
Knowledge-Based Methods To Train and Optimize Virtual Screening
Ensembles
Robert V. Swift,† Siti A. Jusoh,‡ Tavina L. Offutt,† Eric S. Li,† and Rommie E. Amaro*,†

†Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0340, United States
‡Faculty of Pharmacy, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Malaysia

*S Supporting Information

ABSTRACT: Ensemble docking can be a successful virtual
screening technique that addresses the innate conformational
heterogeneity of macromolecular drug targets. Yet, lacking a
method to identify a subset of conformational states that
effectively segregates active and inactive small molecules,
ensemble docking may result in the recommendation of a large
number of false positives. Here, three knowledge-based
methods that construct structural ensembles for virtual
screening are presented. Each method selects ensembles by
optimizing an objective function calculated using the receiver operating characteristic (ROC) curve: either the area under the
ROC curve (AUC) or a ROC enrichment factor (EF). As the number of receptor conformations, N, becomes large, the methods
differ in their asymptotic scaling. Given a set of small molecules with known activities and a collection of target conformations,
the most resource intense method is guaranteed to find the optimal ensemble but scales as O(2N). A recursive approximation to
the optimal solution scales as O(N2), and a more severe approximation leads to a faster method that scales linearly, O(N). The
techniques are generally applicable to any system, and we demonstrate their effectiveness on the androgen nuclear hormone
receptor (AR), cyclin-dependent kinase 2 (CDK2), and the peroxisome proliferator-activated receptor δ (PPAR-δ) drug targets.
Conformations that consisted of a crystal structure and molecular dynamics simulation cluster centroids were used to form AR
and CDK2 ensembles. Multiple available crystal structures were used to form PPAR-δ ensembles. For each target, we show that
the three methods perform similarly to one another on both the training and test sets.

■ INTRODUCTION

Virtual screening (VS) is a valuable hit discovery tool with
tremendous potential to improve the efficiency and reduce the
costs of modern high throughput screens (HTS). Despite the
increasing trend toward miniaturization and greater well plate
density, reagents and other consumables drive up HTS costs,
particularly when large corporate or commercial databases are
screened.1 Rationally prioritizing compounds for experimental
testing can reduce costs. For example, during a virtual high
throughput screen, a computational model is developed and
applied to rank compounds for testing.2,3 When paired with
high quality compound libraries, carefully constructed computa-
tional models can generate hit rates many fold above random.4,5

This can result in novel, structurally diverse actives from which
several lead series can be selected. Structural diversity ultimately
helps circumvent ADME-Tox and patent liabilities that can
increase lead optimization costs.6,7

Computational virtual screening models primarily fall into
two classes, ligand-based8 and structure based, or docking
methods.9 Ligand-based methods predict the activity of novel
compounds by assessing their similarity to known actives.
Docking methods, on the other hand, use predicted
interactions between a small molecule and a target receptor
to predict activity. Numerous benchmarking studies have
reported that ligand-based methods yield greater hit rates

than structure-based methods.5,10,11 However, a reliance on
chemical similarity may limit their ability to identify novel
chemical matter. In contrast, the diversity of actives determined
using docking methods is only constrained by the shape of the
receptor-binding pocket. In principal, docking can enable the
discovery of actives more novel and diverse than ligand-based
methods. Consistently, numerous successful examples of
docking in early stage discovery can be found in the
literature.12−14

Despite these successes, docking has traditionally been to a
single static representation of the target. This static view is far
from reality. In solution, a drug target is highly dynamic, and
two notable models have been advanced that suggest a tight
coupling between protein motion and small molecule binding.
In 1958, Koshland proposed the induced fit model, which
suggests that ligand binding induces a conformational change of
the protein that enhances its affinity for the ligand.15

Conformational selection is a more recent explanation of
small molecule binding that incorporates energy landscape
theory.16 It proposes that binding stabilizes one of many
preexisting conformers of the unbound target.17,18 Both models
imply that the collection of low-energy receptor conformers
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defining the bound state depend upon ligand identity; by
extension, successful docking requires the receptor to be in, or
at least near, the appropriate ligand-dependent bound state.
Ensemble docking, in which each ligand is docked to a set of
receptor conformers, was introduced in an effort to address this
requirement.19

