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Abstract: Drug resistance is a core issue in cancer chemotherapy. A known folate antagonist,
methotrexate (MTX) inhibits human dihydrofolate reductase (hDHFR), the enzyme responsible for the
catalysis of 7,8-dihydrofolate reduction to 5,6,7,8-tetrahydrofolate, in biosynthesis and cell proliferation.
Structural change in the DHFR enzyme is a significant cause of resistance and the subsequent loss of
MTX. In the current study, wild type hDHFR and double mutant (engineered variant) F31R/Q35E (PDB
ID: 3EIG) were subject to computational study. Structure-based pharmacophore modeling was carried
out for wild type (WT) and mutant (MT) (variant F31R/Q35E) hDHFR structures by generating ten
models for each. Two pharmacophore models, WT-pharma and MT-pharma, were selected for further
computations, and showed excellent ROC curve quality. Additionally, the selected pharmacophore
models were validated by the Guner-Henry decoy test method, which yielded high goodness of fit for
WT-hDHFR and MT-hDHFR. Using a SMILES string of MTX in ZINC15 with the selections of ‘clean’,
in vitro and in vivo options, 32 MTX-analogs were obtained. Eight analogs were filtered out due to
their drug-like properties by applying absorption, distribution, metabolism, excretion, and toxicity
(ADMET) assessment tests and Lipinski’s Rule of five. WT-pharma and MT-pharma were further
employed as a 3D query in virtual screening with drug-like MTX analogs. Subsequently, seven
screening hits along with a reference compound (MTX) were subjected to molecular docking in the
active site of WT- and MT-hDHFR. Through a clustering analysis and examination of protein-ligand
interactions, one compound was found with a ChemPLP fitness score greater than that of MTX
(reference compound). Finally, a simulation of molecular dynamics (MD) identified an MTX analog
which exhibited strong affinity for WT- and MT-hDHFR, with stable RMSD, hydrogen bonds (H-bonds)
in the binding site and the lowest MM/PBSA binding free energy. In conclusion, we report on an
MTX analog which is capable of inhibiting hDHFR in wild type form, as well as in cases where the
enzyme acquires resistance to drugs during chemotherapy treatment.

Keywords: methotrexate; drug resistance; human dihydrofolate reductase; pharmacophore modeling;
virtual screening; molecular docking; molecular dynamics simulation.
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1. Introduction

A major complication in cancer treatment with chemotherapy is the development of resistance
to previously effective drugs. Clinically, two main types of drug resistance exist: intrinsic resistance,
which is not associated with drug exposure, but rather, with an innate ability of tumor cells; and acquired
resistance, which occurs after exposure to the drug [1]. Various mechanisms like increased rates of
drug efflux, alterations in drug metabolism, variations in drug targets, increased target expression,
activation of survival pathways, increased expression of anti-apoptotic proteins and mutation of drug
targets are involved in acquiring resistance to chemotherapeutic agents [2].

Human dihydrofolate reductase (hDHFR) catalyzes the reduction of 7,8-dihydrofolate (DHF)
to 5,6,7,8-tetrahydrofolate in a nicotinamide adenine dinucleotide phosphate (NADPH) dependent
manner. Tetrahydrofolate is an essential cofactor in several metabolic pathways like purine and
thymidylate biosynthesis, playing a vital role in cell division and proliferation [3]. Due to the
significance of its crucial role in nucleoside biosynthesis, hDHFR has widely been studied and exploited
as a drug target [4,5].

Methotrexate (MTX) (C20H22N8O5) is an antimetabolite, an analogue of folic acid and a derivative
of aminopterin antiproliferative drugs that inhibits dihydrofolate reductase [6]. The drug primarily
penetrates intracellular targets through an active carrier transport mechanism which is shared by
reduced folates and facilitated by the reduced folate carrier (RFC) [7]. This process is carried
out by the enzyme folylpolyglutamate synthetase (FPGS) through the accumulation of glutamate
residues [8,9]. MTX and polyglutamylated conformations of MTX are tightly bound inhibitors of
hDHFR and hinder pyrimidine, and hence thymidylate biosynthesis [10–12]. Decreased MTX affinity
has been detected in cell lines exposed to increased dosage causing mutations in hDHFR [13–18].
Mutations in dihydrofolate reductase variants with amino acid substitutions at residues Phe31 [19],
Arg70 [20], Leu22 [21,22], Val115 [23] and Phe34 [24] existing in folate binding site have been detected
in MTX-resistant cancer cell lines.

MTX-resistant point mutant hDHFR crystal structures have provided an understanding of the
details of decreased binding of MTX or other antifolates [25–30]. Volpato et al. reported a combinatorial
MTX-resistant hDHFR variant F31R/Q35E which exhibited >650-fold decreased binding to MTX to
reveal the structural details of MTX resistance in the F31R/Q35E variant, and obtained the crystal
structure of this variant bound with MTX at 1.7 Å resolution (PDB ID: 3EIG) [31]. This highly
MTX-resistant variant is an effective selectable marker for several mammalian cell types, along with
murine hematopoietic stem cells [32]. Since mutations triggering MTX resistance have not been studied
in mammals, and MTX is an approved drug for human treatment, engineered resistant DHFRs provide
highly capable ex vivo or in vivo selective markers for human [33].

In recent decades, advances in computational techniques have led to an acceleration of drug
discovery [34]. For example, cheminformatics allows us to understand and characterize the molecular
properties and chemical activities of specific compounds and produce huge libraries of small
molecules to screen against particular therapeutic processes [35]. After candidate identification,
other cheminformatics techniques can be utilized to generate libraries of compounds which are
structurally and chemically similar to the identified “hits” in order to improve stability, toxicity and
kinetics. Additionally, bioinformatics methodologies can be applied to study the therapeutic activity
of candidate drugs predicting interactions between drugs and proteins, to analyze the impact on
biological pathways and functions and to determine genomic variants that may vary drug response [36].
Accordingly, several approaches have been developed to reduce the research expense and risk of failure
for drug discovery, among which computer-aided drug design (CADD) is one of the most effective [37].

