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A B S T R A C T   

In Covid-19, systemic disturbances may progress due to development of cytokine storm and dysregulation of and 
plasma osmolarility due to high release of pro-inflammatory cytokines and neuro-hormonal disorders. Arginine 
vasopressin (AVP) which is involve in the regulation of body osmotic system, body water content, blood pressure 
and plasma volume, that are highly disturbed in Covid-19 and linked with poor clinical outcomes. Therefore, this 
present study aimed to find the potential association between AVP serum level and inflammatory disorders in 
Covid-19. It has been observed by different recent studies that physiological response due to fever, pain, 
hypovolemia, dehydration, and psychological stress is characterized by activation release of AVP to counter- 
balance high blood viscosity in Covid-19 patients. In addition, activated immune cells mainly T and B lym-
phocytes and released pro-inflammatory cytokines stimulate discharge of stored AVP from immune cells, which 
in a vicious cycle trigger release of pro-inflammatory cytokines. Vasopressin receptor antagonists have antiviral 
and anti-inflammatory effects that may inhibit AVP-induced hyponatremia and release of pro-inflammatory 
cytokines in Covid-19. In conclusion, release of AVP from hypothalamus is augmented in Covid-19 due to 
stress, high pro-inflammatory cytokines, high circulating AngII and inhibition of GABAergic neurons. In turn, 
high AVP level leads to induction of hyponatremia, inflammatory disorders, and development of complications in 
Covid-19 by activation of NF-κB and NLRP3 inflammasome with release of pro-inflammatory cytokines. 
Therefore, AVP antagonists might be novel potential therapeutic modality in treating Covid-19 through miti-
gation of AVP-mediated inflammatory disorders and hyponatremia.   

1. Background 

From the beginning of coronavirus disease 2019 (Covid-19) 
pandemic there is a substantial worldwide impact on the health system 
due to high rate of hospitalization and high fatality rate especially in 
patients admitted in the intensive care unit [1]. Up to date, the total 
infected patients globally reach to more than 170 million with more 
than 3 million confirmed death cases in late May of 2021. Nonetheless, 
the ongoing and oncoming rise of infected cases is still alarming pri-
marily with emerging of variant strains of this pandemic [2]. Covid-19 is 
caused by novel severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2), an enveloped positive sense single strand RNA virus from 
Betacoronaviridae family, it has 79% similarity with SARS-CoV pandemic 
2003 and about 40% with Middle East Respiratory Syndrome corona-
virus (MERS-CoV) 2012. Most of SARS-CoV-2 variant strains have a high 
similarity with novel SARS-CoV-2 ranged from 81% to 96% [3]. 

The pathophysiological role of SARS-CoV-2 infection is mediated by 
direct viral toxicity, abnormal immune response, endothelial dysfunc-
tion, dysregulated renin-angiotensin system (RAS), and thrombo- 
inflammation that lead to pulmonary and extra-pulmonary manifesta-
tions [4]. The angiotensin converting enzyme 2 (ACE2) is regarded as 
the main receptor for entry of SARS-CoV-2 that is expressed in various 
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tissue principally in lung epithelial alveolar type II cells, endothelial 
cells, enterocytes and cardiomyocytes [5,6]. The pulmonary manifes-
tations of SARS-CoV-2 infections are asymptomatic in 80% of infected 
cases however 15% of infected patients may develop pneumonitis and 
acute lung injury (ALI), while 5% of infected patients experience a 
critical Covid-19 due to progression of acute respiratory distress syn-
drome (ARDS) [7]. Moreover, systemic disturbances may progress due 
to development of cytokine storm and dysregulation of and plasma 
osmolarility due to high release of pro-inflammatory cytokines and 
neuro-hormonal disorders respectively [8]. 

Both serum sodium and arginine vasopressin (AVP) that involved in 
the regulation of body osmotic system, body water content, blood 
pressure and plasma volume, are highly disturb in Covid-19 and linked 
with poor clinical outcomes [9]. Therefore, this present study aimed to 
find the potential association between AVP serum level and inflamma-
tory disorders in Covid-19. 

