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Abstract: Asthma in children is a heterogeneous disease manifested by various phenotypes and
endotypes. The level of disease control, as well as the effectiveness of anti-inflammatory treatment, is
variable and inadequate in a significant portion of patients. By applying machine learning algorithms,
we aimed to predict the treatment success in a pediatric asthma cohort and to identify the key
variables for understanding the underlying mechanisms. We predicted the treatment outcomes
in children with mild to severe asthma (N = 365), according to changes in asthma control, lung
function (FEV1 and MEF50) and FENO values after 6 months of controller medication use, using
Random Forest and AdaBoost classifiers. The highest prediction power is achieved for control- and,
to a lower extent, for FENO-related treatment outcomes, especially in younger children. The most
predictive variables for asthma control are related to asthma severity and the total IgE, which were
also predictive for FENO-based outcomes. MEF50-related treatment outcomes were better predicted
than the FEV1-based response, and one of the best predictive variables for this response was hsCRP,
emphasizing the involvement of the distal airways in childhood asthma. Our results suggest that
asthma control- and FENO-based outcomes can be more accurately predicted using machine learning
than the outcomes according to FEV1 and MEF50. This supports the symptom control-based asthma
management approach and its complementary FENO-guided tool in children. T2-high asthma
seemed to respond best to the anti-inflammatory treatment. The results of this study in predicting
the treatment success will help to enable treatment optimization and to implement the concept of
precision medicine in pediatric asthma treatment.

Keywords: asthma control; asthma controller medication; childhood asthma; machine learning;
treatment outcome

1. Introduction

The aim of personalized medicine is to provide a target therapy for each individual or
phenotype, based on the corresponding syndrome or disease [1]. Even though machine
learning techniques have identified a number of structures and/or phenotypes in asthma,
one has to be careful in the clinical interpretation of these structures, as they may not
represent true endotypes (underlying immunopathological mechanisms) [2]. Overlaps
in the endotypes, as well as the clinical presentation of the disease, make the delivery of
a personalized asthma treatment quite elusive [3,4]. Furthermore, the same pattern of
symptoms does not necessarily indicate the same underlying mechanism, and moreover,
different mechanisms are not mutually exclusive and may even act synergistically. The
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emergence of machine learning algorithms, the abundance of clinically significant data and
computing power can be attributed as key enablers in the development of personalized
medicine. There is a substantial body of scientific work on data-driven methods in asthma
phenotyping, and the variables, as well as the model chosen, can largely affect the models
and obtained results [5–13]. A careful selection of both the predictive model and the
dataset are essential in such studies, with expert clinical interpretation being of the utmost
importance [14]. In childhood asthma, inhaled corticosteroids (ICS) (in combination with
long-acting beta-agonists, LABA and/or add-on leukotriene receptor antagonists, LTRA)
remain the controller medications of choice, although evidence shows that a significant
proportion of patients fail to respond adequately to such treatment [5–8]. The complexity
of the disease or, better said, the “umbrella” diagnosis of asthma that encompasses a
number of different phenotypes underpinned by different pathophysiological mechanisms
or distinct inflammatory pathways (endotypes) seems to be the major obstacle in asthma
management, as well as in the development of personalized treatment approaches [9]. An
important study on prediction was conducted by Belgrave et al. [10], focusing on preschool
wheezers (N = 150) with a large dataset (N (variables) = 636) using selected state-of-the-art
techniques for data processing and machine learning and obtained 90%+ performances
in Kappa statistics. The authors also reported the robustness and performance quality
when using Random Forest and that subjective variables are important in distinguishing
ill patients from controls. Another important study focusing on the asthma control-based
response to controller medication was conducted in the Childhood Asthma Management
Program (CAMP) cohort using novel machine learning algorithms [11]. They reported
that asthma control, a bronchodilator response and serum eosinophils were the most
predictive variables in asthma control, regardless of the medication used. Luo et al. [12]
demonstrated that machine learning studies in asthma rarely deal with predictive models
in clinical practice.