Since drug resistance is hinders chemotherapy, there is an urgent need to discover the drugs that
inhibit hDHFR in wild type as well as in mutant form, i.e., after acquiring resistance to MTX. Singh et al.
developed a small peptide as an anticancer drug targeting hDHFR which was supposed to be effective
in MTX-resistant hDHFR because of a larger drug–protein interaction area [38]. Despite the larger
interaction area of the peptide, it was specifically designed to inhibit only wild type hDHFR. We carried
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out a computational study to identify a candidate molecule capable of inhibiting wild type along
with mutant hDHFR. Structure-based pharmacophore modeling was performed exploiting hDHFR
wild type and drug-resistant F31R/Q35E variant structures in complex with methotrexate to allocate
important chemical features of protein-ligand interactions. Pharmacophore models, WT-pharma and
MT-Pharma, with four features comprising key residues were selected from ten models generated for
each structure. The selected pharmacophore models exhibited the highest area under the receiver
operating characteristics (ROC) curve, verifying the sensitivity of the models to retrieve active
compounds. WT- and MT- pharma were further subjected to validation by the Guner-Henry decoy
test method.

ZINC was initially developed as an open-access database and toolset to support access to
compounds for virtual screening. The upgraded version ZINC15 makes it possible to carry out
similarity searches and to explore the analogs of a given structure or part of a structure according
to the input line employed [39]. The MTX structure in the SMILES (Simplified Molecular-Input
Line-Entry System) format was used in ZINC15 to retrieve MTX-analog structures. The obtained
analogs were filtered through ADMET and Lipinski’s Rule of five to categorize drug-like compounds.
The validated pharmacophores WT-pharma and MT-pharma were then used as 3D-query to screen
against drug-like MTX-analogs. The analogs mapped with WT- and MT-pharma were carried out
for molecular docking where two compounds were found with a higher docking score than the
reference (MTX). Further, molecular dynamics simulation confirmed one compound with a stronger
affinity for WT and MT hDHFR yielding stable RMSD and strong molecular interactions with catalytic
active site residues. Additionally, binding free energy calculation through MM/PBSA (Molecular
Mechanics/Poisson-Boltzmann Surface Area) demonstrated robust binding affinity of Hit molecules
with WT and MT hDHFR. Accordingly, in this study, we predicted an analog compound of MTX as
a potential inhibitor for wild type and drug-resistant hDHFR for cancer therapeutics.

2. Results

2.1. Generation of Structures Based Pharmacophore Models

Crystal structures of wild type and F31R/Q35E variant of hDHFR in complex with methotrexate
downloaded from the protein data bank were carried out for structure-based pharmacophore modeling.
A total of 10 pharmacophore models for each structure, were generated while producing a ROC curve
with each model. All the pharmacophores were attributed in terms of the total number of features,
types of features, and selectivity score and ROC curve quality (Table 1). All ten models for wild
type and for mutant structures yielded the same selectivity score with the difference in location of
pharmacophoric features.

Table 1. Receptor-ligand based pharmacophores characteristics details.

Sr. No.
Number of

Features

WT hDHFR Phrmacophore Details MT hDHFR Phrmacophore Details

Features Set Selectivity
Score

ROC Curve
Quality Features Set Selectivity

Score
ROC Curve

Quality

Pharmacophore_1 4 HBD, HBD, HYP, NI 11.090 0.832 HBD, HBD, NI, NI 12.455 0.944
Pharmacophore_2 4 HBD, HBD, NI, RA 11.090 0.924 HBA, HBD, NI, NI 12.455 0.929
Pharmacophore_3 4 HBD, HBD, HYP, NI 11.090 0.886 HBA, HBD, NI, NI 12.455 0.913
Pharmacophore_4 4 HBD, HBD, NI, RA 11.090 0.951 HBD, NI, NI, RA 12.455 0.985
Pharmacophore_5 4 HBD, HBD, NI, RA 11.090 0.903 HBD, NI, NI, RA 12.455 0.968
Pharmacophore_6 4 HBA, HBD, HBD, NI 11.090 0.941 HBD, HYP, NI, NI 12.455 0.946
Pharmacophore_7 4 HBA, HBD, NI, RA 11.090 0.937 HBD, HYP, NI, NI 12.455 0.955
Pharmacophore_8 4 HBD, HYP, NI, RA 11.090 0.822 HBD, NI, NI, RA 12.455 0.958
Pharmacophore_9 4 HBD, HYP, NI, RA 11.090 0.907 HBD, NI, NI, RA 12.455 0.962
Pharmacophore_10 4 HBA, HBD, NI, RA 11.090 0.989 HBD, HYP, NI, NI 12.455 0.933

The pharmacophore models comprising of features including key residues Glu30, Asn64, Arg70, and Val115
were selected so-called WT-pharma and Mt-pharma for wild type and mutant structures respectively.
WT-pharma consisting of four pharmacophoric features included one hydrogen bond acceptor (HBA), one hydrogen
bond donor (HDB), one negative ionizable (NI) and one ring aromatic (RA). MT-pharma comprised of features one
hydrogen bond donor (HDB), two negative ionizable (NI) and one ring aromatic (RA) (Figure 1).
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Figure 1. Structure-based pharmacophore generation. (A) Residues of wild type hDHFR active site 
complementing pharmacophoric features are shown as a thin stick. Bound inhibitor (MTX) is shown 
as a light blue colored thick stick model. HBA, HBD, RA, and NI are colored as green, magenta, orange 
and blue respectively. (B) Residues of mutant hDHFR active site complementing pharmacophoric 
features are shown as a thin stick. Bound inhibitor (MTX) is shown as a pink-colored thick stick model. 
HBA, HBD, RA, and NI are colored as green, magenta, orange and blue respectively. (C) Interfeature 
distance illustration of WT-pharma (D) Interfeature distance illustration of MT-pharma. 