2. Physiological profile of arginine vasopressin 

AVP is a nonapeptide primarily synthesized by paraventricular 
(PVN) and supraoptic neurons of the hypothalamus that stored in the 
posterior hypothalamus. Expression of AVP gene induces release of 
prepro-AVP, which proteolysed to release AVP, neurophysin II and 
copeptin [10]. High plasma osmolarility during thirst and dehydration is 
regarded as the main determinant of AVP release; however stress 
nausea, vomiting, acidosis, fever, pro-inflammatory cytokines, sympa-
thetic stimulation, hypovolemia and catecholamines also stimulate AVP 
release [11]. AVP is also considered as a neurotransmitter regulates 
activity of AVPergic neurons in response to the stimulating factors [12]. 
Neuronal aquaporin 4 receptor and transient receptor potential cation 
channel sense blood and cerebrospinal fluid osmolarility that control 
release of AVP [13]. Moreover, expression of hypothalamic AVP gene is 
regulated by gut microbiota since antibiotic therapy in mice decrease 
gut microbiota and expression of hypothalamic AVP gene [14]. Simi-
larly, AVP affects growth of gut microbiota through modulation of gut 
inflammatory and stress response suggesting that gut microbiota may 
metabolize AVP [15]. It has been reported that AVP affects glucose 
metabolism, it stimulates glycogenolysis and glucagon release leading to 
hyperglycemia and metabolic disturbances [16]. 

AVP acts through G-protein coupled receptors V1 (V1A), V2, and V3 
(V1B). V1A receptors are expressed in vascular smooth muscle, myocar-
dium, hepatocytes, and platelets that involved in vasoconstrictions, 
platelet aggregation, myocardial hypertrophy, and glycogenolysis. V3 
(V1B) receptors are expressed in the anterior pituitary responsible for 
release of prolactin, adrenocorticotrophic hormone (ACTH) and endor-
phin. V2 receptors are expressed in renal collecting duct, vascular 

smooth muscle, and vascular endothelium responsible for water reab-
sorption from kidney, vasodilation, and release of clotting factor VIII 
and von Willebrand factor [17,18]. Therefore, AVP leads to increase 
blood pressure directly through V1A-induced vasoconstriction or indi-
rectly through activation of RAS, sympathetic flow and baroreflex 
sensitivity [19]. Despite of clinical significance of AVP, its measurement 
is limited due to short half-life, so instead copeptin, which is synthesized 
at the same time of AVP and correlated with plasma osmolarity, can be 
used as a prognostic factor due to long half-life. Therefore, copeptin is 
considered as a surrogate biomarker that reflects synthesis, level, and 
biological activity of AVP [20,21]. 

Thus, AVP controls blood pressure, plasma volume, kidney water 
reabsorption, and synthesis of clotting factors [Fig. 1]. 

It has been observed that AVP and copeptin are strongly increased in 
patients with septic shock that associated with systemic inflammatory 
disorders compared with infected patients without systemic inflamma-
tory reactions [22]. Chassin et al. illustrated that administration of AVP 
V2 receptor agonist deamino-8-D-AVP reduces inflammatory changes in 
patients with pyelonephritis due to inhibition release of chemokines and 
NF-κB pathway, suggesting immune-regulatory effect of AVP [23]. 
However, AVP antagonist in patients with pulmonary tuberculosis re-
stores the activity of protective immunity to counterbalance high AVP 
level in late active phase of disease [24]. In addition, beyond procalci-
tonin and C-reactive protein (CRP), AVP might be a promising 
biomarker in the diagnosis and poor prognosis of pneumonia [25]. 
Therefore, copeptin is regarded as a predictor biomarker for assessment 
severity and prognosis of acquired pneumonia [26]. Lopez et al. showed 
that high AVP in bacterial sepsis and pneumonia is associated with 
increased pulmonary microvascular permeability, thus AVP antagonist 
tolvaptan may reduce the severity in septic patients [27]. Similarly, 
copeptin serum level is correlated with severity of ventilator associated 
pneumonia [28]. These findings suggest that AVP plays a role in the 
pathophysiology of pneumonia and development of sepsis. However, 
elevation of AVP serum levels might be a compensatory mechanism to 
counteract pro-inflammatory cytokines-induced vasodilatory shock 
during sepsis. 

