrast, the replication of Vif-null 141 

HIV-1 was restricted in THP-1 cells and A3G, the major HIV-1 restrictive A3 protein, was 142 

packaged in viral particles, thereby inducing profound G-to-A mutations (10.3 ± 3.5 143 

mutations/kb). Most of mutations were in the GG-to-AG signature motif preferred by A3G 144 

(80 ± 10%) in proviral DNA (Fig. 1C-E). The susceptibility of Vif mutants to stable A3H 145 

protein was confirmed in SupT11 cells stably expressing stable A3H protein (Fig. 1C-E). 146 

Taken together, these results indicate that A3G and other A3 proteins, except A3H, 147 

contribute to HIV-1 restriction in THP-1 cells. 148 
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 149 

Development of A3F-, A3F/A3G-, and A3A-to-A3G-null THP-1 cells. 150 

A3F protein has a restrictive effect on HIV-1 among A3 family members and is a target of 151 

Vif, in addition to A3G, in CD4+ T cell lines and lymphocytes (7, 33-35). To determine 152 

whether A3F protein also reduces HIV-1 infectivity in THP-1 cells, we used CRISPR to 153 

create A3F and A3F/A3G gene knockout cell lines. Two independent subclones of A3F 154 

and A3F/A3G-null THP-1 cells were obtained, as evidenced by the results of genomic 155 

DNA sequencing and western blotting (Fig. S1 and S2). 156 

A3 proteins include single- and double-domain deaminases, which are 157 

phylogenetically classified into three groups: Z1, Z2, and Z3 domains (3, 4) (Fig. 2A 158 

represented in green, yellow, and blue, respectively). A3A, A3B carboxy-terminal 159 

domain (CTD), and A3G CTD proteins are classified as Z1 domains (Fig. 2A; 160 

represented in green). Of note, exon 4 of the A3A gene, exon 7 of the A3B gene, and 161 

exon 7 of A3G gene are highly conserved at the nucleotide level (A3A exon 4 and A3B 162 

exon 7 have 95% identity; A3A exon 4 and A3G exon 7 have >99% identity; and A3B 163 

exon 7 and A3G exon 7 have 95% identity, respectively). Interestingly, each of these 164 

exons has an identical sequence (5′-GAG TGG GAG GCT GCG GGC CA). We therefore 165 

designed a guide RNA (gRNA) homologous to this sequence and attempted to delete the 166 

entire 125 kbp interval spanning A3A to A3G in THP-1 cells (Fig. 2A; represented in 167 

arrows, and S3). We predicted that successful deletion would cause one of the following 168 

three scenarios: 1) fusion of exon 4 of the A3A gene with exon 7 of the A3B gene (30 kbp 169 

deletion); 2) fusion of exon 7 of the A3B gene with exon 7 of the A3G gene (95 kbp 170 

deletion); or 3) fusion of exon 4 of the A3A gene with exon 7 of the A3G gene (125 kbp 171 
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deletion; Fig. 2A). To obtain THP-1 cells lacking expression of A3A to A3G protein, a 172 

lentiviral vector expressing gRNA against the target sequence was transduced into THP-173 

1 cells. Finally, two independent subclones (THP-1#11-4 and THP-1#11-7) were obtained, 174 

with whole genome sequencing (WGS) analysis demonstrating an extensive deletion 175 

between A3A exon 4 and A3G exon 7 at the A3 gene locus (Fig. 2B). In THP-1#11-4, six 176 

alleles of the fusion of A3A exon 4 with A3G exon 7 are observed, and each A3A/A3G 177 

hybrid exon had six different insertions or deletions (indels) (Fig. S3). THP-1#11-7 178 

harbors three alleles of A3A exon 4 and A3G exon 7 fusions (one may be A3A exon 4) 179 

with three different deletions (Fig. S3). Although more than 20 potential off-target sites 180 

with two or three nucleotides mismatched with the designed gRNA were predicted, a 181 

significant deletion was only found downstream of the predicted A3G pseudogene 182 

harboring 2 bp mismatched with the target sequence (Fig. S4; potential target 183 

sequence in a yellow box and deletions indicated by green dotted lines). In 184 

comparison to parental THP-1 cells, these subclones had similar growth capacities under 185 

normal cell culture conditions. RT-qPCR analyses demonstrated that A3B to A3G mRNA 186 

is not detectable in either clone (Fig. 2C). However, A3A mRNA expression remained 187 

detectable in parental THP-1 cells and the two subclones as the A3A promoter remains 188 

intact and potentially functional (Fig. 2A-C). A3A mRNA expression is known to be 189 

upregulated 100–1000-fold in THP-1 cell treated with type I interferon (IFN) (36). To 190 

confirm the expression of A3A mRNA and protein in THP-1 cells, parental THP-1 cell and 191 

the respective subclones were cultured in the presence of type I IFN for 6 hours, and A3 192 

mRNA and protein expression levels were then analyzed by RT-qPCR and western 193 

blotting, respectively. In parental THP-1 cells, A3A, A3B, A3F, and A3G mRNA and 194 
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protein expression levels were increased following IFN treatment (Fig. 2C and D). In the 195 

THP-1#11-4 subclone, A3A mRNA expression is increased following IFN treatment; 196 

however, A3A, A3B, A3C, A3F, and A3G proteins are not detectable, even after IFN 197 

treatment (Fig. 2C and D). Further, A3A to A3G proteins are not detectable in the THP-198 

1#11-7 subclone under normal cell culture conditions (Fig. 2D). Interestingly, low levels 199 

of a protein with comparable size to A3A are detected in the THP-1#11-7 subclone after 200 

IFN treatment (Fig. 2D). Sanger sequence analyses indicated that this protein was an 201 

A3A and A3G hybrid with a 3-bp deletion (Fig. S3). Collectively, these data indicate that 202 

the THP-1#11-4 and THP-1#11-7 subclones lack expression of A3A to A3G proteins 203 

under normal cell culture conditions and that clone THP-1#11-4 is a clean knockout that 204 

fails to express functional versions of any of these proteins. 205 

 206 

Disruption of A3A to A3G protein expression fully restores the infectivity of Vif-207 

deficient HIV-1 in THP-1 cells. 208 

We next determined whether endogenous A3F protein is degraded by Vif in 209 

addition to A3G. HIV-1 Vif mutants with selective A3 neutralization activities were used 210 

for pseudo-single cycle infectivity assays as mentioned above. For example, a Vif4A 211 

mutant harboring 14AKTK17 substitutions (14DRMR17 in IIIB) is susceptible to A3D and A3F 212 

activity but resistant to A3G activity (37-39) (Fig. 3A). We examined the ability of Vif4A to 213 

counteract the activity of A3F as A3D mRNA expression level is relatively low in THP-1 214 

cells (26) (Fig. 2C). As our group and others have previously shown (26, 37, 38, 40), 215 

Vif5A containing five alanine substitutions (40YRHHY44 to 40AAAAA44) is sensitive to A3G 216 

restriction but not the activity of A3D or A3F (Fig. 3A). Vif4A5A is susceptible to A3D, 217 
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A3F, and A3G (37) (Fig. 3A). VSV-G pseudotyped HIV-1 and these Vif mutants were 218 

used to infect SupT11 derivatives and engineered A3F-null THP-1 cells. First, the 219 

susceptibilities of these Vif mutants to A3F and A3G proteins were validated in SupT11 220 

cell lines (Fig. 3B). In SupT11-vector cells, Vif-proficient HIV-1 and all Vif mutants had 221 

comparable infectivity in TZM-bl cells (Fig. 3B). As expected, the infectivity of Vif-deficient 222 