There are a variety of means to generate structures for
ensemble docking, including crystallography20 and NMR21

techniques. However, while experimental methods have shown
promise, the materials, time, and expertise required to
determine multiple, high quality structures is a significant
bottleneck. In contrast, molecular dynamics (MD) simulations
offer a relatively inexpensive alternative to generate diverse,
realistic conformational states. This is largely the result of the
recent implementation of MD codes on commodity graphical
processor units (GPUs)22,23 and the dramatic speedup of
simulation benchmarks.
Regardless of whether structures are generated by experiment

or simulation, for ensemble docking to be successful, a subset of
conformations likely to offer the best VS performance must be
identified. Though several studies have provided hints,24−26

others have been unable to determine a meaningful relationship
between observable receptor characteristics and virtual screen-
ing performance.27,28 Even with insights from a growing body
of careful studies, it remains difficult or impossible to know a
priori which receptor conformations will result in an ensemble
with virtual screening utility.
The difficulties of selecting effective virtual screening

conformations are compounded by the combinatorial nature
of the ensemble selection process. When the number of
receptor conformations is large, the problem results in a
significant number of possibilities, and it can be difficult or
impossible to know which of these ensembles will produce the
best virtual screening performance.
Though systematic training and data-fusion methods exist

that address similar issues in ligand-based VS, there is a relative
paucity of knowledge-based structural selection methods.
Despite this, other knowledge-based ensemble selection
methods have been described in the literature. For example,
Yoon and Welsh29 proposed an ensemble docking method in
which ensemble members are selected to maximize the
correlation between the experimental and predicted binding
affinities. The combinatorial problem was addressed by
assigning each compound an ensemble score that consisted of
a linear combination of score weights to each receptor
conformation using a Monte Carlo scheme. Using estrogen
receptor α, they demonstrated that the approach leads to more
accurate classification than docking to the crystal structure
alone.
While Yoon’s and Welsh’s method can produce stronger

correlation with experimental binding affinities and result in
enhanced VS performance, experimental binding measurements
are required. This precludes the use of single-point HTS data
and limits the method to compounds whose binding affinities
have been measured or to those with dose−response curves,
from which binding affinities may be inferred.
Rather than optimizing the correlation with experimental

binding affinities, selecting ensembles to maximize the value of
a binary classification metric offers greater flexibility. Since
binary classification is categorical, once an appropriate activity
threshold has been determined, any assay that delivers an
activity measurement can be used. This opens the door to the
use of single-point data, which is less expensive to determine

and typically can be found in greater abundance than careful
binding affinity measurements.
For example, following a slightly different approach, Xu and

Lill developed a knowledge-based ensemble selection technique
that can be used with any type of affinity measurement.30 In it,
receptor conformers are first ranked by their ability to separate
the average docking scores of active and inactive compounds.
Then, by assuming that effective ensembles must be
constructed from effective conformations, ensembles of
successively larger size are formed by aggregating conformers
from highest to lowest rank. While the assumption avoids the
combinatorial problem, its severity went unexamined. For
example, does the procedure ignore ensembles with signifi-
cantly greater classification power? While the underlying
assumption went unexamined, the approach appeared promis-
ing. When classification ability was examined as a function of
ensemble size, the performances of the trained ensembles were
comparable or better than the those of ensembles selected by
aggregating structurally diverse receptor conforms.
A final approach, developed and widely applied by the

Cavasotto and Abagyan groups, utilizes virtual screening
performance on a small training set to select the most
promising structure from an ensemble generated using either
Monte Carlo side-chain sampling or normal-mode analysis.31

By including a ligand with the desired properties, for example, a
high affinity binder or a receptor agonist/antagonist, the search
may be biased toward structures that enrich ligands with similar
properties. During model generation, the VS ability of each
target conformer is evaluated, and conformational sampling
continues until VS performance converges. Following con-
vergence, a single best performing structure can be derived and
used for cross docking, selectivity studies, or VS. Alternatively,
multiple conformers may be extracted and combined into
useful ensembles, and the methods we introduce here may
prove useful in such an approach.
In this work, we present three new training methods that

select structure-based ensembles for VS use. All three methods
construct ensembles by optimizing one of two binary
classification metrics, which makes them flexible and enables
their use with single-point data, competition assay data (e.g.,
IC50 values), or other binding data. To address the
combinatorial problem, the population of ensembles is
generated by complete enumeration, and two different
heuristics are designed to generate population samples biased
to exclude low performing ensembles. These approaches lead to
different asymptotic scaling as the number of receptor
conformations becomes large, and they allow us to examine
the severity of the approximations underlying each heuristic
relative to the enumerative solution.
Each method is evaluated on three different target proteins

with active and decoy molecules taken from the DUD-E:32 the
androgen nuclear hormone receptor (AR), the cyclin-depend-
ent kinase 2 (CDK2), and the peroxisome proliferator-activated
receptor δ (PPAR-δ). Target conformations were selected from
a range of sources, including RMSD and volumetric clustering
of conventional MD simulations, as well as multiple crystal
structures.