2.2. Pharmacophore Models Validation 

Selected pharmacophore models termed as WT-pharma and MT-pharma were assessed for their 
sensitivity to retrieve the active compounds by receiver operating characteristics (ROC) curve. ROC 
curves were plotted with the generation of pharmacophore models by utilizing the option Validation 
that is available in the receptor-ligand Phamacophore module in DS for structure-based pharmacophore 
modeling. For this purpose, sets of 46 active and 24 inactive molecules were employed to testify 
model efficacy by creating the ROC curve. Higher the area under the ROC curve interpreted higher 
sensitivity of the model. For WT-pharma ROC displayed 0.989 and for MT-pharma 0.985 curve 
quality indicating 98.9% and 98.5% area under the curve illustrated as highly sensitive 
pharmacophore models to identify active molecules (Figure 2). 

 
Figure 2. Receiver Operating Characteristics curves for validation of selected pharmacophore models 
between true positive and false-positive rates. (A) ROC curve shown in the red line for the WT-

Figure 1. Structure-based pharmacophore generation. (A) Residues of wild type hDHFR active site
complementing pharmacophoric features are shown as a thin stick. Bound inhibitor (MTX) is shown as
a light blue colored thick stick model. HBA, HBD, RA, and NI are colored as green, magenta, orange and
blue respectively. (B) Residues of mutant hDHFR active site complementing pharmacophoric features
are shown as a thin stick. Bound inhibitor (MTX) is shown as a pink-colored thick stick model. HBA,
HBD, RA, and NI are colored as green, magenta, orange and blue respectively. (C) Interfeature distance
illustration of WT-pharma (D) Interfeature distance illustration of MT-pharma.

2.2. Pharmacophore Models Validation

Selected pharmacophore models termed as WT-pharma and MT-pharma were assessed for
their sensitivity to retrieve the active compounds by receiver operating characteristics (ROC) curve.
ROC curves were plotted with the generation of pharmacophore models by utilizing the option
Validation that is available in the receptor-ligand Phamacophore module in DS for structure-based
pharmacophore modeling. For this purpose, sets of 46 active and 24 inactive molecules were employed
to testify model efficacy by creating the ROC curve. Higher the area under the ROC curve interpreted
higher sensitivity of the model. For WT-pharma ROC displayed 0.989 and for MT-pharma 0.985 curve
quality indicating 98.9% and 98.5% area under the curve illustrated as highly sensitive pharmacophore
models to identify active molecules (Figure 2).
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Figure 2. Receiver Operating Characteristics curves for validation of selected pharmacophore models
between true positive and false-positive rates. (A) ROC curve shown in the red line for the WT-pharma
model with 0.989 curve quality depicts 98.9% area under the curve. (B) ROC curve shown in the red
line for the MT-pharma model with 0.985 curve quality depicts 98.5% area under the curve.
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Additionally, Decoy set validation was implemented using a Ligand Pharmacophore Mapping module
in DS. The accuracy of WT-pharma and Mt-pharma was evaluated by four factors i.e., false positive,
false negative, enrichment factor (EF), and goodness of fit (GF). EF and GF were computed by applying
the data of various parameters given in Table 2. Other properties of WT-pharma and MT-pharma
including a percentage of the number of active yields (%Y), percent ratio of actives in the hit list (%A),
false negatives, and false positives were also measured (Table 2).

Table 2. Decoy set validation for WT & MT hDHFR structure-based pharmacophore models.
WT-pharma and MT-pharma obtained the highest goodness of fit score suggesting the suitability of the
models for virtual screening.

Parameters Values
(WT hDHFR)

Values
(MT hDHFR)

Total no. of molecules in the database (D) 90 90
Total no. of actives in the database (A) 20 20

Total no. of hit molecules from the database (Ht) 25 17
Total no. of active molecules in hit list (Ha) 19 17
Percentage Yield of actives [(Ha/Ht) × 100] 76% 100%
Percentage Ratio of actives [(Ha/A) × 100] 95% 85%
Enrichment Factor [EF = (Ha/Ht)/(A/D)] 3.4 4.5

False negatives (A − Ha) 1 13
False positive (Ht − Ha) 6 0

Goodness of fit score
[GF = (Ha/4HtA)(3A + Ht) × [{1 − (Ht − Ha)/(D − A)}]] 0.93 0.96

2.3. Obtaining Methotrexate Analog Structures

For the generation of structures analogous to methotrexate (MTX), we exploited MTX structure
using SMILES format in ZINC15 for similarity search. Consequently, 32 compounds were retrieved
(Table S1. These compounds were downloaded in SDF format to visualize in DS and to carry out for
further computations.

2.4. Drug-Likeness of MTX-analogs and Virtual Screening with Pharmacophore Models

The compounds downloaded were subjected to ADMET and Lipinski’s Rule of five assessment
tests to filter out drug-like MTX analogs. The ADMET assessment test gauged the pharmacokinetic
features of the compounds obtained from ZINC15. In the ADMET assessment test, compounds were
estimated for noninhibition to CYP2D6 and nonhepatotoxicity. The pharmacokinetic properties of
blood brain barrier (BBB), optimal solubility, and good intestinal absorption were evaluated by setting
their values to 3, 3, and 0, respectively. Lipinski’s rule of five assessment was carried out after
ADMET evaluation. Through Lipinski’s rule of five filtration, compounds with AlogP value less than
5, number of HBD <5, number of HBA <10, molecular weight <500 Da, and fewer than 10 rotatable
bonds were determined [40,41]. Accordingly, 8 compounds were found obeying drug-like properties.
The drug-like MTX-analogs were carried out for virtual screening against WT-pharma and MT-pharma.
All 8 compounds were aligned with WT-pharma but one compound was not in agreement with
MT-pharma. Subsequently, 7 MTX-analogs were recognized as screening Hits for further computations.