HIV-1 and the Vif4A and 4A5A mutants was reduced in SupT11-A3F cells as these 223 

mutants are unable to degrade A3F protein, thereby leading to packaging of A3F protein 224 

in viral particles (Fig. 3B). Further, infection with Vif-deficient HIV-1 or the Vif5A and 225 

Vif4A5A mutants resulted in packaging of A3G protein in viral particles from SupT11-A3G 226 

cells in addition to reduced infectivity of these Vif mutants (Fig. 3B). These results are 227 

consistent with previous reports demonstrating the susceptibilities of Vif mutants to A3 228 

proteins (26, 37-40). 229 

Pseudo-single cycle infectivity assays were then performed in parental THP-1, 230 

A3G-null, and A3F-null cells using these Vif mutants. Vif-proficient HIV-1 degraded A3F 231 

and A3G proteins in THP-1 cells, and lower amounts of these A3 proteins were packaged 232 

into viral particles (Fig. 3C; THP-1 parent). In contrast, Vif-deficient HIV-1 was unable to 233 

degrade A3F and A3G proteins, thereby leading to reduced viral infectivity compared to 234 

Vif-proficient HIV-1 (Fig. 3C; THP-1 parent). The infectivity of A3F-susceptible Vif 235 

mutants, Vif4A and Vif4A5A, was lower than that of Vif-proficient HIV-1, indicating that 236 

endogenous A3F protein contributes to Vif-deficient HIV-1 restriction in THP-1 cells (Fig. 237 

3C; THP-1 parent). This finding was supported by results in A3G-null THP-1 cells where 238 

Vif4A mutants are restricted, as observed in parental THP-1 cells (Fig. 3C; THP-1 ∆A3G). 239 

The involvement of endogenous A3G protein in HIV-1 restriction was confirmed in A3G-240 
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null THP-1 cells, as reported (26) (Fig. 3C; THP-1 ∆A3G). To determine whether 241 

endogenous A3F protein contributes to HIV-1 restriction in THP-1 cells, pseudo-single 242 

cycle infectivity assays were performed according to the methods described above in two 243 

independent A3F-null THP-1 clones (Fig. S1). Vif-deficient HIV-1 and the Vif5A and 244 

Vif4A5A mutants had reduced infectivity in A3F-null subclones due to the inhibitory effect 245 

of A3G (Fig. 3C; THP-1 ∆A3F#1 and #2). However, the infectivity of the Vif4A mutant 246 

was restored to near wildtype levels following disruption of A3F expression in THP-1 cells. 247 

These data demonstrate that endogenous A3F protein contributes to Vif-deficient HIV-1 248 

restriction in THP-1 cells, and that Vif degrades A3F and thereby prevents packaging and 249 

restriction upon target cell infection. 250 

A3F and A3G proteins are involved in Vif-deficient HIV-1 restriction in THP-1 cells 251 

and are degraded by Vif (26) (Fig. 3C). However, it is unclear whether only these A3 252 

proteins are associated with Vif-deficient HIV-1 restriction in THP-1 cells. To address this 253 

issue, we performed pseudo-single cycle infectivity assays in A3F/A3G-null THP-1 cells 254 

using separation-of-function Vif mutants. Although Vif-deficient HIV-1 had greater 255 

infectivity defects in parental, A3G-null, and A3F-null THP-1 cells compared to wildtype 256 

HIV-1 (parent: <10% infectivity, ∆A3G: 30 to 40% infectivity, and ∆A3F: 20% infectivity, 257 

respectively), the infectivity of Vif-deficient HIV-1 was 30% lower in A3F/A3G-null THP-1 258 

cells (Fig. 3C; THP-1 parent, ∆A3G, ∆A3F#1 and #2, and ∆A3F/A3G#1 and #2). On the 259 

other hand, the Vif4A, Vif5A, and Vif4A5A mutants had similar infectivity to wildtype HIV-260 

1 in A3F/A3G-null THP-1 cells (Fig. 3C; THP-1 ∆A3F/A3G#1 and #2). These data 261 

indicate that other A3 proteins, in addition to A3F and A3G, contribute to Vif-deficient HIV-262 
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1 restriction in THP-1 cells or that Vif disrupts an additional essential target during viral 263 

replication in THP-1 cells. 264 

The universally recognized primary target of Vif is the A3 family of proteins (2, 3, 265 

17, 18). However, Vif-mediated A3 degradation may mask an additional A3-independent 266 

Vif function required for viral replication. To address this issue, we constructed two 267 

independent A3A-to-A3G-null THP-1 clones (Fig. 2) and characterized HIV-1 infection 268 

using pseudo-single cycle infectivity assays with Vif mutants. As mentioned above, the 269 

disruption of A3F and A3G protein expression results in Vif-deficient HIV-1 having 70% 270 

of wildtype HIV-1 infectivity in THP-1 cells (Fig. 3C; THP-1∆A3F/A3G#1 and #2). 271 

Remarkably, Vif-deficient HIV-1 and the other Vif mutants have comparable infectivity to 272 

Vif-proficient HIV-1 lacking expression of A3A-to-A3G in THP-1 cells (Fig. 3C; THP-1#11-273 

4 and #11-7). These results indicate that A3 degradation is the only function of Vif 274 

required for viral replication in THP-1 cells. 275 

 276 

A3 proteins restrict HIV-1 replication via deaminase-dependent and deaminase-277 

independent mechanisms in THP-1 cells. 278 

Our previous results indicated that A3G protein is the primary source of A3 mutagenesis 279 

in THP-1 cells (26). To further investigate the G-to-A mutation spectra in each A3-null 280 

THP-1 subclone, the pol region was cloned and sequenced from the proviruses used in 281 

the aforementioned infectivity assays. As expected, GG-to-AG mutations are observed in 282 

the proviral DNA of Vif mutants lacking A3G neutralization activity (Vif-deficient HIV-1 and 283 

Vif5A and Vif4A5A mutants) produced from SupT11-A3G cells (Fig. 4A-B; SupT11-A3G). 284 

Consistent with a previous report (26), THP-1 expresses A3G protein capable of mutating 285 
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A3G-susceptible Vif mutants, including Vif-deficient HIV-1 and Vif5A and Vif4A5A 286 

mutants, as seen in parental THP-1 cells. These GG-to-AG mutations are not observed 287 

in A3G-null THP-1 cells (Fig. 4A-B; THP-1 parent and ∆A3G). Similarly, GG-to-AG 288 

mutations preferred by A3G were seen in the proviruses of the A3G-susceptible Vif 289 

mutants produced from two independent A3F-null THP-1 cells, with disruption of A3G 290 

nearly completely eliminating these mutations in THP-1 cells (Fig. 4A and B; THP-291 

1∆A3F#1 and #2, ∆A3F/A3G#1 and #2, #11-4, and #11-7). These data indicate that A3G 292 

protein is the primary source of G-to-A mutations in HIV-1 proviruses produced by THP-293 

1 cells. 294 

Although the Vif mutants lacking A3F neutralization activity (Vif-deficient HIV-1 and 295 

Vif4A and Vif4A5A mutants) produced from SupT11-A3F cells have a relatively low 296 

number of G-to-A mutations, the observed G-to-A mutations are predominantly within the 297 