■ METHODS
Data Sets and Target Proteins. The knowledge-based

training methods were tested on three protein targets: the
androgen receptor, the cyclin-dependent kinase 2 (CDK2), and
the peroxisome proliferator-activated receptor δ (PPAR-δ).
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Conformations generated by volumetric clustering of conven-
tional MD trajectories along with the crystal structure PDBID
2AM9 were used to train androgen receptor ensembles.
Similarly, conformations generated by RMSD clustering of
MD trajectories, along with the crystal structure PDBID 4GCJ,
were used to train ensembles of CDK2. Clustering and
simulation details are provided in subsequent sections. For
PPAR-δ, ensemble training was performed using 12 crystal
structure conformations with the following PDBIDs (Uniprot
Q03181): 2AWH, 2B50, 2J14, 2Q5G, 2XYJ, 2ZNP, 3DY6,
3ET2, 3GZ9, 3PEQ, 3SP9, and 3TKM. Structures were
selected to ensure a resolution of 3.0 Å or lower and to ensure
that each ligand was unique. Additionally, all of the structures
are antagonist bound, which is consistent with the antagonists
that make up the actives of the training and test sets, as
described below.
Active and decoy ligand sets from the Directory of Useful

Decoys-Ehanced (DUD-E)32 were used to perform virtual
screening for each target. While a complete description of
ligand set curation can be found in the original reference, we
briefly describe the process here. Compounds in ChEMBL
whose affinities (IC50, EC50, Ki, Kd) were less than or equal to 1
μM were clustered by their Bemis Murcko (BM) frameworks.33

Compounds with the highest affinity from each cluster were
pooled and resulted in sets of actives with unique BM
frameworks. For each active, 50 decoys were selected from
the Zinc database by matching the molecular weight, logP,
number of rotatable bonds, hydrogen bond donor and acceptor
counts, and net formal charge (determined in a pH range from
6 to 8) of the active. To reduce the number of false negatives,
only the 25% most dissimilar decoys, as judged by Tanimoto
scores using ECF4P fingerprints, were retained.
Evaluating the classification performance of a knowledge-

based model on the training set will generally provide an overly
optimistic estimate of the model’s ability to correctly
distinguish active and inactive molecules.34 To provide a
more realistic estimate of the trained model’s classification
ability, DUD-E compounds were randomly split in half, while
maintaining the decoy-to-active ratio, forming training and test
sets. The androgen receptor training and test sets were
composed of 7150 compounds, 133 of which were active
compounds. The CDK2 training and test sets were composed
of 14,162 compounds, 237 of which were active compounds.
The PPAR-δ training and test sets were composed of 6245
compounds, 120 of which were active.
Molecular Dynamics. Except as noted, CDK2 and

androgen simulations were performed identically. Simulations
were initiated from a crystal structure of either the androgen
receptor (PDBID 2AM9) or CDK2 (PDBID 4GCJ). The
sulfate ion, glycerol, and the dithiotheritol molecule were
deleted from 2AM9, while four molecules of ethanediol were
deleted from 4GCJ. In 2AM9, K836, K846, N848, and E893 are
far from the receptor-binding pocket and have unresolved side-
chain atoms. Schrödinger’s Prime35,36 was used to add them. In
4CGJ, atoms from the following residues had multiple
occupancy values: D38, S46, D127, K129, R169, L212, M233,
K237, K250, S264, and H268. In each case, the position with
the larger value was retained. Protonation states for both 2AM9
and 4GCJ were predicted at pH 7.0 using the program
PROPKA3,37−39 and hydrogen atom positions were assigned
and optimized using Schrödinger’s Protein Preparation Wizard.
Following protonation, water molecules with fewer than three
hydrogen bonds to nonwater molecules were removed. The

protonated crystal structures were built for MD simulation
using the xLEaP program that accompanies AMBER14.40 The
cholesterol and RC-3-89 ligand parameters were generated
using the Antechamber program in AMBER14. Ligand atomic
partial charges were determined from the crystallographic
conformations using the AM1-BCC method,41 and all other
force field terms were assigned according to the generalized
Amber force field (GAFF).42 Each system was immersed in a
box of pre-equilibrated TIP4PEW water43 that provided a
minimum 10 Å water pad between the protein and the
boundary of the periodic box in the x-, y-, and z-directions.
Each system was brought to electric neutrality by the addition
of an appropriate number of chloride or sodium ions, modeled
using the parameters developed by Joung and Cheatham.44 The
androgen receptor system was comprised of 54,014 atoms, and
the CDK2 system was composed of 50,644 atoms. The
potential energy was described by the AMBER14 force field
with the Stony Brook correction.45 A 20,000-step minimization
was performed with 2 kcal mol−1 Å−2 heavy atom backbone
restraint in two stages. During the first step, a 19,500-steepest
descent minimization was conducted. The second step entailed
a 500-step conjugate gradient minimization. Following
minimization, a 200 ps NPT simulation was carried out at
300 K and 1 atm. Pressure was maintained with a Monte Carlo
barostat with 100 steps between volume changes and a pressure
relaxation time of 2 ps−1. Following the NPT simulation, a 5 ns
NVT simulation was conducted, and restart files were written
every 1 ns. These restart files were used to initiate five 20 ns
NVT simulations, and frames were written every 2000 fs. All
50,000 frames were concatenated yielding a 100 ns trajectory.
During NPT and all NVT simulations, hydrogen heavy atom
bonds were constrained using the SHAKE algorithm,46 and a 2
fs time step was used. Temperature was maintained in all
simulations using a Langevin thermostat with a collision
frequency of 2 ps−1. The Particle Mesh Ewald method was used
to treat long-range electrostatics,23 and simulations were
performed using pmemd.cuda on a GeForce GTX TITAN
card from NVIDIA. During NVT production runs, the
simulation setup resulted in an average timing of 30.29 ns/
day on the androgen receptor system and 31 ns/day on the
CDK2 system.