Our Aim and Contribution

The primary aim of our research was to test the predictive possibilities for treat-
ment success after 6 months of medication use in pediatric asthma patients and reveal
the key variables for understanding the mechanisms underlying such responses using
machine learning algorithms. Identifying non-responders vs. responders to a treatment
with machine learning tools such as those employed in this study is essential in asthma
management, as predicting treatment failure is extremely hard (if not impossible) in the
current practice. Our study was based on an observational childhood asthma cohort that
was ethnically homogeneous, age diverse and reflected real-life clinical situations, with
the majority of patients having mild-to-moderate disease. The main outcomes were four
different parameters of the response to treatment (after 6 months) assessed by changes in
the lung functions and level of control. Each of these targets was evaluated at baseline (t0)
and after 6 months (t0 + 6) of treatment use, alongside the other parameters and biomarkers.
The predictive possibilities were tested by means of machine learning, i.e., Random Forest
and AdaBoost classification algorithms, where the treatment outcomes (as binary variables)
were set as values to be predicted based on other clinically relevant data and assessments.
Since such algorithms are considered black box models, understanding ML models is of the
utmost importance in medicine [15]. For this reason, we introduced model explainability
by the use of permutation importance for understanding the most important variables for
differentiating between responders and non-responders.

2. Materials and Methods
2.1. Population Studied

Three hundred and sixty-five pediatric patients (355 children aged 2–17 and ten ado-
lescents aged 18–22) with atopic and nonatopic, mild to severe persistent asthma [16]
were recruited in a prospective, noninterventional type of clinical study at the Srebrnjak
Children’s Hospital outpatient clinic (Zagreb, Croatia). Informed consent was obtained
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from the children’s parents/legal guardians. The study protocol was approved by the
local Ethics Committee (No. 6/2015, 5 June 2015). All patients underwent a physical
examination, anthropometric measurements and standard diagnostic procedures to es-
tablish a diagnosis of asthma and guide its management (Table 1). The patients started
treatment with ICS (alone or in combination with LABA) and/or LTRA, according to the
disease severity and previously assessed level of disease control. A follow-up visit with
lung function and airway inflammation testing was made after 6 months of treatment
use. Additionally, treatment outcomes and the level of asthma control (according to the
Global Initiative for Asthma, GINA [16]) were assessed at the follow-up visit. In total,
280 variables (observations) were collected. This observational study is described in the
supplementary file in detail.

Table 1. The variables used in this study, described in more detail in the supplementary file.

Variable Group Description

demographics gender, age

subjective
clinical data

at baseline (t0)-personal and family medical history-atopy status, allergic
rhinitis (AR), atopic dermatitis (AD), food allergy and other comorbidities

objective
clinical data

at baseline (t0) and after 6 months (t0 + 6)-symptom control, frequency and
severity of exacerbations in the period since the last visit, lung function
(FVC, FEV1, MEF50), airway inflammation (FENO) measurement and

medication use; at baseline (t0)- skin prick (SPT) and total and specific IgE
to inhaled allergens, blood eosinophils and neutrophils, anthropometric

measures (height, weight, body mass index) and for certain patients with
suggestive history for comorbidities -ENT examination, pH probing with

impedance for diagnostics of laryngopharyngeal reflux and
gastroesophageal reflux disease, polysomnography for diagnostics of

obstructive sleep apnea syndrome, SPT and specific IgE to food and insect
venom allergens for diagnostics of food/insect venom allergy

genetic data
genotypes for rs37973 (GLCCI1), rs9910408 (TBX21), rs242941 (CRHR1),

rs1876828 (CRHR1), rs1042713 (ADRB2) and rs17576 (MMP9) (see Table S1,
Figure S1 and Table S2a,b in the Supplement)

AR: allergic rhinitis, AD: atopic dermatitis, FVC: forced vital capacity, FEV1- forced expiratory volume in one
second, MEF50- maximal expiratory flow at 50% of the vital flow capacity, FENO- Fractional Exhaled nitric oxide,
SPT: skin prick test, IgE: immunoglobulin E, ENT: ear/nose/throat, GLCCI1: glucocorticoid-induced 1, TBX21:
t-box 21, CRHR1: corticotropin releasing hormone receptor 1, ADRB2: beta-2 adrenergic receptor and MMP9:
matrix metalloproteinase-9. A full variable list is given in the supplementary file (see Table S3).