On the other, dilution hyponatremia due to increasing AVP may 
impact the course of infection during sepsis. It has been illustrated that 
hyponatremia and elevated AVP are linked with poor clinical outcome 
and high mortality in patients with community acquired pneumonia 
[29]. 

Of note, hyponatremia is also associated with respiratory viral in-
fections such as influenza virus (H1N1), parainfluenza virus, avian 
influenza (H7N9) and adenovirus [30]. In addition, hyponatremia is 
commonly connected to the human immune deficiency virus (HIV) 
infection mainly when associated with central nervous system (CNS) 

Fig. 1. The potential mechanisms of arginine vasopressin (AVP) release. Arginine vasopressin and infections.  
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and pulmonary co-infections due to development of syndrome of inap-
propriate antidiuretic hormone (SIADH) [31]. Hyponatremia is regar-
ded as a predictor of immune dysfunction in HIV infection as it inversely 
correlated with CD4 T lymphocyte number and function [32]. 

Moreover, development of hyponatremia is also reported in other 
viral infections including Hantavirus, Ebola virus, and herpes simplex 
virus [33]. Indeed, CNS viral infections are associated with development 
of SIADH and hyponatremia in about 60% due to vomiting, dehydration, 
fever, acidosis and stress that activate release of AVP from hypothala-
mus [34]. Besides, drugs that are used in the management of secondary 
bacterial infections in patients with viral pneumonia like 
trimethprim-sulfamethoxazole antibiotic may lead to hyponatremia in 
60% of treated patients due to induction of natriuresis [35]. The un-
derlying mechanism of SIADH and hyponatremia in respiratory viral 
infections might be neutrophilia and higher concentrations of 
pro-inflammatory cytokines that activate hypothalamus for release of 
AVP with subsequent hyponatremia [36]. Likewise, antiviral protease 
inhibitors ribavirin and paritaprevir therapy may lead to SIADH and 
hyponatremia [37]. 

3. Arginine vasopressin and Covid-19 

It has been observed by different recent studies that physiological 
response due to fever, pain, hypovolemia, dehydration and psycholog-
ical stress is characterized by activation release of AVP to counter- 
balance high blood viscosity in Covid-19 patients [38]. Abnormal acti-
vation of vasopressin system during SARS-CoV-2 infection is linked with 
poor clinical outcomes and prognosis in hospitalized Covid-19 patients 
with complications [9]. Tzoulis et al., longitudinal, retrospective cohort 
study confirmed that high AVP-induced hyponatremia is associated with 
poor prognosis due to high risk of respiratory failure in hospitalized 
Covid-19 patients [39]. In addition, hyponatremia without elevation of 
AVP is also linked with complications and mortality in Covid-19 patients 
[40], thus increasing AVP and/or hyponatremia are more correlated 
with Covid-19 severity. Besides, various case-report studies illustrated 
that SARS-CoV-2 infection is associated with development of SIADH due 
to progression of acute kidney injury-induced hyponatremia [41] or 
ALI-induced pulmonary vasoconstriction [42] that together activate 
release of AVP by osmotic-independent pathway. The potential mech-
anisms for activation release of AVP in Covid-19 are stressful factors, 
hypoxic pulmonary vasoconstriction, and reduction of left atrium filling 
due to dehydration and hypovolemia, and high pro-inflammatory cy-
tokines [42]. 

Acute inflammatory response with a higher concentration of pro- 
inflammatory cytokines mainly IL-6 leads to significant stimulation of 
hypothalamic AVP with progression of hyponatremia. Besides, IL-6 in-
hibitors attenuate systemic inflammation and development of SIADH 
suggesting that IL-6 is a prototype pro-inflammatory cytokine, which 
activate release of hypothalamic AVP [43]. In Covid-19, IL-6 is highly 
activated and linked with development of cytokine storm and 
ALI/ARDS, and IL-6 blockade may mitigate systemic inflammatory re-
actions and ALI [44]. Therefore, IL-6 has dual effect in the stimulation of 
AVP release either directly as it cross blood brain barrier (BBB) and 
initiates activation of hypothalamus or indirectly through induction of 
ALI-induced pulmonary vasoconstriction with reduction of cardiac atrial 
stretching [45]. As well, AVP stimulates release of IL-6 through activa-
tion of NF-κB pathway by V1A receptor leading to myocardial inflam-
mation in the experimental heart failure [46]. Taken together, there is 
significant interaction between AVP and IL-6 during acute inflammatory 
reactions suggesting immunoregulatory effect of AVP on the innate 
immune response. Furthermore, low dose of AVP leads to immuno-
modulatory effect mainly in the lung through V2 receptor [47]. Both 
corticotrophin releasing hormone (CRH) and AVP are present in the 
immune cells and can be release in response to inflammation and stress. 
Also, AVP receptors are expressed on the immune cells that involved in 
antibody production and release of pro-inflammatory cytokines [48]. 