Binding Site Clustering. The 100 ns trajectories were each
subsampled at an interval of 40 ps, or every 20th frame,
resulting in a total of 2500 frames, which were then clustered.
Prior to clustering, external translation and rotation were
removed from each trajectory by minimizing the RMSD
distance of the Cα backbone atoms to the equivalent atoms of
the first sampled frame of the trajectory.
For the androgen receptor trajectory, the binding site shape

of each sampled structure was determined using POVME 2.0.47

Inclusion regions were autodetected using the testosterone
ligand as input. Following binding site characterization, the
Tanimoto volume overlap between all pairs of structures was
calculated, from which a normalized volume overlap matrix was
generated. Finally, hierarchical clustering was applied to the
overlap matrix, 10 clusters were generated, and the structures
corresponding to each of the cluster centroids were retained for
docking. Ligand-based autodetection of inclusion regions and
hierarchical clustering are features that will be released in the
forthcoming version of POVME.
For the CDK2 trajectory, RMSD clustering was performed

using the algorithm described in Daura et al.48 as implemented
in version 5.0.3 of the GROMACS g_cluster program.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.5b00684
J. Chem. Inf. Model. 2016, 56, 830−842

832

http://dx.doi.org/10.1021/acs.jcim.5b00684


Clustering was performed on the heavy atoms of all residues
within 10 Å of the bound inhibitor RC-3-89 in the crystal
structure PDBID 4GCJ. A cutoff of 1.6 Å resulted in five
clusters, and cluster centroids were retained for docking.
Docking. The Glide SP algorithm, from Schrödinger, was

used to perform docking to all target conformations.49 The
algorithm generates a series of ligand poses. Relative to the
protein receptor, each pose has a unique position and
orientation. Each pose is also distinguished by a unique
conformation. Following generation, all poses are independ-
ently subjected to a set of hierarchical filters that utilize
precomputed grids to estimate ligand−receptor interaction
energies. In the initial filter, the steric complementarities of
ligand poses with the receptor are computed using a grid-based
version of ChemScore. Poses that pass the initial filter are
minimized in a grid-based approximation of the OPLS pose−
receptor interaction energy. Following minimization, Emodel,
an empirical scoring function optimized to compare pose
energetics, is used to identify the best pose for each ligand.
Finally, a “docking score” is reported for each ligand. The
docking score is an empirical ligand binding affinity estimate,
which incorporates Epik state penalties that are based on the
predicted populations of alternative ligand protonation and
tautomerization states.50

Prior to docking, two-dimensional representations of active
and decoy molecules were downloaded from the DUD-E in
SDF format. Schrödinger’s LigPrep program51 was used to add
hydrogen atoms and generate three-dimensional ligand
structures. Alternative protonation and tautomer states were
determined at pH 7 using the Epik program, with default
settings. Alternative ring conformations were not generated
since these are produced by Glide during docking. Input
chiralities were retained, and all other options were set to their
default values.
Receptor conformations were prepared for docking as

follows. TIP4PEW water and chloride ions were removed
from the MD trajectory. The resulting trajectory, which
consisted of either the androgen receptor and the testosterone
ligand or CDK2 and the inhibitor RC-3-89 were clustered as
described above, resulting in 10 and 6 cluster centroids,
respectively. Schrödinger’s Protein Preparation Wizard was
used to generate correct atom types for Glide grid generation.
Atom coordinates were not altered in the process. Protonation
states from the MD simulation were retained, and neither
hydrogen bond network optimization nor structural minimiza-
tions were conducted. For each cluster centroid, the grid center
was positioned on the center of geometry of the ligand; all
other options were set to their default values.
Docking was performed using Glide with the SP scoring

function. All other options were set to their default values.
Docking was conducted locally on a Dell Precision T7500n
workstation with a dual six-core Intel X5680 processor, and
each compound required roughly 15 s to dock.
Performance Analysis. Receiver operating characteristic,

or ROC, curves were used to evaluate the performance of each
ensemble. ROC curves provide two useful measures of binary
classification performance: the area under the curve (AUC) and
the ROC enrichment factor (EF).
A ROC curve is determined by successively moving a

threshold through compounds ranked by their docking scores.
By assuming all compounds with scores better than the
threshold are active, a true positive fraction (TPF) and false
positive fraction (FPF) can be calculated at each threshold. For

example, the TPF is the fraction of active compounds whose
docking scores are equal to or better than the threshold, ΔGT.
TPF can be calculated as an average over an indicator function,
γ, as described by eq 1.