2.5. Molecular Docking of Screening Hits in Active Site of hDHFR

To explore the binding mode of 7 drug-like compounds retrieved from virtual screening against
WT-pharma and MT-pharma, molecular docking simulations were carried out using GOLD v 5.2.2.
The 3D structure of wild type and F31R/Q35E variant of hDHFR in complex with inhibitor MTX were
taken from protein data bank (PDB ID: 1U72 and 3EIG respectively). Both the structures have a high
resolution of 1.9 Å for wild type and 1.7 Å for the F31R/Q35E variant. The co-crystal bound inhibitor
(MTX) was docked in the active site of wild type hDHFR in order to optimize the docking protocol.
The docked pose of MTX showed a low RMSD value of 0.58 Å with the crystallographic pose of
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MTX in the active site of the wild type hDHFR as shown in Figure S1 of supplementary material.
The WT- and MT-pharma retrieved drug-like (candidate) compounds were docked by implementing
the same optimized protocol. Docking results showed that ChemPLP fitness scores and ASP fitness
scores of MTX as a reference compound were 99.23 and 56.65 for wild type hDHFR while 88.98 and
49.84 for mutant hDHFR, respectively. These docking scores were considered as cut-off values for wild
type and mutant hDHFR docking results analysis. The candidate compounds for wild type hDHFR
were selected based on ChemPLP and ASP fitness scores greater than 99.23 and 56.65 respectively.
For mutant hDHFR, compounds yielding ChemPLP and ASP fitness scores higher than 88.98 and
49.84 were selected (Table 3).

Table 3. Comparison of ChemPLP and ASP dock scores of MTX (reference inhibitor) and Hit compound
in the active sites of WT and MT hDHFR.

System ChemPLP Score ASP Score

WT hDHFR + MTX 99.23 56.65
WT hDHFR + Hit 103.74 57.70

MT hDHFR + MTX 88.98 49.84
MT hDHFR + Hit 91.07 47.59

Additionally, the compounds were investigated about ligand conformations effectively showing
essential interactions in the active site of hDHFR. Finally, one compound which contained
pharmacophoric features of wild type and mutant hDHFR structures and fulfilled the above-mentioned
criteria of docking scores was selected as docking Hit. The pharmacophore mapping of Hit compound
(ID: ZINC000013508844) with WT-pharma and MT-pharma models are shown (Figure 3).
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2.6. Molecular Dynamic Simulations for Structures Stability Evaluation

MD simulations were executed to estimate the binding stability of Hit compound after docking
in the active site of wild type and mutant hDHFR. Four MD simulation systems were employed as one
for each complex i.e., for hit compound and reference compound (MTX) in complex with wild type
and mutant hDHFR structures, respectively. The initial details of each system subjected to simulation
are given in Table 4.

Table 4. The specifications of four systems used for molecular dynamics simulations.

System No. of TIP3P Water Molecules No. of Na+ Ions System Size (nm)

WT hDHFR + MTX a 7726 1 7.11 × 7.11 × 5.03
WT hDHFR + Hit 7646 1 7.11 × 7.11 × 5.03

MT hDHFR + MTX 8258 2 7.11 × 7.11 × 5.03
MT hDHFR + Hit 8181 1 7.11 × 7.11 × 5.03

MTX a: the reference inhibitor.
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Root mean square deviation (RMSD) was measured of the protein-ligand complex for each
simulation system to assess ligand binding with hDHFR. In the results of 50 ns simulation, protein-ligand
RMSD of reference compound (MTX) in complex with wild type hDHFR was recorded at an average
of 0.21 nm throughout the simulation (Figure 4A). The average RMSD of MTX with mutant hDHFR
was observed 0.21 nm up to 38.9 ns but afterward it significantly increased to an average of 0.62 nm
indicating loss of MTX binding with MT-hDHFR. Accordingly, the representative structure of each
system was taken from the last 8 ns (30–38 ns) before the loss of MTX binding with MT-hDHFR. The Hit
compound obtained from docking results showed stable RMSD in complex with WT- and MT- hDHFR.
The average root means square deviation values of Hit compound in complex with WT-hDHFR
and MT-hDHFR were observed at an average of 0.21 nm and 0.22 nm respectively, throughout the
simulation depicting that both the systems were well converged (Figure 4A). Additionally, per residue
RMSF (root mean square fluctuation) calculated for each complex which was noted about 0.3 nm
for all residues except for the MTX which showed RMSF about 2.3 nm in complex with MT-hDHFR
(Figure 4B).
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complex with MT-hDHFR (Figure 4B). 
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Figure 4. RMSD analysis of the reference (MTX) and hit compound (MTX-analog). (A) RMSD of
the protein-ligand complex of wild type and mutant hDHFR revealed their stability throughout the
simulation, with no abnormal behavior in all systems except for MTX in complex with MT hDHFR.
(B) RMSF per residue plot for all the systems portrayed their residues RMSD is stable except for MT
hDHFR ligand (MTX) which showed a high fluctuation level. (C) The number of intermolecular
hydrogen bonds between protein and ligand during 50 ns MD simulations. Light blue and pink colors
represent MTX in wild type and mutant hDHFR, respectively, while dark blue and magenta represent
the Hit compound in wild type and mutant hDHFR, respectively.
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The superimposition of representative structures demonstrated that the binding pattern and
conformational alignment of Hit in the active site of hDHFR was similar to that of MTX (Figure 5).
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The substrate-binding site of hDHFR is mainly comprised of Ile7, Glu30, Phe31, Gln35, Ser59,
Pro61, Asn64, Arg70 and Val115 [42]. Our results suggested that the reference compound (MTX) could
bind with substrate binding residues of WT-hDHFR but lost its binding with MT-hDHFR, in agreement
with Volpato et al. [32]. In contrast with MTX, the Hit compound exhibited strong binding with the
active site of both WT- and MT-hDHFR. The MTX formed H-bonds with Ile7, Glu30, and Val115, Phe31,
Asn64 and Arg70, as well as one carbon–hydrogen with Pro61 of WT-hDHFR (Figure 6A, Table 5).
Furthermore, MTX established π-interactions with Ile7, Ala9, Leu22, Phe34 and Ile60 and showed van
der Waals contacts with Val8, Asp21, Phe31, Arg32, Tyr33, Gln35, Thr56, Ser59, Leu67, Lys68, Tyr121
and Thr136 (Table 5). Molecules 2020, 25, 3510 11 of 22 
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Figure 6. Molecular interactions analyses. The reference inhibitor MTX and Hit compound interacted
with essential residues in the active site of hDHFR. MTX in WT hDHFR (A), Hit in WT hDHFR
(B), MTX in MT hDHFR (C) and Hit in MT hDHFR (D) are depicted as light blue, dark blue, pink,
and magenta-colored stick representation. The H-bond forming residues of hDHFR are displayed
as a brown stick model. H-bonding and bond distances are represented as green dashed lines and
measured in angstrom (Å), respectively.
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Table 5. Molecular interactions between the ligands (MTX and hit compound) and the active site
residues of WT and MT hDHFR.