GA-to-AA sequence motif preferred by A3F (Fig. 4A-B; SupT11-A3F). However, A3F-298 

preferred GA-to-AA mutations are not observed in proviruses of A3F-susceptible Vif 299 

mutants produced from parental or A3G-null THP-1 cells, in support of prior observations 300 

(26) (Fig. 4A-B; THP-1 parent and ∆A3G). In addition, fewer GA-to-AA mutations are 301 

observed in THP-1 cells, even after disruption of A3F protein expression (Fig. 4A-B; THP-302 

1∆A3F#1 and #2, ∆A3F/A3G#1 and #2, #11-4, and #11-7). Accordingly, these results 303 

combine to indicate that A3F protein in THP-1 cells is involved in Vif-deficient HIV-1 304 

restriction via a deaminase-independent mechanism. 305 

 A3F protein has been shown to inhibit the accumulation of reverse transcription 306 

(RT) products (14). To investigate a potential effect on RT, SupT11 cells were infected 307 

with viruses from the pseudo-single cycle infectivity assays described above, and late RT 308 
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(LRT) products were examined by quantitative PCR (qPCR). As expected, all Vif mutants 309 

were decreased in LRT products in comparison to wildtype virus when these mutants 310 

were produced in parental THP-1 cells and used to infect SupT11 cells (Fig. 4C; THP-1 311 

parent). LRT products of Vif5A and Vif4A mutants were restored to levels comparable to 312 

Vif-proficient HIV-1 following the disruption of A3G or A3F protein expression in THP-1 313 

cells (Fig. 4C; THP-1 ∆A3G, and ∆A3F#1 and #2), indicating that both A3G and A3F 314 

proteins inhibit HIV-1 via a deaminase-independent mechanism. However, double 315 

knockout of A3G and A3F in THP-1 cells did not increase the LRT products of Vif-deficient 316 

HIV-1 compared to those of Vif-proficient virus (Fig. 4C; THP-1 ∆A3F/A3G#1 and #2), 317 

indicating other A3 proteins, in addition to A3F and A3G, may contribute to the restriction 318 

of HIV-1 in THP-1 cells via a deaminase-independent mechanism or that a separate 319 

protein targeted by Vif blocks the accumulation of RT products. To test this hypothesis, 320 

we measured LRT products by infecting SupT11 cells with HIV-1 Vif mutants produced in 321 

A3A-to-A3G-null clones. Consistent with the results of the pseudo-single cycle infectivity 322 

assays (Fig. 3C), Vif-deficient HIV-1 and other Vif mutants had comparable levels of LRT 323 

products to Vif-proficient HIV-1 lacking expression of A3A to A3G protein in THP-1 cells 324 

(Fig. 4C; THP-1#11-4 and #11-7). These data indicate that Vif-mediated A3 degradation 325 

is required for viral replication in THP-1 to counteract deaminase-dependent and -326 

independent HIV-1 restriction by A3 proteins. 327 

 328 

Transmitted/founder (TF) HIV-1 Vif also only targets A3 family proteins to enable 329 

virus replication in THP-1 cells.  330 
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We finally examined whether the A3-dependent function of Vif was present in TF viruses. 331 

To address this issue, Vif-proficient and deficient versions of the CH58 TF virus were 332 

produced from parental THP-1 and A3A-to-A3G-null cells, with viral infectivity measured 333 

in TZM-bl cells (Fig. 5). Similar to the results observed with IIIB viruses, Vif-deficient CH58 334 

virus was restricted in parental THP-1 cells; however, this restriction is completely 335 

abolished by disruption of the A3A to A3G genes (Fig. 5). These data indicate that TF 336 

viruses also utilize a primarily A3-dependent function of Vif during replication in THP-1 337 

cells. 338 

 339 

Discussion 340 

Vif-mediated A3 degradation is critical for HIV-1 replication in CD4+ T lymphocytes and 341 

myeloid cells (2, 3, 17, 18). In CD4+ T lymphocytes, at least A3D, A3F, A3G, and A3H 342 

(only stable haplotypes) are involved in Vif-deficient HIV-1 restriction, and Vif is required 343 

to degrade A3 enzymes and allow efficient viral replication (2, 3, 17, 18). However, the 344 

degradation of A3 enzymes by Vif during HIV-1 replication in myeloid lineage cells has 345 

yet to be fully elucidated. We previously reported that A3G protein contributes to Vif-346 

deficient HIV-1 restriction in a deaminase-dependent manner in THP-1 cells (26). Herein, 347 

we demonstrate that A3F protein also inhibits Vif-deficient HIV-1 in a largely deaminase-348 

independent manner and that Vif avoids this HIV-1 restriction mechanism by degrading 349 

A3F protein (Fig. 3-4). Importantly, the results of pseudo-single cycle infectivity assays 350 

demonstrate that the disruption of A3A to A3G protein confers comparable infectivity to 351 

wildtype HIV-1 in a Vif-deficient lab-adapted virus (IIIB) and TF virus (CH58) (Fig. 3-5). 352 
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These results indicate that Vif-mediated A3 degradation is the primary function of Vif 353 

during HIV-1 replication in THP-1 cells. 354 

Our results demonstrate that A3F and A3G but not A3H proteins restrict Vif-355 

deficient HIV-1 via deaminase-dependent and -independent mechanisms in THP-1 cells 356 

(Fig. 1, 3 and 4). In addition to A3F and A3G proteins, our findings indicate that at least 357 

one additional A3 protein is involved in Vif-deficient HIV-1 restriction via a deaminase-358 

independent mechanism (Fig. 3-4). Accordingly, the remaining four A3 proteins (A3A, 359 

A3B, A3C, and A3D) may contribute to Vif-deficient HIV-1 restriction in a deaminase-360 

independent manner in THP-1 cells (Fig. 4). However, A3A and A3B are highly unlikely 361 

to contribute in this manner as A3A mRNA and protein expression levels are very low or 362 

undetectable in THP-1 cells without IFN treatment (Fig. 2C-D). Further, both A3A and 363 

A3B are resistant to degradation by HIV-1 Vif (7, 34, 41-43). It is therefore plausible that 364 

A3C and A3D proteins contribute to Vif-deficient HIV-1 restriction in THP-1 cells. An A3C-365 

isoleucine 188 variant is reportedly more active against HIV-1 than a serine 188 variant 366 

(44, 45). To ask which A3C variant is expressed by THP-1 cells, we determined the A3C 367 

genotypes of THP-1 cells using cDNA sequencing. These results demonstrated that the 368 

amino acid residue of A3C at position 188 is serine. This result indicates that A3C has a 369 

modest effect on Vif-deficient HIV-1 restriction via a deaminase-independent mechanism 370 

in THP-1 cells, consistent with prior studies (45). Similarly, the results of previous studies 371 

indicate that A3D has a weak effect on Vif-deficient HIV-1 restriction in HEK293, SupT11, 372 

and CEM2n cells (7, 8, 37, 46, 47). Nevertheless, the fact that Vif-deficient HIV-1 has 373 