∑γ γ

γ

Δ = ⟨ ⟩ =

=
Δ ≤ Δ
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In eq 1, NA is the total number of active compounds. For a
given active, the indicator function γ takes a value of 1 if the
value of the docking score, ΔGi, is better than or identical to
the threshold and a value of 0 otherwise. Similarly, the FPF is
the fraction of inactive compounds whose docking scores are
equal to or better than the threshold. It is also determined as an
average of γ, but over the inactive compounds.
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In eq 2, NI is the total number of inactive compounds, and all
other terms are defined identically to eq 1. Once the TPF and
FPF values have been calculated at each threshold, they are
plotted along the y-axis and x-axis, respectively, resulting in a
ROC curve.
The area under the ROC curve (AUC) is equivalent to the

probability that a virtual screening protocol will rank a
randomly selected active compound ahead of a randomly
selected inactive compound.52 An AUC value of 0.5
corresponds to random selection, or a method with no
classification power, while a value of 1 indicates perfect
separation of active and inactive compounds. Additionally, the
value of the AUC is independent of the fraction of actives in the
database, it has no free parameters, and an analytic estimate of
its standard error is known.52 The AUC value can be estimated
using a left-handed Riemann sum, which is equivalent to
averaging the TPF values at each inactive compound of the
ranked list.

= ⟨ ⟩AUC TPF I (3)

While the AUC is a useful measure of global classification
performance, the early enrichment, or the preferential ranking
of active compounds early in the ranked list, is often used to
judge the quality of a virtual screen. Enrichment factors are
frequently calculated as the ratio of the fraction of actives found
in a given percent of the ranked database to the fraction of
actives in the total database. Unfortunately, the maximum value
of this popular metric depends on the ratio of inactive to active
compounds in the screened database.52 This makes retro-
spective method comparison difficult. To circumvent this
complicating factor, we use the so-called “ROC enrichment”,
whose maximum value is independent of the ratio of decoy to
active compounds. The ROC enrichment factor (EF) is the
ratio of the TPF, determined at some FPF of interest, to the
FPF of interest.52

=EF(FPF)
TPF(FPF)

FPF (4)
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Random classification is indicated by an EF value of 1, and
perfect separation of actives and decoys is given by a maximum
value of FPF−1. Like the AUC, the standard error of the ROC
enrichment factor may be calculated analytically, which
facilitates statistical analysis.52

Statistical Analysis. For any VS protocol, classification
performance will vary as a result of having different compounds
in the screened database. Confidence intervals capture the
magnitude of this variability. For example, assuming repeated
screens are performed identically on different databases, the
true mean should be found within identically constructed 95%
confidence intervals (CI95) in 95% of the measurements. CI95
values were constructed according eq 5.53

= ×lCI SE95 (5)

The standard error, SE, of the calculated classification metric
(AUC or EF) is given and is calculated differently for AUC and
ROC-EF values. The exact form that each takes is provided in
the Supporting Information. The value of l is selected such that
± l bounds 95% of Student’s t-distribution, where the number
of degrees of freedom was determined by subtracting one from
the sum of the number of active and inactive compounds.
Ensemble Scoring. Several different methods for combin-

ing multiple docking scores into a single docking score have
been suggested. Reported protocols include creating composite
grids of all ensemble members,19,54 treating conformations as
an independent variables during docking,55,56 and using
different weighted averages, which include arithmetic17 and
Boltzmann weighted averages,57 as well as averages using
weights determined by knowledge-based methods.29 One
simple approach, and the one used in this work, takes the
best scoring function value across all ensemble members. For
example, a compound docked to an ensemble composed of N
protein conformations will have N docking scores, {ΔG1, ΔG2,
..., ΔGN}, and the ensemble score of the compound is defined
as the smallest score of the set, i.e., min{ΔG1, ΔG2, ..., ΔGN}. If
a compound has more than one protonation or tautomer state,
the state with the lowest docking score is retained.

■ RESULTS

Given an arbitrary collection of target conformations, it is
difficult to know which set will result in the best VS
performance. Here, we provide three knowledge-based
methods designed to systematize the selection process: the
exhaustive method, the slow heuristic method, and the fast
heuristic method, which are each introduced below.
Knowledge-Based Ensemble Selection. In the “exhaus-

tive” method, at each ensemble size, all combinatorial
possibilities are enumerated, and the complete ensemble
population is constructed. As shown in the Supporting
Information, if N is the total number of target conformations
considered, the enumerative approach generates 2N − 1
ensembles. Using big O notation, this is expressed as O(2N).
For example, given three conformations, labeled A, B, and C,
seven ensembles can be constructed: three of size one (A, B,
C), three of size two (AB, AC, BC), and one of size three
(ABC). Both AUC and EF values are used to rank the
performance of each, and the best performing ensemble is
retained. Thus, the exhaustive method generates the entire
population of ensembles, performs a census, and only retains
the individual member with the desired performance character-
istics.