Compound Hydrogen Bond Residues
(<3Å)

van der Waals
Residues

Carbon Hydrogen Bond
Residues

π-Interaction
Residues

MTX
(with WT hDHFR)

Ile7, Glu30, Asn64, Arg70(2),
Gln35, Val115

Val8, Asp21, Phe31, Arg32, Tyr33, Thr56,
Ser59, Leu67, Lys68, Tyr121, Thr136 Pro61 Ile7, Ala9, Leu22,

Phe34, Ile60
Hit

(with WT hDHFR)
Ile7, Glu30, Gln35, Ser59,
Asn64(2), Arg70, Val115

Val8, Asp21, Phe31, Tyr33, Phe34, Thr56,
Leu67, Thr136 Pro61, Lys68 Ile7, Ala9, Leu22,

Ile60
MTX

(with MT hDHFR)
Ile7, Glu30, Arg31, Asn64,

Lys68, Val115, Tyr121
Asp21, Phe34, Tyr33, Glu35, Thr56, Pro61,

Arg70, Phe134, Thr136 Val8, Leu67, Ser59, Lys68 Ile7, Ala9, Leu22,
Arg31, Ile60

Hit
(with MT hDHFR)

Ile7, Glu30, Arg31 (2), Ser59,
Asn64, Arg70, Val115, Tyr121

Val8, Asp21, Arg28, Arg32, Phe34, Glu35,
Thr56, Pro61,Leu67, Thr136 Ser59 Ile7, Ala9, Leu22,

Arg31, Ile60

In the representative structure of MT-hDHFR which was obtained before the disruption of MTX
binding, molecular interactions were observed to analyze the difference of MTX binding with wild
type hDHFR, leading us to speculate about the segment of resistance to MTX in mutant hDHFR.
Accordingly, MTX was shown to form H-bond interactions with Ile7, Glu30, Arg31, Asn64, Lys68,
Val115, Tyr121 and van der Waals interaction with Asp21, Phe34, Tyr33, Glu35, Thr56, Pro61, Arg70,
Phe134 and Thr136 (Figure 6C, Table 5). Our findings also indicate that MTX formed carbon–hydrogen
bonds with Val8, Leu67, Ser59, Lys68 and π-interactions with Asp21, Phe34, Tyr33, Glu35, Thr56, Pro61,
Arg70, Phe134 and Thr136. The Hit compound in complex with WT-hDHFR formed H-bonds with
Ile7, Glu30, Gln35, Asn64 (2), Arg70 and Val115, as well as carbon–hydrogen bonds with Pro61 and
Lys68 (Figure 6B, Table 5). Additionally, Hit showed van der Waals interactions with the hydrophobic
pocket residues of WT-hDHFR such as Val8, Asp21, Phe31, Tyr33, Phe34, Thr56, Ser59, Leu67 and
Thr136, as well as π-interactions with Ile7, Ala9, Leu22 and Ile60 (Table 5). In the case of MT-hDHFR,
the Hit compound established H-bonds with Ile7, Glu30, Arg31, Ser59, Asn64, Arg70, Val115 and
Tyr121 (Figure 6D, Table 5). The Hit compound showed hydrophobic van der Waals interactions with
Val8, Asp21, Arg28, Arg32, Phe34, Glu35, Thr56, Pro61, Leu67 and Thr136 residues of the WT-hDHFR
while π-interactions were formed with Ile7, Ala9, Leu22, Arg31 and Ile60. The residue Ser59 also
exhibited carbon–hydrogen bonds with C11 atoms in addition to conventional H-bonds with O13
atoms in Hit molecules. The conventional H-bond was formed only by Hit in the MT-hDHFR binding
site. Throughout the simulation period, the total number of intermolecular H-bonds of WT- and MT-
hDHFR in complex with MTX and Hit were calculated. Our results showed that the Hit compound
formed an average number of H-bonds with WT- and MT-hDHFR comparable to that of MTX (reference)
in WT-hDHFR. Since MTX has a very weak binding with MT-hDHFR, it could not maintain average
number of H-bonds after 38.9 ns (Figure 4C), which enhanced the results obtained from the RMSD
plots. Our results suggest that Hit (MTX analog) is capable of binding tightly with wild type, as well
as MTX-resistant, F31R/Q35E hDHFR variants.

2.7. Binding Free Energy Calculations for MTX and Hit Compound

MM/PBSA binding free energies were calculated for MTX and Hit in complex with WT- and
MT-hDHFR. The free energies of MTX and Hit in complex with WT-hDHFR were observed as
−646.76 kJ/mol and −642.12 kJ/mol, whereas MT-hDHFR MTX could yield only −49 kJ/mol, while the
Hit compound attained −571.38 kJ/mol. The binding free energy evaluations underscore our findings
that the Hit molecule is tightly bound with WT- and MT-hDHFR, displaying comparable free energy of
MTX in complex with WT-hDHFR. The decomposition analysis of the binding free energy indicated
that electrostatic and van der Waals forces are significant characteristics in hDHFR inhibition (Figure 7,
Table 6).
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Figure 7. Binding free energy analyses. (A) Graphical representation of MM/PBSA estimated binding
free energy of wild type and mutant hDHFR in complex with MTX (reference) and Hit compound
throughout the simulation time. The reference compound is depicted as light blue and dark blue for
wild type and mutant hDHFR, respectively. The Hit compound is shown in pink and magenta colors
for wild type and mutant hDHFR, respectively. (B) The binding free energy decomposition analysis of
the final hits in the active site of hDHFR infers that the Hit compound was comparably strongly bound
with WT and MT hDHFR, while MTX lost its binding with the mutant structure.