20% lower infectivity indicates that a synergistic mechanism may enhance the effect of 374 
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A3 proteins on HIV-1 infectivity (48, 49). Further studies are required to fully elucidate the 375 

mechanisms underlying the effect of A3 proteins on HIV-1 infectivity. 376 

Similar to CD4+ T lymphocytes, HIV-1 can also target myeloid cells such as 377 

monocytes and macrophages, and these infections are associated with viral 378 

dissemination, persistence, and latency (50, 51). Accordingly, it is important to 379 

understand the role of restriction factors, including A3 proteins, in myeloid cells. In 380 

monocytes, A3A mRNA levels are 10–1000 times higher than other A3 mRNA expression 381 

levels, and A3A mRNA expression is reduced by 10–100-fold after differentiation into 382 

monocyte-derived macrophages (MDMs) (52-54). In contrast, A3G mRNA expression 383 

levels are reduced approximately 10-fold lower after differentiation of monocytes into 384 

MDMs (52, 53). A3F mRNA expression levels are less variable during the differentiation 385 

of monocytes into MDMs (52). Interestingly, suppression of A3A and A3G protein levels 386 

by siRNA reportedly leads to a 4–5-fold increase in p24 production by HIV-1-infected 387 

monocytes (53). As MDMs are generally more sensitive to HIV-1 infection than 388 

monocytes, it is highly likely that A3A and A3G contribute to the susceptibility of MDMs 389 

to HIV-1 infection. However, as previous studies have reported that A3A is less active 390 

against HIV-1 in HEK293T and SupT11 cell lines (7, 34, 55), further studies are required 391 

to determine the contribution of A3A to HIV-1 restriction in monocytes. 392 

In addition to A3A and A3G, A3F and A3H may be involved in HIV-1 restriction in 393 

monocytes. Although A3F mRNA expression levels are essentially unchanged during 394 

differentiation from monocytes into MDMs (53), A3F mRNA expression levels are 395 

comparable to A3G mRNA expression levels (53, 54), indicating that A3F protein likely 396 

contributes to HIV-1 restriction in monocytes. It is possible that only stable A3H 397 
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haplotypes and A3C-I188 are associated with HIV-1 restriction in monocytes. According 398 

to previous observations in HEK293, SupT11, and CEM2n cells (7, 8, 37, 46, 47), A3D 399 

may modestly contribute to HIV-1 restriction in monocytes. As A3B mRNA expression 400 

levels are relatively low, it is unlikely that this A3B inhibits HIV-1 in monocytes. However, 401 

the contribution of A3 proteins other than A3A and A3G to HIV-1 suppression in 402 

monocytes remains unclear, and the antiviral activities of these A3 proteins warrant 403 

further investigation. 404 

In MDMs, A3A appears to be associated with anti-HIV-1 activity as increasing HIV-405 

1 infectivity has been reported following siRNA knockdown of A3A (53, 54). In addition, 406 

HIV-1 replication assays in MDMs using HIV-1 Vif4A and Vif5A mutants demonstrated 407 

that the replication kinetics of both mutants were slower than that of the Vif-proficient HIV-408 

1, indicating that A3D, A3F, and A3G contribute to HIV-1 restriction in MDMs (39). 409 

However, the effects of A3D and A3F on HIV-1 replication are donor-dependent, likely 410 

due to their respective expression levels (39). As the antiviral activity of A3B, A3C, and 411 

A3H proteins has not been reported in MDMs, further studies are required to address 412 

these issues. 413 

Vif is required for HIV-1 replication in CD4+ T lymphocytes and macrophages (2, 414 

3, 17, 18). In the absence of Vif, HIV-1 is attacked by A3 proteins in CD4+ T lymphocytes, 415 

macrophages, monocytes, dendritic cells, and CD4+ T cell lines, and massive G-to-A 416 

mutations accumulate in HIV-1 proviral DNA (7, 8, 10, 15, 23, 26, 39, 56, 57). HIV-1 Vif 417 

recruits A3 proteins into an E3 ubiquitin ligase complex, thereby avoiding the antiviral 418 

activity of these proteins by promoting their degradation through a proteasome-mediated 419 

pathway (2, 3, 17, 18). The primary function of Vif has long been posited to be the 420 
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suppression of the antiviral activity of A3 proteins. On the other hand, Vif causes G2/M 421 

cell cycle arrest (58-60). As the amino acid residues of Vif responsible for G2/M cell cycle 422 

arrest do not completely match with the amino acid residues required for Vif-mediated A3 423 

degradation, these functions of Vif may be independent of each other (61-63). In 2016, a 424 

functional proteomic analysis identified the PPP2R5 family of proteins, which function as 425 

regulators of protein phosphatase 2A (PP2A), as novel targets of Vif (25). Subsequently, 426 

Salamango et al. revealed that Vif induces G2/M arrest by degrading PPP2R5 proteins 427 

(60). Vif-induced G2/M arrest has been observed in many cell types, including HEK293T, 428 

SupT11, CEM-SS, and THP-1 cells and CD4+ T lymphocytes (25, 61, 63). However, Vif-429 

mediated G2/M arrest is not required for HIV-1 replication, supporting our findings that A3 430 

family proteins are the sole essential substrate of Vif during viral replication in THP-1 cells 431 

under normal cell culture conditions (Fig. 3-5). It has recently been reported that fragile 432 

X mental retardation 1 (FMR1) and diphthamide biosynthesis 7 (DPH7) are degraded by 433 

Vif in CD4+ T lymphocytes (24). Further studies are required to determine whether a 434 

substrate of Vif other than A3 proteins is required for HIV-1 replication in vivo. 435 

 In summary, the findings of the present study demonstrate that the primary target 436 

of Vif is the A3 family of proteins during HIV-1 replication in THP-1 cells. Whether this 437 

observation is applicable to primary CD4+ T lymphocytes and myeloid cells, such as 438 

monocytes and macrophages, is important for the development of antiviral therapies 439 

targeting the A3-Vif axis. Such studies may contribute to a functional cure for HIV-1 by 440 

manipulating A3 mutagenesis.  441 
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Material & Methods 442 

Cell lines and culture conditions 443 

HEK293T (CRL-3216) was obtained from American Type Culture Collection. TZM-444 

bl (#8129) (64) was obtained from the NIH AIDS Reagent Program (NARP). The creation 445 

and characterization of the permissive T cell line SupT11 and the SupT11 single clones 446 

stably expressing untagged A3 (SupT11-vector, -A3F, -A3G and -A3H hapII high) have 447 

been reported (10, 33). CEM-GXR (CEM-GFP expressing CCR5) was provided by Dr. 448 

Todd Allen (Harvard University, USA) (65). THP-1 was provided by Dr. Andrea Cimarelli 449 

(INSERM, France) (53). The generation and characterization of THP-1 ΔA3G#1 have 450 

been reported (26). Adherent cells were cultured in DMEM (Wako, Cat# 044-29765) 451 

supplemented with 10% fetal bovine serum (FBS) (NICHIREI, Cat#175012) and 1% 452 

penicillin/streptomycin (P/S) (Wako, Cat# 168-23191). Suspension cells were maintained 453 

in RPMI (Thermo Fisher Scientific, Cat# C11875500BT) with 10% FBS and 1% P/S. 454 

 455 

Genotyping of A3C and A3H genes 456 

Total RNA was isolated from THP-1 by RNA Premium Kit (NIPPON Genetics, Cat# 457 

FG-81250). Then, cDNA was synthesized by Transcriptor Reverse Transcriptase (Roche, 458 

Cat# 03531287001) and used to amplify A3C or A3H gene with the following primers 459 