In the “slow heuristic” method, ensembles are assembled
recursively. In the first step, the performance of each receptor
conformation is considered individually, and the best performer
becomes the first ensemble member. Next, the remaining
receptor conformations are added in turn, forming a series of
two-membered ensembles, and the best ensemble is retained.
The process is repeated until all receptor conformations have
been added to the ensemble, and the top performer of any size
is identified. In the Supporting Information, we show that the
slow heuristic method generates N(N + 1)/2 ensembles. Using
big O notation, this is expressed as O(N2). For example, given
three conformations A, B, and C, three one-membered
ensembles (A, B, C) will be considered, and the best performer
will be retained. If B is the top performing one-member
ensemble, then two two-membered ensembles (BA and BC)
will be constructed, and one three-membered ensemble (ABC)
will be constructed. Thus, the slow heuristic method is designed
to construct a biased sample of the ensemble population that
excludes individuals that do not contain the best performing
ensembles of smaller sizes.
Like the slow heuristic method, the “fast heuristic” method

also assembles ensembles recursively. First, the classification
performance of each individual conformation is ranked by
either AUC or EF. Ensembles of increasing size are then
constructed by merging conformers of successively decreasing
performance. The performance of each conformation is
considered only once. To identify the ensemble that performs
best, each of the resulting ensembles must also be evaluated
once. Thus, for N conformers, 2N − 1 performance evaluations
are required, and the scaling is linear. Using big O notation, this
is expressed as O(N). For example, if the performance of three
conformations is given as A > B > C, then one one-membered
ensemble (A), one two-membered ensemble (AB), and one
three-membered ensemble (ABC) are formed. The fast
heuristic results in a small biased sample that neglects the
worst performing conformers at each ensemble size.
Each method was implemented in a program called

“Ensemble Builder,” which was written in the Python
language58−60 and was used to produce the results reported
here. An alpha-version of the Ensemble Builder software is
freely available for download through PyPi.
The performance of the three methods was evaluated on the

androgen receptor, CDK2, and PPAR-δ. Conformations for
these targets were selected from a variety of sources, as
summarized in Table 1. Androgen receptor and CDK2

structures were selected from pools of five 20 ns MD
simulations using two different clustering methods. Volumetric
clustering was performed on the binding pocket of the
androgen receptor to select 10 conformations, and RMSD
clustering was performed on the active site of CDK2, which
lead to the selection of five conformations. The crystal
structures used to initiate the simulations were also included

Table 1. Summary of Structures Used To Construct
Ensembles

target structural source
number of
structures

androgen
receptor

volumetric clustering of five 20 ns MD
simulations; one crystal structure

11

CDK2 RMSD clustering of five 20 ns MD simulations;
one crystal structure

6

PPAR-δ wwPDB; Uniprot Q03181 12
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and resulted in heterogeneous collections of simulation and
experimentally determined conformations of sizes 11 and 6 for
the androgen receptor and CDK2, respectively. Twelve human
PPAR-δ crystal structures were selected from the protein data
bank.61 Sets of active and decoy compounds for each target
were taken from the DUD-E.
The remainder of the Results section is organized as follows.

First, the relationship between the ensemble selection
algorithms, the anticipated results, and the actual results are
examined in the Population and Heuristic Samples section. The
dependence of the classification ability on ensemble size is then
assessed in the Performance vs Size section, and the results
conclude with a comparison of each method on training and
test sets in the section entitled Comparing Ensemble
Performance on Training and Sets.
Population and Heuristic Samples. Given docking

results for an arbitrary collection of target conformers, the
exhaustive method enumerates the population of all possible
ensembles and identifies the ensemble with the largest objective
function value (AUC or EF at a false positive fraction of 0.001).
Since the exhaustive method performs a census on the
ensemble population and records the performance of each
individual, it is guaranteed to identify the best performing
ensemble. It follows that if the performance values of the
population are represented as a distribution, the value of the
best ensemble should reside on the edge of the distribution.
To verify that the best ensemble is found on the edge of the

population distribution, ensembles were enumerated, and the

corresponding training set performance values (AUC or EF)
were sorted into 10 histogram bins. The resulting distributions
are shown in light blue in Figure 1.
Consistent with expectations, the values of the ensembles

identified by the exhaustive method appear at the edges of the
distributions. This is true across all the targets considered,
independent of whether target conformations came from
simulation or experiment (Table 1) and provides some
confidence in the generality of the approach.
Because the exhaustive method can be computationally

expensive, we have developed a more efficient approach, called
the “slow heuristic method,” which may have greater utility. To
reduce expense, the slow heuristic assumes that the next largest
ensemble must contain the current ensemble. Following this
assumption, target conformers not yet ensemble members are
each grouped with the current best performing ensemble, and
the resulting collections are ranked by the values of their
objective functions. Hence, the heuristic should result in a
population sample biased to favor higher performing
ensembles.
To confirm the slow heuristic results in a biased sample that

favors higher performance, it was used to construct ensembles,
and the corresponding training set AUC and EF values were
sorted into 10 bins. The resulting distributions are shown in
dark blue in Figure 1.
For each target and both objective functions, the majority of

the slow heuristic sample distributions reside on the right side
of the corresponding population distributions, which corre-

