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Although an infection with Entamoeba histolytica is most commonly asympto- 
matic, the potential  for  invasive, metastatic disease, coupled with its high preva- 
lence, makes amoebiasis a major health problem th roughout  much of  the world. 
Most amoebiasis-related mortali ty stems f rom extra-intestinal infection. In these 
cases, t rophozoites  penet ra te  the epithelial layer and lamina propria  of  the bowel 
mucosa, en ter  the bloodstream, and then disseminate to almost any organ or  
tissue, most commonly the liver. 

T h e  mechanisms that allow tissue penetra t ion are not  well understood.  Ultra- 
structural and histopathological studies (reviewed in reference  1) have shown 
that, dur ing  invasion o f  the bowel wall, t rophozoites  are seen at the margin of  
ulcerative lesions adjacent to healthy tissue. Degenerat ion of  epithelial cells 
adjacent to invading trophozoites and dissolution of  the basement membrane  of  
the mucosa have been observed (2-4). These  findings suggest that histolytic and 
proteolytic factors may be elaborated to facilitate mucosal damage and invasion. 

T w o  general types o f  histolytic factors have been proposed: cytotoxic factors 
which may directly damage cells, such as a secreted "amoebapore"  ion channel 
(5, 6) and proteolytic enzymes, which may attack both cells and extracellular 
matrix. 

T h e  virulence ~ o f  axenically cul tured E. histolytica strains has been correla ted 
with the presence of  proteolytic enzymes found on the amoeba surface, in 
secretions, or  in extracts o f  whole t rophozoites  (9-14).  Unfor tunately ,  as none 
of  these proteinases has been purif ied to homogenei ty ,  impor tant  questions 
remain as to how many are present  and how they may contr ibute  to the 
pathogenesis o f  amoebiasis. 

T o  de te rmine  what role secreted proteinases may play in tissue invasion, we 
assayed the degradat ion o f  extracellular matr ix by live trophozoites and their  
secretory products,  using an in vitro model of  extracellular matrix successfully 
used to study o ther  invasive parasites (15-18).  These  studies allowed us to 

For axenic amoebae in culture, "virulence" is defined in terms of ability to induce lesions in 
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determine  which macromolecules  were degraded  in the type o f  interactive 
f ramework found in vivo, and to compare  two strains o fE .  histolytica (HM-1 and 
HK-9) differing in virulence. We then under took  to purify and characterize the 
major  proteinase secreted by t rophozoites  o f  the more  virulent (HM-1) strain. 
We investigated the specific activity o f  the purif ied proteinase against type I 
collagen, elastin, f ibronectin,  and laminin, and studied its role in the cytopathic 
effect  o f  virulent t rophozoites  on cells in culture.  Finally, based on its ability to 
degrade  a peptide substrate with arginine at the P-1 position, we assayed its 
possible function as a plasminogen activator. 

Mate r i a l s  a n d  M e t h o d s  
Maintenance of Amoebae Cultures. Trophozoites of the axenic HK-9 and HM-1 strains 

were either obtained from the American Type Culture Collection (Rockville, MD) or 
were kindly provided by Dr. Frances Gillin, University of California, San Diego. Cultures 
were maintained in TYI-S-33 medium supplemented with penicillin (100 U/ml), strepto- 
mycin (100 gg/ml), and 10% bovine serum (Biofluids, Inc., Rockville, MD) for HK-9 or 
15% bovine serum for HM-1, according to the methods of Diamond (19). For enzyme 
collections, amebae were plated at 5,000/ml in 25 cm 2 tissue culture flasks and harvested 
3 d later. Amoebae were counted with a hemacytometer. 

Preparation of Trophozoite Secretions and Extracts. Trophozoites harvested in log-phase 
growth (72 h after passage) were washed to remove serum and incubated in PBS with 
penicillin/streptomycin for 3 h at 37°C. Amoebae maintained >90% viability as judged 
by trypan blue exclusion and the absence of cytosolic alcohol dehydrogenase activity (20) 
in the PBS after incubation. Amoebae were centrifuged, and the resulting supernatant 
passed through a 0.45-#m filter. This was designated culture supernatant. 