[A3C outer primers: (5’-GCG CTT CAG AAA AGA GTG GG) and (5’-GGA GAC AGA CCA 460 

TGA GGC). A3C inner primers: (5’-ACA TGA ATC CAC AGA TCA GAA A) and (5’-CCC 461 

CTC ACT GGA GAC TCT CC). A3H outer primers: (5’-CCA GAA GCA CAG ATC AGA 462 

AAC ACG AT) and (5’-GAC CAG CAG GCT ATG AGG CAA). A3H inner primers: (5’-TGT 463 

TAA CAG CCG AAA CAT TCC) and (5’-TCT TGA GTT GCT TCT TGA TAA T)]. The 464 
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amplified fragments were cloned into the pJET cloning vector (Thermo Fisher Scientific, 465 

Cat# K1231). At least 10 independent clones were subjected to Sanger sequencing 466 

(AZENTA) and sequence data were analyzed by Sequencher v5.4.6 (Gene Codes 467 

Corporation). 468 

 469 

Construction of pLentiCRISPR-Blast 470 

The pLentiCRISPR1000 system was previously described (66). 471 

pLentiCRISPR1000-Blast was generated by restriction digest with BmtI and MluI to excise 472 

the P2A-puromycin cassette. An oligo containing a P2A-blasticidin cassette was 473 

purchased from IDT (5’-AGC GGA GCT ACT AAC TTC AGC CTG CTG AAG CAG GCT 474 

GGC GAC GTG GAG GAG AAC CCT GGA CCT ACC GGT ATG GCC AAG CCA CTG 475 

TCC CAA GAA GAG TCA ACT CTG ATC GAG AGG GCC ACT GCA ACC ATT AAT 476 

AGC ATT CCC ATC TCT GAA GAC TAT AGC GTA GCT AGT GCC GCA CTC AGC TCT 477 

GAT GGA CGC ATA TTC ACC GGC GTT AAT GTC TAC CAC TTC ACC GGC GGA 478 

CCC TGC GCC GAA CTG GTC GTG CTG GGG ACC GCA GCC GCC GCG GCT GCC 479 

GGG AAT TTG ACG TGC ATT GTT GCA ATA GGC AAC GAG AAT AGG GGC ATC 480 

CTG TCA CCT TGC GGC CGG TGT CGG CAA GTG CTG CTG GAC CTG CAC CCC 481 

GGC ATC AAG GCC ATA GTC AAG GAT AGT GAT GGC CAG CCG ACC GCC GTT 482 

GGG ATT CGA GAA CTT CTG CCT TCT GGG TAC GTC TGG GAA GGC TAG) and 483 

amplified with the primers (5'-CAA GAC TAG TGG AAG CGG AGC TAC TAA CTT CAG 484 

CCT GCT GAA GCA GGC TGG CGA CGT GGA GGA and 5'-NNN NAC GCG TCT AGC 485 

CTT CCC AGA CGT ACC C) using high-fidelity Phusion polymerase (NEB, Cat# 486 
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M0530S). The PCR fragment was digested with BmtI and MluI, and ligated into the cut 487 

pLentiCRISPR1000, producing pLentiCRISPR1000-Blast. 488 

 489 

Creation of THP-1 cells disrupting A3 genes 490 

An A3F specific guide for exon 3 was designed (Fig. S1A and S2A) and evaluated 491 

manually for specificity to the A3F target sequence via an alignment with the most related 492 

members of the A3 family as described previously (26). Oligos with ends compatible with 493 

the Esp3I sites in pLentiCRISPR1000-Blast were purchased from IDT [ΔA3F gRNA: (5'-494 

CAC CGG TAG TAG TAG AGG CGG GCG G) and (5'-CCA TCA TCA TCT CCG CCC 495 

GCC CAA G)]. The targeting construct was generated by annealing oligos and cloned by 496 

Golden Gate ligation into pLentiCRISPR1000-Blast. A guide with a common sequence 497 

among A3A exon 4, A3B exon 7 and A3G exon 7 was designed (Fig. 2A) and oligos with 498 

ends compatible with the Esp3I sites in pLentiCRISPR1000 (66) were purchased from 499 

IDT [PanZ1 gRNA: (5'-CAC CGT GGC CCG CAG CCT CCC ACT C) and (5'-GAA CGA 500 

GTG GGA GGC TGC GGG CCA C)]. The targeting construct was generated by annealing 501 

oligos and cloned by Golden Gate ligation into pLentiCRISPR1000 (66). All constructs 502 

were confirmed by Sanger sequencing (AZENTA) and sequence data were analyzed by 503 

Sequencher v5.4.6 (Gene Codes Corporation). 504 

For transduction, VSV-G pseudotyped virus was generated by transfecting 2.5 μg 505 

of the pLentiCRISPR1000 or pLentiCRISPR1000-Blast targeting construct along with 506 

1.67 μg of pΔ-NRF (HIV-1 gag, pol, rev, tat genes) (67) and 0.83 μg of pMD.G (VSV-G) 507 

expression vectors using TransIT-LT1 (Takara, Cat# MIR2306) into 293T cells. At 48 508 

hours post-transfection, viral supernatants were harvested, filtered with 0.45 µm filters 509 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2023. ; https://doi.org/10.1101/2023.03.28.534666doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.28.534666
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

(Merck, Cat# SLHVR33RB), and concentrated by centrifugation (26,200 × g, 4˚C, 2 hours). 510 

Then, viral pellets were resuspended in 10% FBS/RPMI and incubated with cells for 48 511 

hours. Forty-eight hours later, cells were placed under drug selection in 10% FBS/RPMI 512 

containing 1 µg/ml puromycin (InvivoGen, Cat# ant-pr) or 6 ng/ml blasticidin (InvivoGen, 513 

Cat# ant-bl). Single-cell clones were isolated by the limiting dilution of the drug-resistant 514 

cell pool and expanded. The expression levels of A3F protein in THP-1 ΔA3F#1 and #2, 515 

and THP-1ΔA3F/A3G#1 and #2 cells were confirmed by immunoblots (see Western blots). 516 

To confirm indels in the A3F target sequence of the selected clones, genomic DNA was 517 

isolated by DNeasy Blood & Tissue Kits (Qiagen, Cat# 69504) and amplified with Choice-518 

Taq DNA polymerase (Denville Scientific, Cat# CB4050-2) using primers (5’-GCT GAA 519 

GTC GCC CTT GAA TAA ACA CGC and 5’-TGT CAG TGC TGG CCC CG). The amplified 520 

PCR products were cloned into the pJET cloning vector (Thermo Fisher Scientific, Cat# 521 

K1231) and subjected to Sanger sequencing (AZENTA). To confirm indels in the A3A, 522 

A3B and A3G target sequences of the selected clones (THP-1#11-4 and #11-7), genomic 523 

DNA was isolated by DNeasy Blood & Tissue Kits (Qiagen, Cat# 69504) and subjected 524 

to whole genome sequencing (WGS) (macrogen). The sequencing data were aligned by 525 

Isaac aligner (iSAAC-04.18.11.09). Off-target sites were analyzed by Cas-OFFinder 526 

(http://www.rgenome.net/cas-offinder/). For further analysis of indels between A3A and 527 

A3G, genomic DNAs from THP-1#11-4 and #11-7 were amplified using primers (5’-GGG 528 

GCT TTC TGA AAG AAT GAG AAC TGG GC and 5’-CAG CTG GAG ATG GTG GTG 529 

AAC AGC C). The amplified PCR products were cloned into the pJET cloning vector 530 