Figure 1. AUC and EF histograms. The exhaustive method was used to enumerate all possible ensembles, and the AUC and EF values of the
corresponding population were sorted into 10 bins and plotted in light blue. The slow heuristic method was used to sample a subset of the ensemble
population, and the AUC and EF values were sorted into 10 bins and plotted in dark blue. Insets provide expanded views for the androgen receptor
and PPAR-δ. AUC values for ensembles trained to maximize the AUC are reported as vertical lines in (A)−(C), and EF values for ensembles trained
to maximize the EF are reported as vertical lines in (D)−(F).
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spond to higher performance values. This is consistent with
expectations and indicates that recursively generating ensem-
bles from high performing target conformations results in a
sample biased to favor performance. The consistency of this
result across targets and both AUC and EF values suggests that
the approach is generally applicable for a variety targets and
ROC-based objective functions.
To further confirm that the slow heuristic produces biased

samples, we plotted the performance values of the best
ensembles identified by the method as dashed red vertical
lines in Figure 1. In five of the six cases considered, the slow
heuristic and exhaustive methods result in ensembles that
perform identically. In the last case (Figure 1A), the difference
was small: an AUC of 0.893 for the slow heuristic compared to
a value of 0.894 for the exhaustive method. Since identical
results imply that the edges of the samples and populations
overlap, these results provide additional evidence that the slow
heuristic is able to sample ensembles biased to perform well.
Compared to the population generated by the exhaustive

method, the dark blue slow heuristic sample is smaller. The
discrepancy between sample and population size becomes
larger when a greater number of target conformations is
considered. For example, of the three targets, the greatest
number of conformations (12) was considered for PPAR-δ, and
the difference between the sample and population sizes is
largest. This observation is consistent with the scaling of each
method: given N conformations, the exhaustive method
enumerates a population of size 2N − 1, and the slow heuristic
method considers samples of size N(N + 1)/2.
By assuming that ensembles can be constructed by

successively merging target conformations of decreasing
performance, the number of ensembles considered is reduced
further still, and an approach we call the fast heuristic method is
the result. The fast heuristic only considers the performance of

each target conformation once. While this results in the greatest
computational efficiency, the method considers the smallest
number of ensembles, and the likelihood of failing to sample
the best performing ensemble of the population is largest.
Our results indicate that considering a drastically smaller

sample of ensembles with the fast heuristic approach does not
significantly alter the performance of the best determined
ensemble (Figure 1). In four out of six cases, the fast heuristic
fails to sample the highest performing ensemble. However, in
all cases, the differences in performance are relatively small, and
the fast heuristic performance values reside near the edges of
the distributions. This indicates that the fast heuristic is able to
sample ensembles that perform similarly to the best performing
ensemble of the population.

Performance vs Size. When performance is measured as a
function of ensemble size (Figure 2), it is notable that for each
target the exhaustive method provides an upper bound: this is
expected since the exhaustive method identifies ensembles by
selecting the top performer from the entire population of a
given size.
The slow heuristic and exhaustive methods perform

identically, or nearly identically, across the range of ensemble
sizes and targets considered. These results are consistent with
the distributions shown in Figure 1. However, the trends in
Figure 2 go further to imply that the slow heuristic is able to
sample the best performing ensemble of the population at each
size or an ensemble that performs nearly identically.
While the fast heuristic realizes linear scaling by drastically

reducing the number of ensembles considered during training,
it is the poorest performing method, particularly for PPAR-δ
where the deviations are largest. However, across all targets and
for the majority of the sizes considered, the performance values
of the fast heuristic fall within the confidence intervals of the
exhaustive and slow heuristic methods. Since this implies

Figure 2. Training set performance as a function of ensemble size for three proteins using DUD-E. AUC is the area under the ROC curve. EF is the
ROC enrichment factor at a false positive fraction of 0.001. AUC values for ensembles trained to maximize the AUC are shown in (A)−(C), and EF
values for ensembles trained to maximize the EF are reported in (D)−(F). Shown are 95% confidence intervals.
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performance differences may be attributed to training set
variability, the fast heuristic performs reasonably well in
comparison to the other two methods.
For a given target and objective function, the smallest and

largest ensembles identified by each method perform
identically, as the identical bounds of the plots shown in
Figure 2 indicate. This behavior is anticipated. Each method
forms one-membered ensembles from the single best perform-
ing target conformer, and the largest ensembles are formed by
merging all target conformations.
Finally, the EF confidence intervals reported in (D)−(F) are

larger than those reported for the AUC values in (A)−(C).
Because enrichment factors quantify classification performance
on a smaller subset of the total data, the larger variability is
expected: smaller sample sizes lead to greater standard errors
and, by extension, larger confidence intervals.
Comparing Ensemble Performance on Training and