2.2. Response Variables

For a machine learning experiment, one needs predictive (X matrix) and response or
target variables (y). In this work, we used four target variables that represent the treatment
responses (outcomes) to asthma medication, namely (i) forced expiratory volume in one
second (FEV1) and (ii) maximal expiratory flow at 50% of the vital flow capacity (MEF50),
(iii) changes in airway inflammation (Fractional Exhaled nitric oxide (FENO)) and (iv) the
level of asthma control (LOAC) assessed by a pediatric pulmonologist. According to their
response to treatment after 6 months of medication use, the patients were divided into
“responders” and “non-responders” in accordance with the Minimal Clinically Important
Difference (MCID) for lung function adjusted for children (% of the predicted FEV1 and
MEF0) and data from other studies, taking into account changes in the level of asthma
control (LOAC) and changes in the FENO [17–21]. The response variables are described in
Table 2.
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Table 2. Patient stratification according to their response to treatment (target variables). Response to treatment is defined
into more detail in the supplementary file. Ppb: parts per billion.

Class FEV1 MEF50 FENO Asthma Control

Responders Increase ≥
10% predicted

Increase ≥ 15%
predicted

Decrease < 20% for values >
35 (50) ppb or < 10 ppb for

values < 35 (50) ppb

Improvement in
asthma control

Non-Responders Change < 10%
predicted

Change < 15%
predicted

Decrease ≤ 20% FENO ≤ 20%
for values over 35 (50) ppb

or ± 10 ppb for values <
35 (50) ppb or increase >20% for
values > 35 (50) ppb or > 10 ppb

for values < 35 (50) ppb

No changes in partial asthma
control or deterioration

in asthma control

FEV1—forced expiratory volume in one second, MEF50—maximal expiratory flow at 50% of the vital flow capacity, FENO—Fractional
Exhaled nitric oxide.

2.3. Data Preparation and Balancing

We used Python scripts and the methods previously described for data processing
and modeling [22]. Predictive variables with more than 10% missing values were removed.
Variables with fewer than 10% missing values were imputed by their respective median
for continuous variables or mode for discrete variables. To avoid the “curse of dimen-
sionality”, where models suffer from an overly large number of predictive variables [23],
we aggregated the individual variables describing allergic sensitization (skin prick test
(SPT) and allergen-specific immunoglobulin E (sIgE) test results). These variables were
binarized and summed into four categories: seasonal inhaled, perennial inhaled, insect
venom and food allergens. Strong sensitization to house dust mite, cat dander and ragweed
were treated separately due to their association with disease severity and more severe
outcomes [24,25]. The dataset for predicting treatment outcomes consisted of 365 patients
and 73 patient-related variables (listed in the supplementary file) and four target variables
(LOAC, FEV1, FENO and MEF50). We dealt with an imbalanced classification problem
(see Table 3), i.e., responders (1) or non-responders (0) could have been underrepresented.
Imbalanced classification models tend to recognize the major class better while struggling
with the often-scarce minor class, meaning that predictions may be biased towards the ma-
jor class [22,26]. To avoid this, we employed synthetic data generation techniques, namely
oversampling (OS) and under sampling (on the training set exclusively). Oversampling
was conducted by means of SMOTE [27], which was previously reported for improving
the performance on predicting lung disease outcomes [10]. We utilized Cluster Centroids
(CC) [28,29] for under sampling.

Table 3. Distribution of the responders and non-responders per measured outcome after 6 months of
treatment. The 13 missing FENO response values were imputed. t0 + 6 is the timepoint for 6 months
after the start of the treatment.

Treatment Outcome (t0 + 6) Responders (1) Non-Responders (0)

LOAC (t0 + 6) 230 135
FENO (t0 + 6) 248 104
FEV1 (t0 + 6) 129 236

MEF50 (t0 + 6) 126 239
FEV1—forced expiratory volume in one second, MEF50—maximal expiratory flow at 50% of the vital flow
capacity, FENO—Fractional Exhaled nitric oxide, LOAC—level of asthma control.

2.4. Machine Learning

Our aim was to estimate to which class a patient belongs (responder or non-responder)
after 6 months of treatment (t0) based on 73 predictive variables for 365 patients. The
employed ensemble classification algorithms follow a paradigm where multiple “weak
nonlinear classifiers” are trained and averaged to improve the prediction abilities and
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lower the prediction error (Figure 1). In problem settings such as the present one, nonlinear
classifiers are the solution of choice, since linear classifiers tend to fail with heterogeneous
data [30]. Furthermore, the use of tree-based classifiers reduces the workload with data
preprocessing and utilizes less variables, since the categorical ones do not need to be
binary-encoded. A review of the advantages in using tree classifiers in medicine is given in
Reference [30].
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Figure 1. (Left) A typical (weak) tree classifier. A group of patients with both responders and non-responders is to be
separated based on the given predictive variables. The first split happens with a variable that gives the best split for the
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(Right) Simplified scheme of the random forest algorithm. The trees represent weak classifiers that are aggregated via
voting to form a strong one. Every tree trains on a random part of the training data (bootstrapping). The AdaBoost classifier
trains the trees sequentially instead of parallel.