AVP also activates Th1 immune response leading to augmentation of 
mixed cellular immune response with further abnormal immune 
response [49]. 

Interestingly, abnormal immune response in Covid-19 that charac-
terized by lymphopenia and abnormal T cell functions leading to cyto-
kine storm and abnormal immune response-induced tissue injury [50]. 
Activated immune cells mainly T and B lymphocytes and released 
pro-inflammatory cytokines stimulate discharge of stored AVP from 
immune cells, which in a vicious cycle trigger release of 
pro-inflammatory cytokines [51]. Therefore, aberrant immune response 
in SARS-CoV-2 infection might be the potential cause for elevation of 
AVP [52]. 

Therefore, source of high AVP in Covid-19 is from hypothalamus and 
immune cells that together contribute into progression of inflammatory 
and immunological disorders in severe cases. In the recent researches, 
SARS-CoV-2 directly triggers macrophage and other immune cells 
through activation of NF-κB pathway for release of pro-inflammatory 
cytokines and progression of cytokine storm [53]. Besides, released 
AVP in Covid-19 may provoke inflammatory reactions through release 
of pro-inflammatory cytokines due to activation of NF-κB pathway [54]. 
Into the bargain, AVP-induced hyponatremia disturbs cellular osmo-
lality and activate NLRP3 inflammasome for secretion of IL-1β, which 
cross BBB and stimulate hypothalamus for secretion of AVP. In turn, AVP 
increases progression of hyponatremia with more activation of NLRP3 
inflammasome/IL-1β axis and development of SIADH [55]. In addition, 
AVP and associated hyponatremia trigger NLRP3 inflammasome acti-
vation through IL-6 dependent pathway causing more propagation of 
inflammatory reactions in Covid-19 patients [56,57]. 

It has been observed that platelet activations, endothelial dysfunc-
tion and thrombosis in SARS-CoV-2 are due to activation of mitogen- 
activated protein kinase (MAPK) leading to pulmonary micro-vascular 
thrombosis and progression of ALI/ARDS [58]. Notably, AVP triggers 
MAPK-induced endothelial dysfunction with direct effect for release of 
clotting factors [59,60]. Remarkably, administration of AVP reduces 
development of ALI [61] however, Barcroft et al., illustrated in a 
case-report study that intramyometrial infiltration of AVP during lapa-
roscopic myomyectomy leads to acute pulmonary edema and coronary 
vasospasm [62]. Thus, dose-dependent effect of AVP may affect the 
cardiopulomary outcomes. 

It has been shown that high mobility group box 1(HMGB1) may lead 
to ALI in SARS-CoV-2 infection through activation of autophagy, which 
involved in the pathogenesis of SARS-CoV-2-induced ALI [63]. Yang 
et al. [64] illustrated that autophagy and endocytic pathway are 
involved in SARS-CoV-2 infections and linked with Covid-19 severity. As 
well, AVP induces autophagy pathway leading to progressive cell death 
and inflammation with activation of oxidative stress-induced release of 
HMGB1 [65,66]. Therefore, both SARS-CoV-2 infection and high AVP 
may augment autophagy-induced ALI. 

On the other hand, SARS-CoV-2-induced downregulation of ACE2 
with subsequent increase of AngII serum level since ACE2 metabolize 
AngII to vasodilator and protective Ang 1–7 [67]. High circulating AngII 
level provokes endothelial dysfunction, activation release of 
pro-inflammatory cytokines, thrombosis, and progression of ALI/ARDS 
[68]. Elevated AngII stimulates hypothalamus to release of AVP, which 
causes hyponatremia and release of more inflammatory cytokines [69]. 
However, central administration of Ang1–7 inhibits release of AVP from 
hypothalamus via anti-inflammatory effect [70]. Furthermore, high AVP 
in SARS-CoV-2 infection might be due to AngII-induced hypothalamic 
activation or due to AngII-induced immune cells activation that also 
release AVP. 