For extracts, trophozoites were resuspended in PBS with penicillin/streptomycin and 
lysed in a nitrogen cavitation bomb (Kontes Co., Vineland, NJ) after equilibration at 30 
atm (3 × 106 N/m 2) for 1 h at 4°C. After centrifugation, the supernatant of this 
preparation was passed through a 0.45-#m filter and designated as soluble lysate. 

The amount of protein was estimated by the method of Bradford (21). 
Preparation of Radioactively Labeled Extracellular Matrix and Assay of Matrix Degrada- 

tion. The method for preparation of extracellular matrix has been described in detail 
elsewhere (15). Briefly, R22 cells (derived from rat vascular smooth muscle) were grown 
in 24-well tissue culture plates in medium supplemented with [3H]proline. Under these 
conditions, the cells produce a matrix of radioactively labeled glycoproteins, elastin, and 
collagen (primarily types I and III). After the cells were removed with NH4OH, the 
insoluble matrix was washed and stored until used. 

To assay for matrix degradation, live amoebae, lysate, culture supernatant, or purified 
proteinase fractions were incubated on the matrix at 37°C (reaction volume, 1 ml). 
Degradation was monitored by counting 50-#1 aliquots of supernatant in a liquid scintil- 
lation spectrometer (LS-100; Beckman Instruments, Inc., Fullerton, CA) at several time 
points until a plateau was reached (24-48 h). The remaining reaction mixture was 
removed, and the specific degradation of noncollagenous glycoproteins, elastin, and 
collagen was estimated from the radioactivity released by sequential incubations of the 
residual matrix with trypsin, elastase, and collagenase, relative to controls (15, 22). 
Biochemical and uhrastructural analyses of matrices at each step of this sequential enzyme 
digestion have confirmed that trypsin degrades primarily noncollagenous glycoproteins 
(e.g., fibronectin), elastase degrades almost exclusively elastin, and collagenase degrades 
the remaining interstitial collagens (23, 24). 

Purification of Proteinase Activity. To first determine how many proteolytic species 
were present in secretions, and their molecular weights under nonreduced conditions, 5 
#1 of crude supernatant and lysate were electrophoresed in 10% SDS-polyacrylamide gels 
copolymerized with 0.1% gelatin (Sigma Chemical Co., St. Louis, MO) (25). Gels were 
washed to remove SDS and incubated in buffer for 6-16 h at 37°C. After several cycles 



538 MAJOR NEUTRAL PROTE1NASE OF ENTAMOEBA HISTOLYTICA 

of staining and destaining, proteolytic species were seen as clear bands on a Coomassie 
blue-stained background. This technique, as well as SDS-PAGE of boiled and reduced 
samples on silver-stained gels (26, 27), was used to monitor purification. Molecular weights 
were estimated from the migration of standards (Bio-Rad Laboratories; Richmond, CA). 

Culture supernatant (5-10 ml at 0.5-5 mg/ml) was then dialyzed against buffer (20 
mM Tris-HCl, 2 mM DTT,  pH 7.5) and applied at a flow rate of 0.25 ml/min to a Mono 
Q anion-exchange column (Pharmacia Fine Chemicals, Piscataway, NJ). Protein was eluted 
with a linear salt gradient (20 mM Tris-HCl, 2 mM DTT,  200 mM NaC1, pH 7.5) at a 
flow rate of 0.5 ml/min using a GP-250 fast protein liquid chromatography (FPLC) 2 
gradient programmer (Pharmacia Fine Chemicals). Fractions (1.5 ml) were collected and 
assayed for proteolytic activity against Azocoll, a general proteinase substrate (Sigma 
Chemical Co.), and against the synthetic peptide substrate Boc-arginine-arginine-4-amino- 
7-methylcoumarin (Z-Arg-Arg-AMC) (Enzyme System Products, Livermore, CA), which 
has been shown to be a substrate for the major neutral proteinase (12). 

Fractions of peak activity from the anion-exchange column were pooled and dialyzed 
overnight against buffer (25 mM bis-Tris, 2 mM DTT,  pH 7.1) and applied to a Mono P 
chromatofocusing column at a flow rate of 0.25 ml/min. About 3 ml at 0.5 mg/ml were 
typically injected. Protein was eluted at a flow rate of 0.5 ml/min over a pH gradient of 
7-5 formed with 10% Polybuffer 74, pH 5.0 (Pharmacia Fine Chemicals). The gradient 
was generated with the GP-250 gradient programmer and continuously monitored with 
a pH meter. Fractions were collected and checked for activity as before. 