We used two types of machine learning classification algorithms: the AdaBoost
(AB) [31] nd Random Forest [32] (RF) classifiers. The data was split [26] into train (75%) and
test (validation) sets (25%). Due to the imbalance, the minor class was stratified respectively
per target to have an equal distribution of the minor class in training and the test set.
The experimental matrix for the machine learning models is described in Table 4. For
optimizing the models in a large parameter space, we also used 5× cross-validation in the
train set; however, to show the true performances of the classifiers, we reported model
metrics on the test sets.

Table 4. The experimental matrix consists of training two different classifiers × three sampling
methods × four targets, meaning there are 24 options (2 × 3× 4), each resampled 100× train–test
splitting (giving a total of 600 models trained per target).

1. Classification
Algorithm

2. Sampling
Methods

3. Targets After Six
Months of Treatment

(a) AdaBoost (a) No sampling (base) (a) MEF50 (t0 + 6)
(b) Random Forest (b) Under sampling (cluster centroids) (b) FEV1 (t0 + 6)

(c) Oversampling (c) FENO (t0 + 6)
(d) LOAC (t0 + 6)

FEV1—forced expiratory volume in one second, MEF50- maximal expiratory flow at 50% of the vital flow capacity,
FENO—Fractional Exhaled nitric oxide, LOAC—level of asthma control.

For model explanation and variable selection, we used permutation importance
(PI) [33], which we used in our prior work [34]. Permutation importance refits pretrained
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models in each run and permutes (or shuffles) the values of the individual predictive
variables. If a variable was important to the model, the model quality will deteriorate if
the values in the variable are shuffled. A drop in the model quality is given as a weight
towards the quality metrics. The higher the dependence of the model on a variable, the
higher its weight. Variable selection is utilized by selection features that are above 0 permu-
tation importance. The model quality metrics used in this work were Accuracy, Sensitivity,
Specificity and the Matthews correlations coefficient (MCC) [35,36]. A detailed description
of these metrics is given in the supplementary data (Table S4).

3. Results
3.1. Performance in Prediction of Treatment Outcomes

Table 5 presents the best achieved classification results for each particular treatment
outcome. Overall, the MCC metrics, which are sensitive to imbalanced classification and
random effects, show the classification results are above random. The highest prediction ac-
curacy is achieved for LOAC. This is due to a high number of correctly predicted outcomes
for responders (indicated by specificity) and non-responders (indicated by sensitivity), as
well as a high MCC.

Table 5. Average classification results for the treatment targets FEV1, FENO, MEF50 and LOAC.
The results are reported for the best performing model (classifier and sampling method) and are
calculated by the mean of the accuracy, specificity, sensitivity and the MCC.

FEV1 FENO MEF50 LOAC

Accuracy 0.6503 0.7005 0.6753 0.9698
Specificity 0.8986 0.8531 0.8817 0.9661
Sensitivity 0.7854 0.9560 0.7855 0.9781

MCC 0.2190 0.2146 0.2608 0.9366
MCC is the Matthews correlation coefficient. FEV1—forced expiratory volume in one second, MEF50—maximal
expiratory flow at 50% of the vital flow capacity, FENO—Fractional Exhaled nitric oxide, LOAC—level of
asthma control.

When predicting a response according to FEV1 (t0 + 6), FENO (t0 + 6) and MEF50
(t0 + 6), an average accuracy between 65% and 70% was achieved. Compared to lung
function-based treatment outcomes (MEF50 and FEV1), predicting the outcomes assessed
by changes in FENO (baseline to 6m) performed better, as it showed a slightly higher
accuracy and much better sensitivity (good prediction performance for responders). How-
ever, for treatment outcomes according to lung function and FENO, a much lower MCC
(21–26%) was achieved when compared to LOAC (t0 + 6).