Table 6. Decomposition of binding free energy.

Complex Van der Waals
Energy (kJ/mol)

Electrostatic
Energy (kJ/mol)

Polar Solvation
Energy (kJ/mol)

SASA b Energy
(kJ/mol)

Binding Energy
(kJ/mol)

WT hDHFR + aMTX −184.057 −1023.945 489.982 −22.594 −646.767
WT hDHFR + Hit −210.358 −1007.98 499.622 −22.622 −642.123

MT hDHFR + MTX −116.884 −217.191 212.294 −18.862 −49.299
MT hDHFR + Hit −207.152 −923.188 483.648 −23.977 −571.381

a MTX: methotrexate as reference inhibitor. SASA b: Solvent accessible surface area.

Altogether, our results verified that the newly identified MTX-analog favorably adapted the active
site of wild type and double mutant hDHFR and acquired polar and nonpolar interactions with the
catalytic active residues.

The structure of the Hit compound, which was modified by adding a carbon-oxygen group
(C11-C12-O13) with a p-ABA moiety, is illustrated in its 2D structure in Figure 8.
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3. Discussion

Chemotherapeutics are very effective in the treatment of cancers, but drug resistance is often
a limiting factor. Acquired resistance is the type of drug resistance that can develop through various
adaptive responses such as mutations, increased expression of the therapeutic target and activation of
alternative compensatory signaling pathways arising over the course of the treatment of tumors [43]
Human dihydrofolate reductase (hDHFR) is an enzyme that is responsible for the catalysis of the
reduction of 7,8-dihydrofolate (DHF) to 5,6,7,8-tetrahydrofolate, which is crucial for DNA synthesis
and cell proliferation [44]. Therefore, hDHFR has been widely used as a target for cancer therapeutics
for several decades [45]. Methotrexate is a well-known inhibitor that displays a high affinity with
hDHFR, but mutation in the active site of hDHFR results in the loss of MTX binding [31].

The present study aimed to identify an analog of methotrexate that was capable of binding
tightly, and hence inhibiting, wild type and doubly mutant hDHFR (F31R/Q/35E) by employing
several computational methods including structure-based pharmacophore modeling, virtual screening,
molecular docking and molecular dynamics simulations studies [46]. Structure-based pharmacophore
models of crystal structures of wild type (PDB ID: 1U72) and variant (PDB ID: 3EIG) hDHFR in complex
with methotrexate were obtained, with four features in each model. The best pharmacophore models of
each the structure were selected by analyzing the inclusion of key residues in pharmacophoric features
and sensitivity of the models to retrieve true positive compounds depicted by the highest area under the
ROC curve. The selected pharmacophore models, termed as WT-pharma and MT-pharma for wild type
and mutant hDHFR structures, respectively, were rationally assessed for the inclusion of conserved
hydrogen bond residue Glu30 and other key residues, such as Asn64, Arg70 and Val115 [44,47]. Further,
with each pharmacophore model, the ROC curve was formed between the number of false positive
(FP) and true positive (TP) compounds retrieved by that model from the datasets of 46 active and
24 inactive compounds. Higher AUC values in the ROC curves infer greater sensitivity of WT-pharma
and MT-Pharma in retrieving actives, and specificity for ignoring inactives [48,49]. Using ZINC15,
Mayorga et al. found a high number of compounds when they utilized a small fragment of the original
structure [50]. In our study, to explore analogs of MTX, we used the full structure of MTX and selected
‘in vitro’, ‘in vivo ‘and ‘clean’ options in the section of ‘subsets’, which resulted in the generation of only
32 analogous compounds (Table S1. An ADMET assessment test and Lipinski’s Rule of five scrutinized
the downloaded compounds from ZINC15 for their drug-like properties, and found eight compounds
satisfying the required criteria to qualify as lead compounds [51,52]. The validated pharmacophore
models of wild type and mutant structures of hDHFR were applied as 3D query for virtual screening
with the drug like compounds capable of binding with wild type and mutant hDHFR as well [53].
A molecular docking study was employed to inspect the most suitable and consistent binding mode of
the molecules in the binding sites of receptor proteins. Consequently, the best binding modes obtained
from docking based on scoring functions and key interactions with the active site residues of wild
type and mutant hDHFR were used in MD simulations to assess their stability [54]. The RMSD plots
inferred that the Hit compound showed similar modes of interaction in wild type and mutant hDHFR
active sites as MTX in the active site of wild type hDHFR. Specifically, the average RMSD profiles
(<0.25 nm) obtained for protein-ligand complexes of Hit with wild type and mutant hDHFR exhibited
that the systems were uniform and compact, as the stability of the system can be inferred by an RMSD
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value of less than 0.3 nm [40,41]. The RMSD plot for MTX in complex with mutant hDHFR showed
abrupt fluctuation after 38.9 ns, which indicated the loss of MTX binding with the active site of hDHFR.
Furthermore, a high RMSF value (2.34 nm) of MTX (residue187) indicated a loss of ligand binding with
only mutant hDHFR protein. Our results showed that Hit compound established stable H-bonds with
the active site residues of wild type and mutant hDHFR. Similar to the molecular interactions of MTX
(reference compound), most H-bonds were formed by pterin moiety and α-glutamate moiety with
hDHFR active site residues, while p-aminobenzoic acid (p-ABA) moiety formed mainly hydrophobic
interactions [31]. The conserved hydrogen bond with OE1 atom of catalytic residue Glu30 was formed
with the pterin moiety of Hit molecule [42,55]. The additional oxygen atom in the structure of Hit
compound formed a hydrogen bond with Ser59 in both wild type and mutant hDHFR, while Ser59
belonged to the coenzyme NADPH binding site [56]. It was speculated that the hydrogen bond between
Ser59 and the modified p-ABA moiety of Hit compound contributed to the strong binding of the Hit
compound with the mutant structure of hDHFR. Furthermore, the conserved hydrogen bonds formed
by an α-carboxylate group of MTX with the side chains of Arg70 and Gln35 while p-aminobenzoyl keto
group with Asn64 were also observed in Hit compound’s interactions with wild type hDHFR [26].