2 mM DTT was used throughout as it enhanced activity two- to fourfold in assays and 
prolonged stability of the enzyme during storage. Even so, 5-25% of the activity was lost 
during each day in storage at -20°C.  Storage at - 7 0  ° or 4°C gave similar results. 

Assays for Proteolytic Activity. All assays were performed in 100 mM Tris-HCl, 2 mM 
DTT,  pH 7.4, unless otherwise noted. 

Azocollytic activity was measured by incubation of 3 mg Azocoll with 10-100/~1 of 
enzyme (1 ml reaction volume) for 3-16 h at 37°C. The tubes were then vortexed, 
microfuged, and the amount of degradation was determined from the absorbance of the 
supernatant at 540 nm (A~4o). Control tubes were incubated without enzyme; bovine 
trypsin (5/~g; Sigma Chemical Co.) was used to determine the total available substrate. 

The Z-Arg-Arg-AMC assay is based on the fluorescence of the cleaved AMC group at 
460 nm when excited at 380 nm (28). Enzyme samples (5-25/A) were added to a 4-/~M 
solution of Z-Arg-Arg-AMC in buffer to a total volume of 2 ml. The rate of substrate 
hydrolysis at ambient temperature was determined from the rate of increase of fluores- 
cence, monitored on a continuously recording spectrofluorometer (Aminco SPF-500; 
American Instrument Co., Silver Spring, MD). The scale was calibrated with a stock 
solution of 1.3 #M AMC (Sigma Chemical Co.). 

Degradation of Fibronectin, Laminin, Elastin, and Type I Collagen. Aliquots (40 t~g) of 
fibronectin (Bethesda Research Laboratories; Bethesda, MD), laminin (Bethesda Research 
Laboratories), or type I collagen (Vitrogen 100; Collagen Corp., Palo Alto, CA), diluted 
to 1 mg/ml in buffer with 150 mM NaC1, were mixed with 40 ttl of Mono P-purified 
enzyme or 10-20/~1 of culture supernatant. Volumes were brought to 80 v.1 with 100 mM 
Tris, pH 7.2, and DTT was added to a final concentration of 2 mM. Samples were 
incubated for 3.5 h (fibronectin and collagen) or 20 b (laminin) at 37°C, along with 
matched amounts of substrate or enzyme alone as controls. Collagen was also incubated 
with 0.5/~g of TPCK-trypsin (Worthington Biochemical Corp., Freehold, NJ) to assay for 
nonspecific degradation. 

Reactions were terminated with 2x sample buffer and analyzed by SDS-PAGE (laminin 
with 5% and 10% gels; fibronectin with 7% gels; collagen with 10% gels) for evidence of 
degradation; 80 ul was loaded into each lane. 

Elastase activity was assayed as previously described (25). Briefly, 200 ~g of NaB[3H]4 - 
labeled elastin (Elastin Corp., St. Louis, MO) was incubated with 100 #1 of culture 

2 Abbreviations used in this paper: BHK, baby hamster kidney; FPLC, fast-protein liquid chromatog- 
raphy; NEM, N-ethyl-maleimide; TLCK, tosyl-lysyl-chloromethyl ketone; Z-Arg-Arg-AMC, Boc- 
arginine-arginine-4-amino-7-methylcoumarin. 
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TABLE I 
Inhibition of Mono P-purified Enzyme 

Final Inhibitor concentration 

Activity as percent of control* 
(without inhibitor) 

Culture Mono P- 
supernatant* purified 

enzyme* 

N-ethylmaleimide (NEM) 5 mM 5 0 
Iodoacetate 3 mM 0 0 
Leupeptin 10 ~zM 68 16 

50 uM ND 0 

at-Proteinase inhibitor 100 ttg/ml 58 0 
TLCK 0.1 mM 0 0 
Aprotinin (trasylol) 100 ttg/ml 100 100 
EDTA 10 mM 100 100 
PMSF 2 mM 100 100 
1, ! 0-Pbenanthroline 2 mM 100 100 
Pepstatin A 100 ~tg/ml 100 100 
Bovine serum 0.5% (vol/vol) 0 0 
Soybean trypsin inhibitor (SBTI) 100 ~tg/ml 100 100 

ND, not determined. 
* By Z-Arg-Arg-AMC assay, except PMSF and serum, which were by Azocoll assay. 
* By Azocoll assay. 

supernatant  or  100 #1 of  Mono P-pur i f ied  enzyme in buffer (reaction volume, 300 #1) for 
19 h at 37 ° C. Total  available substrate was determined by digest with pancreatic elastase 
(Sigma Chemical Co.). 