We utilized two different classification methods and three sampling techniques.
Figure 2 shows the distribution of the model results by means of the MCC across the
sampling methods and classifiers. AdaBoost was the better-performing classifier for LOAC,
FEV1 and FENO, except for MEF50 (t0 + 6), where RF outperformed it marginally. This is of
no surprise, since boosting algorithms generally show good performances with imbalanced
sets [37]. Overall, not sampling the data, in our case, led to the best prediction results in
combination with the AdaBoost algorithm. Using oversampling resulted in a better MCC
only for MEF50 (t0 + 6), which could indicate that, when designing experiments like these,
one has to take care of nonuniform variable spaces for the rare or minor classes like the
responders here [37]. Even though the differences are marginal, in medicine, even the
slightest improvement may be important. These results can be explained by the advantage
of AdaBoost, which learns sequentially on the misclassification from previous weak learn-
ers in the sequence, and while over/under sampling improves the results for RF, it is not
the case with AdaBoost. Additionally, since RF is trained in parallel, it is much faster in
practice; hence, for training fast and large datasets, RF with oversampling could be used.
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Figure 2. Boxplot of the classification results by means of the MCC (x-axis). The comparison includes the classification
results for the four targets (FEV1, LOAC, FENO and MEF50); two classification algorithms (AB—Ada Boost, RF—Random
Forest) and two sampling methods (Oversampling: OS and Cluster Centroids: CC) compared to no sampling (base). The
best models are assigned per target by a red square surrounding the box. FEV1—forced expiratory volume in one second,
MEF50—maximal expiratory flow at 50% of the vital flow capacity, FENO—Fractional Exhaled nitric oxide, LOAC—level of
asthma control, MCC—Matthews correlation coefficient.

3.2. Model Interpretation

For each target modeled in the experimental matrix, we calculated the average permu-
tation importance (PI) for the predictive variables (Table 6). The only predictive variable
passing the 1% threshold for the classification of LOAC outcomes is “asthma severity”.

Table 6. Top important variables for each of the targets. The variables were aggregated by the median
value of the permutation importance per target (600 runs each). The permutation importance is
divided by the respective Matthews correlation coefficient (MCC) value from Table 5 and calculated
as the % of weight respective to the MCC, i.e., contribution to MCC. For each target, only several
variables returned an aggregated median above 1%. hsCRP: high-sensitivity C-reactive protein and
t0: baseline.

Variable LOAC FENO FEV1 MEF50

Seasonal allergens (SPT) 1.1%
Asthma severity (t0) 47.0%

hsCRP 1.2%
IgE total 1.5% 3.2%

FENO (t0) 12.8%
FEV1 (t0) 14.8% 1.8%

MEF50 (t0) 8.2% 30.3%
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Additionally, LOAC appears to be associated with the least complexity in regard to
prediction, with only one important predictor, in spite of its great power of prediction
(Table 6). To understand this, we submitted this subset and the target LOAC to a decision
tree classifier (Figure 1, left) to follow the decisions of complex classifiers that consist of
many such weak classifiers; see Figure 3. This exemplary decision tree (only a subpart of an
ensemble classifier) shows that children with milder forms of the disease respond well to
treatment with ICS, as well as that severe patients do not respond to treatment adequately,
i.e., severe patients at the baseline remain uncontrolled after 6 months of medication use.
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was predicted by three predictive variables (LOAC baseline, Asthma severity baseline and IGE_total).
The responders are assigned as R-LOAC (responders by level of asthma control), while the non-
responders are assigned as NR-LOAC (non-responders by level of asthma control). The asthma
severity baseline is the first split. Most of the responders will respond well to treatment if their
asthma severity was estimated to have a value of 1. In an ensemble classifier, a few hundred of
these are trained on the bootstrapped samples and averaged for prediction, which is explained in
Figure 1. Ass_asthma_sev_basline: asthma severity (according to GINA) grade assessed at baseline,
ass_asthma_ctrl_basline: asthma control assessed at baseline and biom_ige_total: total serum IgE.

To understand the age effects, known to be an important factor in disease pathophysi-
ology, we stratified the predicted data in the test sets into age groups (2–5, 6–11, 12–17 and
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18+) and calculated the average MCC per group to identify whether age might influence
the predictive quality of the models. The results are given in Table 7. The best results for
LOAC-based outcomes were achieved for young children (2–5 years), with a perfect MCC
of 1.0, while, for the adolescent group, the approach failed, with an MCC of 0.29. Similar
observations are presented for MEF50 with the 2–5-year-old age group having the best and
18+ the worst results (MCC 0.29 vs. 0). The group of 6–11 years of age showed the best
results for FENO- (MCC 0.14) and FEV1 (MCC 0.27)-based outcomes.