In the mutant structure, due to the substitution of Glu35, a hydrogen bond was not formed
because of unfavorable close electrostatic contact of two negative charges between Glu35 side chain and
glutamate moiety of MTX and Hit compound. In contrast, Arg31, which was substituted at the position
of Phe31, was observed to form hydrogen bonds through the guanidinium group with an α-glutamate
moiety of MTX. Hit compound displayed a double hydrogen bond with Arg31; double hydrogen
bonds are considered to be crucial for strong binding in protein-ligand interactions [57]. Furthermore,
the hydrogen bond of the Arg70 side-chain with an α-carboxylate group of MTX was lost in Mt hDHFR,
while Lys68 was formed a hydrogen bond with the α-carboxylate group. On the other hand, the
Hit compound retained the H-bond of the Arg70 side chain with the α-carboxylate group, as it did
in the wild type. Moreover, the only hydrogen bond formed by a p-ABA group of MTX with Asn64
in wild type hDHFR was also shifted to a H-bond with an α-carboxylate group of MTX in mutant
hDHFR. While the p-ABA group of Hit compound formed a hydrogen bond with Asn64, as in the wild
type, an additional H-bond was formed between Ser59 and modified oxygen atom added to p-ABA
group. Accordingly, a comparative analysis of protein-ligand interactions of MTX and Hit compound
suggested that Hit (MTX-analog) may be capable of retaining its strong binding with WT and MT
hDHFR. Additionally, the binding free energy evaluations performed by the MM/PBSA method also
inferred that the complexes of WT and MT hDHFR with Hit compound were comparably stable,
like MTX in WT hDHFR; meanwhile, the binding free energy profile noticeably depicts the loss of MTX
binding in MT hDHFR.

4. Materials and Methods

4.1. Structure Based Pharmacophore Modeling

Ligand binding features were assessed by the structures of wild type (PDB ID: 1U72) and
drug-resistant (PDB ID: 3EIG) human DHFR in complex with methotrexate taken from protein
data bank [26,31]. Pharmacophore models were generated using the Receptor-ligand Pharmacophore
Generation module in Discovery Studio (DS) v.4.5 (Dassault System, BIOVIA Corp, San Diego, CA, USA).
FAST (Features from Accelerated Segment Test) algorithm was applied for Conformation Generation,
while the Fitting Method was set to Flexible. The Validation option was set to True, for which a set of
46 active and 24 inactive compounds, downloaded from BindingDB (https://www.bindingdb.org/bind/

index.jsp) were exploited to generate a ROC curve for each pharmacophore model.

4.2. Decoy Test Validation

The ability of pharmacophore to identify hDHFR inhibitors was assessed by the Guner−Henry
method (Decoy test method) [44]. A test set was prepared by collecting hDHFR inhibitors whose

https://www.bindingdb.org/bind/index.jsp
https://www.bindingdb.org/bind/index.jsp
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experimental activities (IC50 values) were measured by the same biological assays. The test set
was composed of active and inactive molecules of hDHFR. The selected pharmacophore models of
wild type and mutant structures were employed as a 3D query to obtain the best-fitted molecules
from the test set. Screening of the test set was executed by the Ligand Pharmacophore Mapping
protocol embedded in DS. Accordingly, several parameters, like Guner−Henry (GH) score, enrichment
factor (EF), the percentage ratio of actives (%A), percentage yield of actives (%Y), false negative and
false-positive, were calculated, which determined the efficacy of WT-pharma and MT-pharma

EF = (Ha/Ht)/(A/D)
GF = (Ha/4HtA) (3A + Ht) × [{1 − (Ht − Ha)/(D − A)}]

(1)

where D is the total molecules in the data set, A specifies the total number of active compounds in the
data set, Ht indicates the total number of Hits retrieved and Ha refers to the number of actives present
in the retrieved Hits.

4.3. Methotrexate Analogs Generation

Methotrexate structure was subjected to a similarity search in ZINC15 using SMILES string of
MTX. For the generation of clean analogs, in vivo and in vitro options were selected in the available
range of Subsets to Check. Subsequently, the structures were downloaded in the SDF (Spatial Data
File) format, generated by the webserver, to carry out for further computations in DS.

4.4. Drug-Likeness Prediction and Virtual Screening

The molecules retrieved from ZINC15 were tested through ADMET and Lipinski’s Rule of five
embedded assessment techniques in DS to identify drug-like compounds. Subsequently, the compounds
exhibiting such properties were carried out for virtual screening with WT-pharma and MT-pharma.
The compounds which fitted with both pharmacophores were considered as screening compounds in
our molecular docking study.