PIasminogen Activator Assay. Plasminogen activator activity was determined by the 
method o f  Unkeless et al. (29) as modified by Aggeler  et al. (30). Briefly, 24-well plates 
were coated with J2SI-labeled fibrinogen and incubated with calf serum for 2 h at 37°C 
to convert  f ibrinogen to fibrin. Plasminogen (280 ng; final concentration, 6 riM) was 
added in 50 mM Tris-HCI (pH 7.8) with 100/zl of  culture supernatant  or  amoebic lysate, 
or  50 #1 o f  Mono P-pur i f ied  enzyme, to a final volume of  0.5 ml. Controls were incubated 
without plasminogen added.  Aliquots o f  supernatant  (50 #1) from quadruplicate wells 
were counted in a gamma counter  (Auto-Gamma 500; Packard Instrument  Co., Inc., 
Downers Grove, IL). Total  available fibrin was determined by trypsin digest. Urokinase 
(10 Ploug units; Calbiochem-Behring; La Joila, CA) was assayed for comparison. Results 
were expressed as the percentage of  total available fibrin degraded,  less the percentage 
degraded  by the corresponding plasminogen-free control. 

Effects of Inhibitors. Inhibitors were preincubated with the enzyme a t  the indicated 
concentrations (Table I) for 20 min at ambient  temperature;  substrate was added  and 
proteolytic activity was assayed against Z-Arg-Arg-AMC. All inhibitors were obtained 
from Sigma Chemical Co. except pepstatin A (Transformation Research, Inc., Framing- 
ham, MA) and bovine serum (Biofluids Inc.). Tosyl-lysyl-chloromethyl ketone (TLCK) 
was prepared  as a stock solution in DMSO. PMSF, pepstatin A, and 1,10-phenanthroline 
stock solutions were made up in ethanol. Other  inhibitors were made up in water or  assay 
buffer. An equal volume of  DMSO or  ethanol alone was tested with the enzyme, and 
inhibition relative to the appropr ia te  solvent control  was calculated. 

pH profile. Crude or  chromatography-puri f ied enzyme was assayed for proteolytic 
activity against Z-Arg-Arg-AMC as described. Acetate buffer (100 mM) was used for pH 
4.0-6.0,  100 mM phosphate buffer for pH 6.8-8.0,  and 100 mM Tris for pH 6.0-10.0.  
All buffers included 2 mM DTT.  

Assay Effects on Cultured Cells. Confluent monolayers of  baby hamster kidney (BHK) 
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cells (obtained from the UCSF Cell Culture Facility), grown in 24-well tissue culture plates 
in DME supplemented with 2 mM glutamine, penicillin/streptomycin, and 6% FCS, were 
washed to remove serum and incubated at 37°C with 200 u.l of culture supernatant or 
400 ~1 of Mono P-purified enzyme. (Medium was added to a total volume of 1 ml/well.) 
Duplicate wells were compared with control wells of DME-H21 diluted with matched 
amounts of PBS or buffer, with and without serum. Cells were examined with an inverted 
microscope for evidence of cytopathic effects (cell rounding, cell detachment, and cell 
lysis) over the next 3 h. 

Resul ts  

Extracellular Matrix Degradation. Live HM-1 trophozoites (2 × 105) degraded 
11% of the extracellular matrix in 26 h, including 50% of the glycoproteins and 
10% of the collagens, but none of  the elastin. The  same number  of  HK-9 
trophozoites degraded only half as much of  the matrix. 