Table 7. Analysis of model results stratified by age. Each MCC value is the median of 200 models.
The patients are grouped in age groups (2–5, 6–11, 12–17 and 18+). The number of patients per age
group is given in the column “No. Patients”. Superscripts b and w are used to describe the best and
worst results per response, respectively.

Response Age Group MCC (All Models) No. Patients

LOAC

2–5 y/o b 1 53
6–11 y/o 0.96 178
12–17 y/o 0.89 124
>18 y/o w 0.61 10

FENO

2–5 y/o w 0 53
6–11 y/o b 0.14 178
12–17 y/o 0.1 124
>18 y/o w 0 10

FEV1

2–5 y/o 0.12 53
6–11 y/o b 0.27 178
12–17 y/o 0.08 124
>18 y/o w 0 10

MEF50

2–5 y/o b 0.29 53
6–11 y/o 0.18 178
12–17 y/o 0.25 124
>18 y/o w 0 10

No. Patients—number of patients, y/o—years old.

3.3. The Need for Machine Learning

There is an ongoing discussion whether to use black box models in modeling scenar-
ios [38–41], such as the used cases presented here as black box models, and their decisions
cannot be easily understood. For this reason, we compared the model results of the en-
semblers to logistic regression, which was treated in the same manner as the ensemble
models, i.e., split 100 times randomly and optimized during cross-validation in the train set.
Logistic regression can be considered a baseline due to its simplicity and interpretability
(explainability) coming from simple splits in data space [42] and is often used in asthma
studies [13,43–45]. The comparison is given on the test set as the median values in Table 8.
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Table 8. Comparison of the ensemble models to logistic regression. The median MCC values across
all the models grouped by the target variables are compared.

Response Sampling Logistic Regression AdaBoost Random Forest

FENO
Base 0.07 0.21 0.07
CC −0.02 0.07 0.10
OS 0.05 0.17 0.13

FEV1
Base 0.00 0.22 0.14
CC 0.03 0.14 0.15
OS 0.03 0.18 0.19

LOAC
Base 0.19 0.94 0.90
CC 0.04 0.89 0.90
OS 0.17 0.93 0.90

MEF50
Base −0.01 0.23 0.19
CC −0.02 0.14 0.12
OS 0.03 0.24 0.26

CC—cluster centroids, OS—oversampling (both explained in Section 2.3).

4. Discussion

To justify the use of machine learning algorithms, we compared our models to logistic
regression. Our comparison shows that an algorithm relying on a linear combination of
variables fails on average against ensemble algorithms. The low performance of the linear
model was also observed in our prior and other works regarding both regression [41,46] and
classification tasks [30,44,47]. Besides failing due to nonlinear relationships and boundaries
between the classes, linear models can also suffer from the utilization of irrelevant features
in models and complex cancellation effects [30].

Although LOAC is a less objective variable than lung function and FENO, as it en-
compasses symptom self-assessment, it reflects real-life treatment success best. This is
in concordance with the control-based management approach, focusing on achieving ad-
equate control of the symptoms and minimizing the future risks of exacerbations [16].
The lower predictive quality with FEV1 and MEF50 suggests that lung function is not a
preferred tool to be used to guide treatment in children with asthma, which is highlighted
in the current GINA guidelines. Lung function is a complex trait and reflects a number
of structural and functional changes to the airways due to chronic inflammation. It does
not correlate with symptom occurrence or severity well, especially in children, as certain
patients with poor lung function may not exhibit severe symptoms and vice versa, certain
patients with normal lung function may experience symptom aggravation [48,49]. More-
over, children with mild-to-moderate asthma using the controller treatment exhibit a slower
decline in lung function in comparison with deterioration of the symptom control [50],
which is probably why the model predicts these traits poorly, given the fact that most of
the patients in our study had milder disease forms.