Of interest, the inhibitory GABAerigic neurons inhibit pre- 
sympathetic hypothalamic PVN neurons. These GABAerigic neurons 
have a higher expression of ACE2 receptors, thus down-regulation of 
these receptors during SARS-CoV-2 infection may suppress these 
inhibitory interneurons with activation of hypothalamic sympathetic 
neurons leading to sympathetic storm [71]. Excitingly, central 
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sympathetic stimulation due to SARS-CoV-2 infection increases circu-
lating catecholamine, which activates macrophages and neutrophils for 
release of pro-inflammatory cytokines. Correspondingly, activated 
macrophages and neutrophils also release catecholamine, which act in a 
paracrine manner for augmentation release of pro-inflammatory cyto-
kines [72]. Kim et al. illustrated that GABAerigic neurons dysfunction 
activate release of AVP [73]. In addition, sympathetic storm trigger 
release of AVP release and vice versa via neuro-hormonal loop [74]. 
Thus, SARS-CoV-2 infection is associated with high AVP and sympa-
thetic flow due to inhibition of central GABAerigic neurons. 

These findings give a clue that AVP action is augmented during 

SARS-CoV-2 infection and may participate for development of Covid-19 
complications [Fig. 2]. 

4. Arginine vasopressin antagonists and Covid-19 

Vasopressin receptor antagonists (VRAs) drugs that block AVP re-
ceptors used in the treatment of hyponatremia as in SIADH, heart failure 
and liver cirrhosis [75]. VRAs might be non-selective like conivaptan, 
which block V1 and V2 receptors, V1A receptor antagonist like relco-
vaptan, V1B receptor antagonist like nelivaptan, and selective V2 re-
ceptor antagonist like tolvaptan [76]. VRAs may have potential role in 

Fig. 2. The interaction between SARS-CoV-2 and Arginine vasopressin(AVP): SARS-CoV-2 through downregulation of ACE2, induction of acute kidney injury (AKI), 
acute lung injury(ALI), release of pro-inflammatory cytokines (PIC) and inhibition of GABAergic neurons stimulate hypothalamus for secretion of AVP. Released AVP 
activates NF-κB, NLRP3 inflammasome,release of PIC and induction of Autophagy leading to acute lung injury(ALI) acute respiratory distress syndrome (ARDS). 
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the management of hyponatermia in different viral infections including 
Covid-19 through block AVP effects, and silico study found that con-
ivaptan inhibits SARS-CoV-2 3C-like protease and viral RNA-dependent 
polymerase [77]. Xiao et al., illustrated that VRAs may have 
anti-SARS-CoV-2 effects [78]. Interestingly, tolvaptan has in vitro and 
vivo antiviral effects against Zika virus [79]. 

On the other hand, tolvaptan has anti-inflammatory and anti-fibrotic 
effects through inhibition of monocyte chemotractic protein-1(MCP-1) 
and transforming growth factor β 1(TGF-β1) [80]. Both of MCP-1 and 
TGF-β1 are involved in the inflammatory process during SARS-CoV-2 
infection. 

Therefore, the antiviral and anti-inflammatory effects of VRAs may 
inhibit AVP-induced hyponatremia and release of pro-inflammatory 
cytokines in Covid-19. 

5. Conclusion 

Release of AVP from hypothalamus is augmented in Covid-19 due to 
stress, high pro-inflammatory cytokines, high circulating AngII and in-
hibition of GABAergic neurons. In turn, high AVP level leads to induc-
tion of hyponatremia, inflammatory disorders, and development of 
complications in Covid-19 by activation of NF-κB and NLRP3 inflam-
masome with release of pro-inflammatory cytokines. Therefore, AVP 
antagonists might be novel potential therapeutic modality in treating 
Covid-19 through mitigation of AVP-mediated inflammatory disorders 
and hyponatremia. Appreciation of these findings should trigger further 
research actions to confirm this association in a new perspective. 
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