Culture supernatant  (1 ml; 1.3 mg protein) degraded 20% of the matrix in 22 
h, including >80% of the available glycoproteins but little of  the elastin or 
collagen. Lysate (1 ml; 1.5 mg protein) gave similar results. Mono P-purif ied 
enzyme (340 ui; 0.2 mg protein) degraded 24% of the matrix in 26 h, primarily 
glycoproteins (>90%). 

Activity of Unpur~ed Enzyme. Both lysate and culture supernatant  had activity 
against Azocoll and the Z-Arg-Arg-AMC peptide substrate. Lysate from HM-1 
trophozoites had twice as much proteolytic activity as that f rom the same number  
of  HK-9 trophozoites on the Azocoll substrate. Culture supernatant  from HM-1 
trophozoites was five times more active than that f rom an equal number  of  HK- 
9 trophozoites. Therefore ,  the more active HM-1 strain was used for the 
subsequent purification and characterization of  neutral proteinase activity. 

SDS-PAGE and SDS-gelatin-PAGE showed that al though both lysate and 
culture supernatant  were complex mixtures, the major proteolytic activity was 
found at Mr 50,000-70,000 (Fig. 1). Tested over a pH range from 4 to 10, both 
lysate and culture supernatant  had a peak of  proteolytic activity at pH 7.5 (Fig. 
2). This activity was completely inhibited by N-ethyl-maleimide (NEM), iodoac- 
etate, and TLCK,  but not affected by PMSF, EDTA, pepstatin, or 1,10-phe- 
nanthroline at the concentrations tested (Table I). 

Culture supernatant (100 ~1) activated plasminogen sufficient to degrade 19% 

FIGURE 1. SDS-PAGE and SDS-gelatin-PAGE analysis of amoeba protein and proteinase 
composition. Silver-stained gels of reduced enzyme samples (left) are paired with unreduced, 
Coomassie-stained gelatin substrate [gels (right) for each fraction. CS, culture supernatant. 
Molecular weight markers (Mr X 10 -~) are indicated. 
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lysate was assayed against Z-Arg-Arg-AMC in 100-raM acetate (pH 4-6) or 100-raM Tris (pH 
6-9) buffers as described in Materials and Methods. Results are expressed as the percentage 
of maximum proteolytic activity observed. 0 ,  lysate; O, CS. 
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FIGURE 3. Anion-exchange (Mono Q) chromatography of culture supernatant. Protein was 
eluted with a linear salt gradient as described in Materials and Methods. Proteolytic activity 
against Z-Arg-Arg-AMC is shown, The  activity profile by Azocoll assay was identical U, units 
of activity by AMC assay (~moles substrate cleaved × |iter -I x min-~). OD~80 was measured in 
a 3-ram path length flow cell. 

of the available fibrin in 3 h. The same amount of  lysate degraded 25% of 
available fibrin, and 10 Ploug Units of  urokinase degraded 38%. 

Our results with unpurified material suggested that the major proteinase of E. 
histolytica was a thiol enzyme that was secreted by trophozoites and that would 
be active in the neutral pH environment of  the host. Our subsequent work was 
aimed at purifying and further characterizing this activity. Insofar as we observed 
no significant qualitative difference between the proteolytic activities of  lysate 
and culture supernatant, and because there were considerably fewer major 
proteins in culture supernatant (Fig. 1), we chose the latter as the starting 
material for further purification. 

Chromatographic Purification and Activity of Purified Fractions. Activity eluted 
from the Mono Q anion-exchange column as a single peak at a salt concentration 
of  60-80 mM (Fig. 3). When peak fractions were pooled and applied to the 
Mono P chromatofocusing column, activity eluted in a single peak at pH 5.9- 
6.2 (Fig. 4). SDS-PAGE indicated a subunit molecular weight of ~56,000 (Fig. 
1). 

Overall, the specific activity of  Mono P-purified enzyme was increased 10- 
fold over that o fcuhure  supernatant, with ! 9% of  total activity recovered (Table 
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FIC, URE 4. Chromatofocusing (Mono P) chromatography of peak fractions pooled from 
Mono Q-purified enzyme. Protein was eluted with a pH gradient as described in Materials 
and Methods. Proteolytic activity of fractions against Z-Arg-Arg-AMC is shown. OD280 was 
measured in a 3-mm path length flow cell. 