Compared to MEF50 and FEV1, FENO performed better in the classification tasks.
This suggests that FENO at the baseline can be used as a predictor of steroid responsiveness
even more consistently than other parameters, e.g., lung function [20,51]. FENO is a good
biomarker of the Th2-related allergic inflammatory response, as interleukin-13 promotes
nitric oxide (NO) synthase activity and NO production [52]. Moreover, the latest GINA
guidelines [16] suggest that treatment guided by FENO in children and young adults is
associated with a significant reduction in exacerbation rates and that it may be a good
complementary approach compatible with control-based asthma management. Addition-
ally, since the FENO-based response was able to distinguish true responders quite well, it
may be useful in identifying patients with ineffective or suboptimal treatments, those that
require treatment adjustment [16] and those with poor adherence to treatment [53].

When comparing MEF50 and FEV1 to each other, MEF50-based outcomes were pre-
dicted by FEV1 at the baseline to a lesser extent than FEV1-based outcomes by MEF50 at
the baseline. Additionally, MEF50-based outcomes were also predicted by hsCRP (Table 6),
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which is a marker of subtly elevated systemic inflammation in asthma [40]. The evidence
shows that increased hsCRP is associated with more severe asthma outcomes [41]. This, in
addition to the fact that the model predicting MEF50-related response performed better
in almost all parameters (except specificity) compared to the FEV1-related response (see
Table 5) and the fact that oversampling further improved the model’s power in predicting
true responders and non-responders (see Figure 2) for MEF50, highlights the importance
of the distal airways in children with asthma [42]. The peripheral airways are the pre-
dominant site of airway inflammation [43] and may very well be a predominant site of
airflow obstruction in asthmatic children, involved in the pathophysiology and resistance
to treatment with ICS [44]. Moreover, distal airway impairment may be present despite
rare and mild asthma symptoms and normal FEV1 in pediatric patients. The current GINA
recommendations are guided by FEV1 (or PEF), but our findings suggest that MEF50 (and
other distal airways lung function parameters) should be included as a variable in the
diagnostic and assessment processes and guidelines, following more extensive research.

When comparing FENO to LOAC, a lower predictive quality was achieved. This
suggests that the model generates a significant proportion of false responders and non-
responders for lung function- and FENO-based outcomes, which further supports the
control-guided asthma management approach as a preferred option in guiding asthma
treatment in children. Additional results by means of the Receiver Operating Characteristic
(ROC) curves [54] are presented in Supplementary Figure S2. This highlights the impor-
tance of an expert assessment in asthma management from the start, as well as the impact
of asthma heterogeneity and its phenotypes for treatment success [55].

The fact that LOAC-based outcomes were predicted predominantly by asthma severity
at the baseline suggests that the model recognizes that children with milder disease forms
respond better to anti-inflammatory treatment. Additionally, it seems that the model is
capable of identifying severe patients quite accurately, but the shortfall is that it does not
inform about the potential mechanisms underlying treatment failure. It also seems that
prominent markers of atopy (total IgE) are highly predictive of treatment success. The vast
majority of childhood asthma patients have allergic asthma, and a number of studies have
shown that it is sensitive to treatment with ICS. More specifically, T-helper 2 lymphocyte
and T2-high endotypes respond best to ICS [56]. Moreover, since both asthma control
and severity encompass the patient’s (caregiver’s) self-estimation on symptom frequency
and severity, these findings emphasize the importance of the patient’s involvement in the
management plan, an essential part of the “shared-care approach” in asthma management
is associated with improved outcomes [16].

Although FENO had a substantially lower accuracy and MCC than LOAC, the treat-
ment outcomes according to the FENO changes were capable of identifying true responders
quite well, indicating that the FENO-guided treatment may be a complementary tool in
guiding asthma management in children. The permutation importance revealed that
predicting FENO is more complex in comparison to LOAC (Table 6). This may be due
to the fact that FENO reflects the level and type of airway inflammation that drives the
chronicity of the disease. Elevated IgE and sensitization to inhaled allergens are com-
mon markers of T2-high inflammation [57] which is known to respond better to anti-
inflammatory treatment.