(Thermo Fisher Scientific, Cat# K1231) and subjected to Sanger sequencing (AZENTA). 531 

All sequence data were analyzed by Sequencher v5.4.6 (Gene Codes Corporation). To 532 
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assess the expression levels of A3 mRNAs and proteins, THP-1 parent, #11-4, and #11-533 

7 were incubated in 10%FBS/RPMI including 500 units/ml IFN (R & D Systems, Cat# 534 

11200-2) for 6 hours. Then, cells were harvested and subjected to RT-qPCR (see RT-535 

qPCR) (Fig. 2C) and Western blot (see Western blot) (Fig. 2D). 536 

 537 

Pseudo-single cycle infectivity assays 538 

Vif-proficient and Vif-deficient (X26 and X27) HIV-1 IIIB C200 proviral expression 539 

constructs have been reported (68). HIV-1 IIIB C200 mutants with hyper- (H48 and 540 

60EKGE63) and hypo- (V39) functional Vifs have been reported (10). An HIV-1 IIIB C200 541 

Vif 5A mutant (40AAAAA44) has been described (26). HIV-1 IIIB C200 Vif 4A (14AKTK18) 542 

and 4A5A (14AKTK18 and 40AAAAA44) mutants were created by digesting pNLCSFV3-4A, 543 

and -4A5A proviral DNA construct [(37); kindly provided by Dr. Kei Sato, University of 544 

Tokyo, Japan] at SwaI and SalI sites and cloned into pIIIB C200 proviral construct. The 545 

proviral expression vector encoding full length TF virus, CH58 (#11856) was obtained 546 

from the NARP. The creation of Vif-deficient CH58 mutant has been described previously 547 

(69). 548 

HIV-1 single-cycle assays using VSV-G pseudotyped viruses were performed as 549 

described previously (23, 26). 293T cells were cotransfected with 2.4 μg of proviral DNA 550 

construct and 0.6 μg of VSV-G expression vector using TransIT-LT1 reagent (Takara, 551 

Cat# MIR2306) into 293T cells (3 × 106). Forty-eight hours later, supernatants were 552 

harvested, filtered (0.45 μm filters, Merck, Cat# SLHVR33RB), and used to titrate on 2.5 553 

× 104 CEM-GXR reporter cells for MOI determinations. GFP+ cells were measured using 554 

a FACS Canto II (BD Biosciences) and the data were analyzed using FlowJo software 555 
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v10.7.1 (BD Biosciences). 1 or 5 × 106 target cells were infected with an MOI of 0.05 (for 556 

SupT11 derivatives) or 0.25 (for THP-1 derivatives) and washed with PBS twice at 24 557 

hours post-infection and then incubated for an additional 24 hours. After 24 hours, 558 

supernatants were collected and filtered. The resulting viral particles were quantified by 559 

p24 ELISA (ZeptoMetrix, Cat# 0801008) and used to infect 1 × 104 TZM-bl cells (1 or 2 560 

ng of p24). At 48 hours postinfection, the infected cells were lysed with a Bright-Glo 561 

luciferase assay system (Promega, Cat# E2650) and the intracellular luciferase activity 562 

was measured by a Synergy H1 microplate reader (BioTek) or Centro XS3 LB960 563 

microplate luminometer (Berthold Technologies). 564 

 565 

Quantification of LRT products 566 

Viruses were produced by infecting VSV-G pseudotyped virus into THP-1 cells as 567 

described above (see HIV-1 infectivity assays) and the resulting viral particles were 568 

quantified by p24 ELISA (ZeptoMetrix, Cat# 0801008). The viral supernatants including 569 

20 ng of p24 antigen were used for infection into SupT11 cells. At 12 hours postinfection, 570 

cells were harvested and washed with PBS twice. Then, total DNA was isolated by 571 

DNeasy Blood & Tissue Kits (Qiagen, Cat# 69504) and treated with RNase A (Qiagen, 572 

Cat# 19101) according to the manufacturer’s instruction. Following DpnI digestion, 50 ng 573 

of DNA was used to amplify LRT products and CCR5 gene with the following primers; 574 

LRT forward: (5’-CGT CTG TTG TGT GAC TCT GG) and LRT reverse: (5’-TTT TGG CGT 575 

ACT CAC CAG TCG). CCR5 forward: (5’-CCA GAA GAG CTG AGA CAT CCG) and 576 

CCR5 reverse (5’-GCC AAG CAG CTG AGA GGT TAC T). qPCR was performed using 577 

Power SYBR Green PCR Master Mix (Thermo Fisher Scientific, Cat# 4367659) and 578 
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fluorescent signals from resulting PCR products were acquired using a Thermal Cycler 579 

Dice Real Time System III (Takara). Finally, each LRT product was represented as values 580 

normalized by the quantity of the CCR5 gene (Fig. 4C). 581 

 582 

RT-qPCR 583 

Cells were harvested and washed with PBS twice. Then, total RNA was isolated 584 

by RNA Premium Kit (NIPPON Genetics, Cat# FG-81250) and cDNA was synthesized by 585 

Transcriptor Reverse Transcriptase (Roche, Cat# 03531287001) with random hexamer. 586 

RT-qPCR was performed using Power SYBR Green PCR Master Mix (Thermo Fisher 587 

Scientific, Cat# 4367659). Primers for each A3 mRNA have been reported previously (70, 588 

71). A3A forward: (5’-GAG AAG GGA CAA GCA CAT GG) and A3A reverse: (5’-TGG 589 

ATC CAT CAA GTG TCT GG). A3B forward: (5’-GAC CCT TTG GTC CTT CGA C) and 590 

A3B reverse: (5’-GCA CAG CCC CAG GAG AAG). A3C forward: (5’-AGC GCT TCA GAA 591 

AAG AGT GG) and A3C reverse: (5’-AAG TTT CGT TCC GAT CGT TG). A3D forward: 592 

(5’-ACC CAA ACG TCA GTC GAA TC) and A3D reverse: (5’-CAC ATT TCT GCG TGG 593 

TTC TC). A3F forward: (5’-CCG TTT GGA CGC AAA GAT) and A3F reverse: (5’-CCA 594 

GGT GAT CTG GAA ACA CTT). A3G forward: (5’-CCG AGG ACC CGA AGG TTA C) 595 

and A3G reverse: (5’-TCC AAC AGT GCT GAA ATT CG). A3H forward: (5’-AGC TGT 596 

GGC CAG AAG CAC) and A3H reverse: (5’-CGG AAT GTT TCG GCT GTT). TATA-597 

binding protein (TBP) forward: (5’-CCC ATG ACT CCC ATG ACC) and TBP reverse: (5’-598 

TTT ACA ACC AAG ATT CAC TGT GG). Fluorescent signals from resulting PCR 599 

products were acquired using a Thermal Cycler Dice Real Time System III (Takara). 600 
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Finally, each A3 mRNA expression level was represented as values normalized by TBP 601 

mRNA expression levels (Fig. 2C). 602 

 603 

Hypermutation analyses 604 

Hypermutation analyses were performed as previously described (23, 26, 45). 605 

Genomic DNAs containing HIV-1 proviruses were recovered by infecting viruses 606 

produced in derivatives of THP-1 or SupT11 cells into SupT11 using DNeasy Blood & 607 

Tissue Kits (Qiagen, Cat# 69504). Following DpnI digestion, the viral pol region was 608 

amplified by nested PCR with outer primers (876 bp) [(5'-TCC ART ATT TRC CAT AAA 609 