4.5. Molecular Docking Simulation

A docking study was employed through the Genetic Optimization of Ligand Docking (GOLD)
package v5.2.2 (The Cambridge Crystallographic Data Centre, Cambridge, United Kingdom).
GOLD software provides full flexibility of ligands and limited flexibility of protein; hence, it delivers
more reliable results in computational biology the crystal structures of wild type (PDB ID: 1U72)
and variant (PDB ID: 3EIG) hDHFR in complex with Methotrexate were taken from protein data
bank. The wild type and variant structures of hDHFR were prepared for docking by eliminating
water molecules in DS. Chemistry at Harvard macromolecular mechanisms (CHARMm) force field
was applied to add hydrogen atoms to the structures of hDHFR. The binding sites of wild type and
mutant hDHFR were identified within the radius of 9Å of bound inhibitor (MTX) using the Define
and Edit Binding Site module, planted in DS. During docking, MTX-analogs retrieved from virtual
screening along with methotrexate as reference were treated as ligand molecules. The ChemPLP
(Piecewise Linear Potential) score and ASP (Astex Statistical Potential) score were used as the default
scoring and rescoring functions, respectively. The ChemPLP is the default scoring function in GOLD
software which is empirically optimized for pose prediction. It is implemented to establish the steric
complementarity between protein and ligand, distance- and angle-dependent hydrogen and metal
bonding terms as well as the heavy atoms clash- and torsional potential. The ASP scoring function
measures the atom−atom potential and has similar precision to Chemscore and Goldscore fitness
functions [58,59]. During docking, GA (genetic algorithm) was run to produce 100 poses for each
drug-like molecule. The bound ligand (MTX) was employed as a reference compound throughout the
analyses. Cluster analysis was performed to scrutinize hit compounds exhibiting a higher dock score
than cut off (dock score of reference molecule).
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4.6. Molecular Dynamics (MD) Simulation

Molecular dynamics simulations were performed using CHARMm36 all-atom force field [60]
in Groningen Machine for Chemical Simulation (GROMACS) v5.0.6 package [61]. For every
protein-ligand complex, an independent simulation system was generated. The topology and
coordinates files for MTX and docking hits were generated using SwissParam [62]. Transferable
intermolecular potential with three points (TIP3P) water model in a cubic box was used for solvation
of each system. Solvent molecules were substituted with sodium ions (Na+) to nullify the total charge
of simulation systems. The energies of the systems were minimized by applying steepest decent
algorithwhere the maximum force was kept less than 10 kJ/mol I order to avoid any bad contacts
likely to be occurred in the production run. Initially, the systems were equilibrated in two steps.
First, the number of particles at constant volume and temperature (NVT) equilibration was carried out
for 100 ps at 300 K. The temperature of the system was kept constant using V-rescale thermostat [63].
In second phase, 100 ps equilibration was performed with number of particles at constant pressure of
1 bar (NPT) and temperature 300 K [64]. Accordingly following the protocol mentioned earlier, all the
systems were carried out for production run. In short, bond lengths of heavy atoms were sustained
using Linear Constraint Solver (LINCS) algorithm [65]. Particle Mesh Ewald (PME) method was
employed to calculate the long-range electrostatic interactions [66]. Short-range interactions length
was kept to 12 Å. All simulations were performed with the periodic boundary conditions to make
infinite systems. Time interval was kept of 10 ps to save coordinates data. Finally, result’s visualization
and analysis were performed using GROMACS and DS.

4.7. Binding Free Energy Calculations

The binding free energy was calculated by employing the Molecular Mechanics/Poisson-Boltzmann
Surface Area (MM/PBSA) method [67]. Following the MM/PBSA protocol to compute free energies
of the protein-ligand complex, equidistant snapshots of the hDHFR-ligand complex were extracted.
The binding free energy of the protein-ligand complex is stated as:

∆Gbinding = Gcomplex − (Gprotein + Gligand) (2)

where Gcomplex denotes the sum of the free energy of the complex, and Gprotein and Gligand specify the
free energies of portion and ligand in their unbound states.

Free energy can be defined as:

GX = EMM + Gsolvation (3)

where X can be a protein, a ligand, or their complex. EMM signifies the average molecular mechanics
potential energy in vacuum, while Gsolvation indicates the free energy of solvation.

Accordingly, molecular mechanics potential energy in vacuum can be calculated by implementing
the equation:

EMM = Ebonded + Enonbonded = Ebonded + (Evdw + Eelec) (4)

Ebonded denotes the bonded interactions, while Enonbonded terms the nonbonded interactions. The
value of ∆Ebonded is generally treated as zero.

The combined energetic terms of electrostatic (Gpolar) and apolar (Gnonpolar) give the solvation
free energy which is measured as:

Gsolvation = Gpolar + Gnonpolar (5)
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Here Poisson-Boltzmann (PB) equation is implemented to compute Gpolar, while the Gnonpolar is
calculated from the solvent-accessible surface area (SASA) as:

Gnonpolar = γSASA + b (6)

where,γ represents the coefficient of solvent surface tension, while b is its fitting parameter, whose values
are 0.02267 kJ/mol/Å2 and 3.849 kJ/mol, respectively.

5. Conclusions

In the current study, structure-based pharmacophore modeling, virtual screening, molecular
docking and molecular dynamics simulation methods were utilized to identify a potential inhibitor that
was capable of strong binding with wild type as well as drug-resistant (mutant) hDHFR. Structure-based
pharmacophore models for WT and MT hDHFR in complex with MTX were generated and validated
by the decoy test and ROC curve. Methotrexate analogs were generated by exploiting the MTX
structure in ZINC15, and carried out for ADMET and Lipinski’s Rule of five assessment tests to
evaluate drug-likeness of compounds obtained from ZINC. The drug-like compounds were used
in virtual screening with validated WT and MT pharmacophore models as a 3D query to identify
potential hits of wild type and mutant hDHFR. The compounds obtained from virtual screening
were docked in the active site sites of WT and MT hDHFR. Subsequently, through docking results
analysis, one compound was found to have a higher dock score than the reference compound (MTX),
displaying essential molecular interactions with key residues of the hDHFR active site. Furthermore,
MD simulation and binding free energy calculations for the Hit compound and MTX in complex with
WT and MT hDHFR were also used to evaluate the stability of the Hit compound with WT and MT
hDHFR. Taken together, our findings indicate MTX analog (ZINC000013508844) to be a potential
inhibitor of wild type hDHFR and drug-resistant F31R/Q35E variant of hDHFR. In future work, we will
try to synthesize the Hit compound to verify our findings through bioassay by collaborating with
an experimental lab. These findings can also be extended to assess other drug resistant hDHFR variants
for cancer therapeutics.

Supplementary Materials: Available online. Table S1 2D structures and ZINC IDs of Methotrexate analogs,
Figure S1: Superimposition of X-ray structure pose and docked pose of MTX.
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