TABLE II 

Purification Table of the Neutral Thiol Proteinase 

Total Specific Enrichment Total Recovery 
Step protein activity activity 

mg U/rag -fold U % 
Culture supernatant 4.7 57 1 268 100 

Anion exchange (Mono Q) 1.2* 130* 2* 220* 82* 

Chromatofocusing (Mono P) 0.022* 590* 10" 50* 19' 

Values are for a representative purification, assayed for activity against Z-Arg-Arg-AMC. U, units 
of activity (#moles AMC cleaved/liter/rain. 

* For peak fractions. 
* Total for all fractions recovered. 
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FmURE 5. pH profile of Mono P-purified enzyme. 10 #1 of enzyme was assayed against Z- 
Arg-Arg-AMC in 100-ram acetate (pH 3.5-6) or 100-mM phosphate (pH 6-8) buffers with 2 
mM DTT. Results are expressed as the percentage of maximum proteolytic activity observed. 

W h e n  assayed  in p h o s p h a t e  bu f f e r ,  M o n o  P - p u r i f i e d  e n z y m e  h a d  m a x i m a l  
ac t iv i ty  aga ins t  Z - A r g - A r g - A M C  at  p H  6 - 7  (Fig.  5). In  T r i s  bu f f e r ,  t h e r e  was a 
b r o a d e r  p e a k  f r o m  p H  7 - 9 . 5  (da ta  n o t  shown) .  T h e  p r o t e o l y t i c  ac t iv i ty  o f  
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FIGURE 6. SDS-PAGE analysis of connective tissue macromolecular degradation by Mono 
P-purified enzyme. Target species in these reduced gels are indicated: fibronectin (F), laminin 
(L), and the type I collagen subunits [c~t (1) and Re (1)]. Laminin was run on both 5% gels (to 
show laminin degradation) and 10% gels (to show cleavage products). (A) Substrate alone; (B) 
substrate and enzyme. Collagen was also incubated with trypsin (C), showing lack of nonspecific 
proteolysis. Control lanes of enzyme alone had no visible staining. Molecular weight markers 
(Mr x 10 -s) are indicated. 

purified enzyme was completely inhibited by NEM, iodoacetate, leupeptin (50 
#M), al-proteinase inhibitor, TLCK, and serum at the concentrations tested 
(Table I). 

Analysis by SDS-PAGE indicated that the purified neutral thiol proteinase was 
able to degrade purified laminin, fibronectin, and type I collagen (Fig. 6). 
Collagen was cleaved into many fragments; the characteristic cleavage pattern of 
bacterial collagenase, with major fragments of Mr 75,000, 50,000, and 25,000, 
was not apparent. Culture supernatant also degraded these macromolecules (not 
shown). 

Mono P-purified enzyme (50 #!, - 1  ~tg) activated plasminogen sufficient to 
degrade 3.4% of the available fibrin in 2.5 h. 

There  was no degradation of [3H]elastin by culture supernatant or purified 
enzyme. 

Effects on Cultured Cells. Both culture supernatant and purified enzyme 
caused a marked effect on cell adhesion, which was evident within 45 min. At 2 
h, >95% of the cells had rounded up and detached (Fig. 7). In control wells, 
<25% of the cells had detached. However, no lysis or osmotic damage to cells 
was observed. Detached cells, when washed and replated, reattached and ex- 
hibited normal morphology. 

Discussion 
We have purified to homogeneity a neutral proteinase that is secreted by E. 

histolytica trophozoites and can also be identified in the soluble fraction of 
trophozoite lysate (12). Because of its inhibition profile and potentiation by DTT, 
we consider the enzyme to be a thiol proteinase. Like vertebrate cathepsin B 
(31), it is active against a synthetic peptide substrate with arginine at P-1 and P- 
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FIGURE 7. Effect o f  purif ied enzyme on BHK cells in cul ture.  Cells r o u n d e d  up and  de tached  
in wells t reated with Mono P-pur i f i ed  enzyme (right). T h e  same results were seen with cul ture  
superna tan t .  All control  wells were similar to each other .  Pho tographs  were taken 90 min  
af ter  enzyme was added.  

2. The  enzyme has a subunit molecular weight of ~56,000 (by SDS-PAGE) and 
an approximate pI of 6 (by chromatofocusing). 