RAA AAA) and (5'-TTY AGA TTT TTA AAT GGY TYT TGA)] and inner primers (564 bp) 610 

[(5'-AAT ATT CCA RTR TAR CAT RAC AAA AAT) and (5'-AAT GGY TYT TGA TAA ATT 611 

TGA TAT GT)]. The resulting 564 bp amplicon was subjected to pJET cloning. At least 612 

10 independent clones were Sanger sequenced (AZENTA) for each condition and 613 

analyzed by the HIV sequence database 614 

(https://www.hiv.lanl.gov/content/sequence/HYPERMUT/hypermut.html). Clones with 615 

identical mutations were eliminated. 616 

 617 

Western blot 618 

Western blot for cell and viral lysates were performed as described previously (23, 619 

26, 72). Cells were harvested, washed with PBS twice, and lysed in lysis buffer [25 mM 620 

HEPES (pH7.2), 20% glycerol, 125 mM NaCl, 1% Nonidet P40 (NP40) substitute (Nacalai 621 

Tesque, Cat# 18558-54)]. After quantification of total protein by protein assay dye (Bio-622 

Rad, Cat# 5000006), lysates were diluted with 2 × SDS sample buffer [100 mM Tris-HCl 623 
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(pH 6.8), 4% SDS, 12% β-mercaptoethanol, 20% glycerol, 0.05% bromophenol blue] and 624 

boiled for 10 minutes. Virions were dissolved in 2 × SDS sample buffer and boiled for 10 625 

minutes after pelleting down using 20% sucrose (26,200 × g, 4˚C, 2 hours). Then, the 626 

quantity of p24 antigen was measured by p24 ELISA (ZeptoMetrix, Cat# 0801008). 627 

Proteins in the cell and viral lysates (5 μg of total protein and 10 ng of p24 antigen) 628 

were separated by SDS-PAGE and transferred to PVDF membranes (Millipore, Cat# 629 

IPVH00010). Membranes were blocked with 5% milk in PBS containing 0.1% Tween 20 630 

(0.1% PBST) and incubated in 4% milk/0.1% PBST containing primary antibodies: mouse 631 

anti-HSP90 (BD Transduction Laboratories, Cat# 610418, 1:5,000); rabbit anti-A3B 632 

(5210-87-13, 1:1,000) (73); rabbit anti-A3C (Proteintech, Cat# 10591-1-AP, 1:1,000); 633 

rabbit anti-A3F (675, 1:1,000) (74); rabbit anti-A3G (NARP, #10201, 1:2,500); rabbit anti-634 

A3H (Novus Biologicals, NBP1-91682, 1:5,000): mouse anti-Vif (NARP, #6459, 1:2,000); 635 

mouse anti-p24 (NARP, #1513, 1:2,000). Subsequently, the membranes were incubated 636 

with horseradish peroxidase (HRP)-conjugated secondary antibodies: donkey anti-rabbit 637 

IgG-HRP (Jackson ImmunoResearch, 711-035-152; 1:5,000); donkey anti-mouse IgG-638 

HRP (Jackson ImmunoResearch, 715-035-150). SuperSignal West Femto Maximum 639 

Sensitivity Substrate (Thermo Fisher Scientific, Cat# 34095) or Super signal atto (Thermo 640 

Fisher Scientific, Cat# A38555) was used for HRP detection. Bands were visualized by 641 

the Amersham Imager 600 (Amersham). 642 

 643 

Statistical analyses 644 

Statistical significance was performed using a two-sided paired t test (Fig. 1C, 2C, 645 

3B, 3C, 4C, and 5). GraphPad Prism software v8.4.3 was used for these statistical tests. 646 
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Figure legends 900 

Figure 1. Endogenous A3H does not inhibit HIV-1 in THP-1 cells. 901 

(A) A3H haplotypes in THP-1 cells. The indicated positions are key amino acid residues 902 

that determine the expression of unstable (hapI) or stable (hapII) A3H protein. 903 

(B) Schematic of the susceptibility of Vif mutants to stable A3H haplotypes. Key amino 904 

acid residues that determine the susceptibility of HIV-1 IIIB Vif to restriction by stable A3H 905 

haplotypes. -, full resistance; +, partial resistance; +++, sensitivity. 906 

(C) Representative infectivity of hyper- and hypo-functional Vif HIV-1 mutants. Top panels 907 

show the infectivity of hyper-Vif, hypo-Vif, and IIIB Vif, and Vif-deficient HIV-1 mutants 908 

produced in THP-1 cells compared to the same viruses produced in SupT11 cells with 909 

stable expression of the control vector or A3H haplotype II. The amounts of produced 910 

viruses used to infect TZM-bl cells was normalized to p24 levels. Each bar shows the 911 

average of four independent experiments with the standard deviation (SD). Data are 912 

represented as relative infectivity compared to hyper-Vif HIV-1. Statistical significance 913 

was determined using the two-sided paired t test. *P < 0.05 compared with the infectivity 914 

of hyper-Vif HIV-1. The bottom panels are representative Western blots of three 915 

independent experiments. The levels of viral and cellular proteins in virus-like particles 916 

(VLPs) and whole cell lysates are shown. p24 and HSP90 were used as loading controls. 917 

(D) G-to-A mutations. Average number of G-to-A mutations in the 564 bp pol gene after 918 

infection with hyper-Vif, hypo-Vif, IIIB Vif, or Vif deficient HIV-1 produced from THP-1 or 919 

SupT11 cells expressing either the vector control or A3H hapII. Each bar depicts the 920 

average of three independent experiments with SD. 921 
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(E) G-to-A mutation profile. Dinucleotide sequence contexts of G-to-A mutations in the 922 

564 bp pol gene after infection with the indicated viruses produced from indicated cell 923 

lines. Each vertical line indicates the location of the dinucleotide sequence contexts 924 

described in the legend within the 564 bp amplicon (horizontal line). 925 

 926 

Figure 2. Disruption of the A3A to A3G genes in THP-1 cells. 927 

(A) Schematic of the A3 gene at the A3 locus. The A3 family of genes comprises seven 928 

members with one or two Z domains (single- or double-domain deaminases) which 929 

belong to three phylogenetically distinct groups shown in green, yellow, and blue. Three 930 

sites with an identical sequence (5′-GAG TGG GAG GCT GCG GGC CA) in exon 4 of the 931 

A3A gene, exon 7 of the A3B gene, and exon 7 of the A3G gene are targeted by gRNA, 932 

as indicated by arrows. The three predicted scenarios are shown. Bar represents 15,000 933 

bp. 934 

(B) Mapping of WGS sequencing data to the A3 locus. Genomic DNA from parental THP-935 

1, THP-1#11-4, and #11-7 cells were subjected to WGS analysis, with an extensive 936 

deletion including the A3A–A3G genes observed in THP-1#11-4 and #11-7 clones. 937 

(C) RT-qPCR data. Parental THP-1, THP-1#11-4, and #11-7 cells were treated with 500 938 

units/ml type I IFN. Total RNA was isolated after 6 hours. A3 mRNA expression levels 939 

were quantified by RT-qPCR and are normalized to TBP mRNA levels. Each bar 940 

represents the average of three independent experiments with SD. Statistical significance 941 

was determined using the two-sided paired t test. *, P < 0.05 compared to untreated cells. 942 
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(D) Representative Western blots of three independent experiments. Levels of indicated 943 