Additionally, a stratification of the patients by age showed that the models exhibited
the greatest predictive power in younger children (2–5 years old for LOAC- and MEF50-
and 6–11 years old for FENO- and FEV1-based outcomes). The models seemed to perform
poorly in older children and adolescents. Age is known to be an important factor in asthma
physiology, both age of onset, as well as the duration of the disease. The later age of onset
is usually associated with poorer outcomes [58], and the natural course of the disease
progressing into adolescence and adulthood (as opposed to remission in puberty) is also as-
sociated with the symptoms worsening (although this effect is gender-conditioned) [59,60].
However, having only 10 patients in the 18+ age group might represent a limitation to
these findings.
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As for the permutation importance, none of the targets involved the available treat-
ment variables, meaning that the models did not use treatment variables in creating
decisions on the treatment outcomes. Even though the treatment follows the guidelines,
these are not definite nor objective sensu stricto. The guidelines actually provide general
choice recommendations, and the physician is left to choose between several treatment
options. Although this may represent a potential bias in identifying true responders vs.
non-responders, it actually reflects the model’s power of prediction and favors the current
symptom of control-guided asthma management approach.

Our results are in concordance with those of Ross et al. [11], who also identified asthma
control as the strongest predictive variable for LOAC. These authors only focused on one
type of ICS (budesonide) and chromones (nedocromil), while our study encompassed all
the commonly used classes of anti-inflammatory controller medication (ICS, LABA and
LTRA). Ross et al. [11] only evaluated the response to treatment according to symptom
control, while our study involved lung function- and FENO-based treatment outcomes.
Although the homogeneity of the population studied (a real-life situation with most of the
children having allergic asthma and milder disease forms) could have been an advantage in
identifying certain phenotypes and genetic traits associated with the treatment outcomes;
this was a disadvantage in identifying clear pathophysiological mechanisms involved.
Moreover, the sample size in our study might have been small (N = 365 vs. N = 1019 in
Ross et al. [11]), possibly further hindering a more detailed endotype characterization.
Ross et al. identified serum eosinophils as one of the most predictive variables for asthma
control, while we identified IgE, supporting our previous findings that children with T2-
high allergic asthma respond best to an anti-inflammatory treatment [61]. Finally, even
though GINA guidelines suggest a treatment response review every 3–6 months, the
assessment period in this study have been too short to reflect the biologically significant
and measurable effects, especially on complex traits such as lung function changes in
response to treatment.

5. Conclusions

Our goal was to evaluate the prediction of treatment outcomes in childhood asthma
after six months of medication use. Our results show that asthma control (LOAC) was
well-predicted, while the prediction quality of lung function-based treatment outcomes
(FEV1 and MEF50) was rather low. These results are in concordance with the GINA control-
based management approach, while the lung function may not be the tool of choice to be
used in guiding the treatment in children with asthma21. The prediction model for the
FENO-based treatment response performed better in almost all aspects compared to lung
function-related outcomes, which suggests that treatment success guided by changes in
FENO might be a complementary tool in childhood asthma management. Our results also
suggest that the current guidelines in asthma management and the current expertise in a
clinical assessment (assessment of severity and disease control) are satisfactory in most
cases but, also, that our models were quite accurate in identifying patients with ineffective
and suboptimal treatment success, which is hardly the case in the current clinical practice.
Additionally, our findings emphasize that the distal airway impairment in childhood
asthma might have greater diagnostic and assessment value over FEV1.

Although machine learning has shown how the treatment outcome prediction can be
driven, it has revealed certain issues that need to be addressed in future studies:

• With respect to asthma chronicity, the assessment period of 6 months may not be
enough for valid predictions. Longitudinal and prospective studies are essential;

• Additional studies involving larger numbers of patients with even more clinically rel-
evant parameters are required to increase the success of the treatment outcome predic-
tion and, further, the characterization of specific disease phenotypes and endotypes.

Although machine learning has shown how treatment outcome prediction can be
driven, it has revealed certain issues that need to be addressed in future studies:
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• With respect to asthma chronicity, the assessment period of 6 months may not be
enough for valid predictions. Longitudinal and prospective studies are essential;

• Additional studies involving larger numbers of patients with even more clinically
relevant parameters are required to increase the success of the treatment outcome pre-
diction and the further characterization of specific disease phenotypes and endotypes;

• Although we tried to encompass both the objectively measured (lung function and
FENO) and subjective target variables (asthma control), a consensus in the choice of
the primary study endpoints is required.

Recently, much focus has been given to the implementation of precision medicine in
asthma, and experts emphasize that the time for action is now. The use of big data and
machine learning in predicting treatment success, such as the one in this study, might enable
treatment optimization and the development of new therapies for each defined endotype.
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rs242941, rs1876828, rs1042713 and rs17576, (b) Observed and expected genotype frequencies for
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