The  enzyme we have purified probably accounts for the thiol proteinase 
activity of crude extracts and secretions reported previously (9, 10, 32, 33). 
Although estimates of molecular weight differ, it probably is the same neutral 
proteinase as that partially purified from a different strain of E. histolytica by 
McLaughlin and Faubert (33), and the same as the cathepsin B-like proteinase 
partially purified from HM-1 lysate by Lushbaugh et al. (14). This latter enzyme 
shares three important characteristics with the proteinase we have purified: (a) 
ability to degrade peptides with arginine at P-1 and P-2, (b) inhibition by thiol 
proteinase inhibitors and potentiation by DTT,  and (c) "cytopathic" effect on 
cells in culture. The  observed differences between the two enzymes in pH optima 
are not great and could be explained by the use of different buffers or assay 
conditions. The  reported molecular weights, however, differ considerably 
(16,000 vs. 56,000). In addition to the major band at Mr 16,000, Lushbaugh et 
al. (14) reported four other protein species between Mr 35,000 and 48,000 in 
the same preparation by SDS-PAGE. Our  (unreduced) substrate gels of lysate 
show significant proteolytic activity (at neutral pH) only between ~Mr 50,000 
and 70,000 (Fig. 1), and silver-stained gels of active fractions partially purified 
from lysate showed only two major bands at 47,000 and 60,000 (unpublished 
data). It is possible, therefore, that one of the higher molecular weight species 
seen by Lushbaugh et al. (14) may be the active one, rather than the Mr 16,000 
band. Another  possibility is that during the longer purification protocol required 
for lysate, proteolysis generated lower molecular weight products, which can 
sometimes retain activity (see, for example, reference 25). Proteolysis may have 
been minimized with our more rapid FPLC purification protocol. 

The  neutral thiol proteinase we have purified is clearly distinct from the 
membrane-associated metallocollagenase reported by Munoz et al. (34). That  
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enzyme was not secreted, and was inhibited by EDTA but not by NEM. The 
enzyme we have purified is also different from the acid proteinase partially 
purified from lysate by Scholze and Werries (35), which had a pH optimum of 
4, pI of  4.9, and apparent Mr of 21,000 (estimated by size-exclusion chromatog- 
raphy). McLaughlin and Faubert (33) also described an acid proteinase (peak 
activity at pH 3.5) with an estimated M~ of 41,000 (also by size exclusion 
chromatography), but its activity against hemoglobin as substrate was unaffected 
by DTT, iodoacetamide, or p-chloromercuribenzoate. Feingold et al. (36) re- 
ported the partial purification of a trophozoite enterotoxin, which had a cyto- 
pathic effect on BHK cells, and degraded casein but not Azocoll. It had an Mr 
of 30,000-50,000, and its effect on cells was blocked by p-chloromercuriben- 
zoate, iodoacetamide, and serum. 

That  the neutral thiol proteinase is important for the pathogenesis of extrain- 
testinal amoebiasis was first suggested by our observations that it is secreted by 
trophozoites and active at neutral pH. Furthermore, HM-1 strain trophozoites 
secrete more of this proteinase than the less virulent HK-9 strain. Other inves- 
tigators have also correlated strain virulence with proteolytic activity (9-14, 32, 
37). 

The results of  assays of crude and purified enzyme against an in vitro model 
of  extracellular matrix, as well as against purified type I collagen, laminin, and 
fibronectin, suggest how this enzyme may play a key role in both invasion and 
tissue damage by trophozoites. Gadasi and Kobiler (10) showed that crude lysate 
from HM-1 trophozoites degraded fibronectin. Our results with purified enzyme 
confirm this finding and identify the proteinase responsible for this activity. 
Furthermore, we have shown that this enzyme cleaves laminin, which plays a 
critical role in anchoring epithelial cells to underlying basal lamina, as well as in 
maintaining the structural integrity of the basement membrane. 

It has been proposed that proteinases are involved in the observed cytopathic 
effects of virulent trophozoites on cells in culture (10, 13, 14, 38). Our demon- 
stration of cell detachment and rounding up after exposure to the purified 
enzyme probably reflects the ability of the enzyme to degrade anchoring proteins, 
such as fibronectin and laminin. Some investigators have used the term "cyto- 
pathic effect" to describe this cell detachment (10, 36, 42). This phenomenon, 
however, must be distinguished from cell lysis or osmotic damage (39), which we 
did not observe. Lysis per se may require the activity of other cytotoxic factors, 
such as the amoebapore (5, 6). Nevertheless, proteinase-mediated detachment of 
epithelial cells from the bowel mucosa may be an important pathogenetic mech- 
anism in amoebiasis. 