A3 proteins in whole cell lysates from cells treated with or without type I IFN are shown. 944 

HSP90 was used as a loading control. 945 

 946 

Figure 3. Pseudo-single cycle infectivity assays for each HIV-1 mutant in A3-null 947 

THP-1 cells. 948 

(A) Schematic of the susceptibility of Vif mutants to A3F and A3G. Key amino acid 949 

residues that determine the susceptibility of HIV-1 IIIB Vif to restriction by A3F and A3G. 950 

-, resistance; +, sensitivity. 951 

(B) Representative infectivity of Vif-proficient, Vif-deficient, Vif4A, Vif5A, and Vif4A5A 952 

HIV-1 mutants in SupT11 cells stably expressing vector control, A3F, or A3G. Top panels 953 

show the infectivity of indicated HIV-1 mutants produced in SupT11 cells stably 954 

expressing vector control, A3F, or A3G. The amounts of produced viruses used to infect 955 

TZM-bl cells was normalized to p24 levels. Each bar represents the average of four 956 

independent experiments with SD. Data are presented as relative infectivity compared to 957 

Vif-proficient HIV-1 (WT). Statistical significance was assessed using the two-sided 958 

paired t test. *P < 0.05 compared to Vif-proficient HIV-1. Bottom panels are representative 959 

Western blots of three independent experiments. Levels of indicated viral and cellular 960 

proteins in VLPs and whole cell lysates are shown. p24 and HSP90 were used as loading 961 

controls. 962 

(C) Representative infectivity of Vif-proficient, Vif-deficient, Vif4A, Vif5A, and Vif4A5A 963 

HIV-1 mutants in A3-null THP-1 cells. Top panels show the infectivity of indicated HIV-1 964 

mutants produced in parental or A3-null THP-1 cells. The amounts of produced viruses 965 
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used to infect TZM-bl cells was normalized to p24 levels. Each bar represents the average 966 

of four independent experiments with SD. Data are presented as infectivity relative to Vif-967 

proficient HIV-1 (WT). Statistical significance was assessed using the two-sided paired t 968 

test. *P < 0.05 compared to Vif-proficient HIV-1. Bottom panels are representative 969 

Western blots of three independent experiments. Levels of indicated viral and cellular 970 

proteins in VLPs and whole cell lysates are shown. p24 and HSP90 were used as loading 971 

controls. 972 

 973 

Figure 4. A3 proteins inhibit Vif-deficient HIV-1 by both deaminase-dependent and 974 

independent mechanisms in THP-1 cells. 975 

(A) G-to-A mutations. Average number of G-to-A mutations in the 564 bp pol gene after 976 

infection with hyper-Vif, hypo-Vif, IIIB Vif, or Vif-deficient HIV-1 produced from THP-1 or 977 

SupT11 expressing either vector control or A3H hapII. Each bar depicts the average of 978 

three independent experiments with SD. 979 

(B) G-to-A mutation profile. Dinucleotide sequence contexts of G-to-A mutations in the 980 

564 bp pol gene after infection with the indicated viruses produced from indicated cell 981 

lines. Each vertical line indicates the location of the dinucleotide sequence contexts 982 

described in the legend within the 564 bp amplicon (horizontal line). 983 

(C) Representative LRT quantification data for Vif-proficient, Vif-deficient, Vif4A, Vif5A, 984 

and Vif4A5A HIV-1 mutants in each A3-null THP-1 subclone. Data show LRT products of 985 

the indicated HIV-1 mutants produced in parental or indicated A3-null THP-1 cells. The 986 

amount of produced viruses used to infect SupT11 cells was normalized to p24 levels. 987 

LRT products were measured by qPCR. Each bar represents the average of four 988 
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independent experiments with SD. LRT products were normalized to the quantity of the 989 

CCR5 gene relative to Vif-proficient HIV-1 (WT). Statistical significance was assessed 990 

using the two-sided paired t test. *P < 0.05 compared to Vif-proficient HIV-1 LRT products. 991 

 992 

Figure 5. Pseudo-single cycle infectivity assays of TF virus molecular clone in A3A-993 

to-A3G-null THP-1 cells. 994 

Infectivity of Vif-proficient and Vif-deficient CH58 viruses. Top panels show the infectivity 995 

of Vif-proficient and Vif-deficient HIV-1 produced in parental THP-1, THP-1#11-4, or THP-996 

1#11-7 cells. The amounts of produced viruses used to infect TZM-bl cells was 997 

normalized to p24 levels. Each bar represents the average of four independent 998 

experiments with SD. Data are represented as relative to Vif-proficient HIV-1 (WT). 999 

Statistical significance was assessed using the two-sided paired t test. *P < 0.05 1000 

compared to Vif-proficient HIV-1. The bottom panels are representative Western blots of 1001 

three independent experiments. The levels of indicated viral and cellular proteins in VLPs 1002 

and whole cell lysates are shown. p24 and HSP90 were used as loading controls. 1003 

 1004 

Figure S1. Development of A3F-null THP-1 cells. 1005 

(A) A3F exon 3 sequences encompassing the gRNA target site in parental THP-1 and 1006 

two independent A3F-null THP-1 cells. Indels in two alleles for each A3F-null THP-1 clone 1007 

are shown. 1008 

(B) Representative Western blots of three independent experiments. Levels of A3F and 1009 

A3G protein in whole cell lysates are shown. HSP90 was used as a loading control. 1010 

 1011 
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Figure S2. Development of A3F/A3G-null THP-1 cells. 1012 

(A) A3F exon 3 sequences encompassing the gRNA target site in parental THP-1 and 1013 

two independent A3F/A3G-null THP-1 cells. Indels in two alleles for each A3F/A3G-null 1014 

THP-1 clone are shown. 1015 

(B) Representative Western blots of three independent experiments. Levels of A3F and 1016 

A3G protein in whole cell lysates are shown. HSP90 was used as a loading control. 1017 

 1018 

Fig. S3 Sequence analysis of flanking region targeted by gRNA in THP-1#11-4 and 1019 

#11-7. 1020 

(A) A3A exon 4 and A3G exon 7 hybrid sequences encompassing the gRNA target site 1021 

in THP-1#11-4 cells. Only one nucleotide difference (>99% identity) was observed 1022 

between A3A exon 4 and A3G exon 7 and is shown in purple (A3A, cytosine) or green 1023 

(A3G, adenine). Indels in six alleles of the THP-1#11-4 clone are shown. 1024 

(B) A3A exon 4 and A3G exon 7 hybrid sequences encompassing the gRNA target site 1025 

in THP-1#11-7 cells. Only one nucleotide difference (>99% identity) was observed 1026 

between A3A exon 4 and A3G exon 7 and is shown in purple (A3A, cytosine) or green 1027 

(A3G, adenine). Indels in three alleles of the THP-1#11-7 clone are shown. 1028 

 1029 

Fig. S4 Deletions around predicted A3G pseudogene. 1030 

Mapping of WGS sequencing data to off-target and downstream regions on chromosome 1031 

12. Genomic DNA from parental THP-1, THP-1#11-4, and THP-1#11-7 cells were 1032 

subjected to WGS analysis. The yellow box indicates the off-target sequence in the 1033 
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predicted pseudogene. Several deletions were observed in the regions indicated by green 1034 

dot boxes in THP-1#11-4 and THP-1#11-7 clones. 1035 

 1036 
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Figure 4
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Figure 5
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