The activity of the thiol proteinase against type I collagen corresponds to that 
reported for crude secretions and lysate by Gadasi and Kessler (9). While the 
metallocollagenase reported by Munoz et al. (34) produced specific cleavage 
fragments of Mr 75,000, 50,000, and 25,000, the neutral thiol proteinase cleaves 
collagen into multiple fragments, as does cathepsin B. Mammalian cathepsin B 
further degrades the collagen fragments produced by vertebrate collagenase 
(40). Similarly, the neutral thiol proteinase of E. histolytica could act in concert 
with the membrane-associated metallocollagenase to degrade interstitial collagen. 
This could explain earlier observations that, after initial collagen fragmentation 
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by intact trophozoites, further breakdown was inhibited by NEM and stimulated 
by DTT (34). 

E. histolytica trophozoites have thiol groups on or accessible to their external 
surface, which appear to be necessary for cell survival (41). Thus, the trophozoite 
may provide in its pericellular space the optimal reducing environment for the 
activity of the enzyme we have characterized. This could be one reason why the 
cytopathic effect of E. histolytica is optimal when apparent contact between the 
organism and epithelial cells takes place (39). Even without contact, the closer 
the organism approaches the substrate, the better the environment may be for 
the activity of  its secreted enzyme. Close apposition of trophozoites to cells would 
also reduce the accessibility of inhibitory serum proteins to the site of  enzyme- 
substrate interactions (42). 

In addition to degrading host extracellular matrix and basement membrane 
macromolecules, the enzyme we have purified is a plasminogen activator. We 
tested for this activity because the enzyme cleaved synthetic peptides with 
arginine at P-l, as do other plasminogen activators. Therefore, aside from 
directly mediating tissue damage, the amoebic enzyme may potentiate host 
proteinases by activating plasmin. Plasmin can then amplify its own activation, as 
well as activate latent tissue collagenases. 

Although our characterization of the neutral thiol proteinase of E. histolytica 
suggests its importance as a virulence factor, it remains clear that the pathogenesis 
of  amoebiasis is multifactorial. In the neutral pH environment of the host, at 
least two amoebic proteinases are active: the enzyme we have purified and the 
membrane-associated metallocollagenase. Other cytotoxic factors, such as the 
amoebapore, may be necessary for cell lysis. Host factors, including associated 
gut flora (36, 43), diet and nutritional status, and immunologic competence and 
history (44), are no doubt also involved. 

Proteolytic enzymes may be important in ways other than as mediators of 
tissue invasion and destruction. For example, they might degrade immunoglob- 
ulins, generate (or destroy) peptides chemotactic for host inflammatory cells, or 
activate the kailikrein/kinin pathway to alter vascular permeability. We are 
currently investigating whether the neutral thiol proteinase potentiates these or 
other reactions, because it shares with kallikrein, plasmin, and complement 
proteinases the ability to cleave peptides containing arginine. 

S u m m a r y  

FPLC anion-exchange and chromatofocusing chromatography were used to 
purify the major neutral proteinase from secretions of axenically cultured Enta- 
moeba histolflica trophozoites. HM-1 strain trophozoites, which were more pro- 
teolytically active than the less virulent HK-9 strain, were used for purification 
of  the enzyme. It is a thiol proteinase with a subunit Mr of ~56,000, a neutral 
pH optimum, and a pI of 6. The importance of this enzyme in extraintestinal 
amoebiasis is suggested by its ability to degrade a model of  connective tissue 
extracellular matrix as well as purified fibronectin, laminin, and type I collagen. 
The enzyme caused a loss of adhesion of mammalian cells in culture, probably 
because of its ability to degrade anchoring proteins. Experiments with a peptide 
substrate and inhibitors indicated that the proteinase preferentially binds pep- 
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tides with arginine at P-1. It is also a plasminogen activator, and could thus 
potentiate host proteinase systems. 
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