Test Sets. When developing knowledge-based classification
methods, evaluating the performance of the trained model on
an independent test set is a prerequisite to performing a
prospective screen. Doing so ensures that the model can
correctly classify compounds distinct from the training
compounds.34 To further validate the classification ability of
the highest performing ensembles identified by each method,

the ensembles were used to screen an independent test set, and
the test and training set performances were compared.
As can be seen by examining the androgen receptor entry in

Table 2, despite variations in ensemble size and training set
performance, the test set results are identical for each method
when ensembles are trained using the AUC as an objective
function. The variations in ensemble size imply that the
samples generated by the slow and fast heuristic do not contain
the best performing ensemble of the population. However, the
training set performances, which are within confidence intervals
of each other, imply that the best performing members of the
samples have classification abilities that are similar to the best
performing population member. This is consistent with the
ROC curves illustrated in Figure 3A and D, which illustrate that
the three methods result in ensembles with nearly identical
global classification abilities.
Similar results are realized for CDK2, where the three

training methods result in identically sized ensembles with
identical performance values on both training and test sets;
consistently, the ROC curves in Figure 3B and E overlap.
Collectively, these results imply that the slow and fast heuristic
methods were able to sample the best performing ensemble of
the population.

Table 2. AUC Values Determined on Training and Test Sets of Best Performing Ensembles Selected To Maximize AUCa

androgen receptor CDK2 PPAR-δ

method size training test size training test size training test

exhaustive 6 0.894 ± 0.05 0.850 ± 0.04 4 0.934 ± 0.014 0.919 ± 0.019 6 0.950 ± 0.020 0.923 ± 0.023
slow heuristic 5 0.893 ± 0.04 0.850 ± 0.04 4 0.934 ± 0.014 0.919 ± 0.019 6 0.950 ± 0.020 0.923 ± 0.02
fast heuristic 3 0.890 ± 0.03 0.850 ± 0.04 4 0.934 ± 0.014 0.919 ± 0.019 8 0.942 ± 0.022 0.928 ± 0.03

aThe column labeled “size” gives the number of target conformations in the optimally performing ensemble identified by each method; 95%
confidence intervals are given. Androgen receptor ensembles were constructed from 10 MD conformations identified using pocket volume clustering
and a crystal structure. CDK2 ensembles were constructed from five MD conformations identified using RMSD-based pocket clustering and a crystal
structure. PPAR-δ ensembles were constructed from 12 crystal structures.

Figure 3. Receiver operating characteristic (ROC) curves for ensembles trained to maximize the AUC of the ROC curve. Dashed black lines
illustrate random classification. Training set values are shown in (A)−(C). Test set values are shown in (D)−(F).
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Consistent with the androgen receptor and CDK2 results,
the three methods perform nearly identically on PPAR-δ. By
comparing training and test set entries in Table 3, along with
Figure 3C and F, it is apparent that the slow heuristic method
was able to sample the best performing ensemble from the
population, but the fast heuristic method was not. Compared to
the best ensemble of the population, the best ensemble
sampled by the fast heuristic is slightly larger and performs
slightly worse on the training set but slightly better on the test
set. However, for both training and test sets, the differences in
performance are small, and the AUC values of each method are
within confidence intervals of one another. In other words, the
best performing ensemble in the fast heuristic sample has
similar classification ability as the best performing member of
the ensemble population.
Similar to the results produced when using an AUC objective

function, each method produces androgen receptor ensembles
that perform identically, or nearly so, when ensembles are
selected by maximizing the EF. For example, Table 3 shows
that the ensembles identified by the exhaustive and slow
heuristic methods have identical sizes and performance values.
Consistently, Figure 4A and D, which show the early portion of
the ROC curves determined on the training and test sets,

respectively, are identical for the exhaustive and slow heuristic
methods. While the fast heuristic sample did not contain the
optimal population member, the method sampled an ensemble
that performed comparably: the performance was identical on
the training set and within confidence intervals on the test set.
The pattern is similar when the EF is maximized to identify

CDK2 and PPAR-δ ensembles: the slow heuristic samples the
best performing member of the population, and the fast
heuristic samples an ensemble that performs comparably. In all
cases, the performance differences are small, and the averages
are within confidence intervals of one another. Collectively,
these results provide further evidence that the fast and slow
heuristic methods effectively sample ensembles biased to favor
high performing members of the population.
Across all the targets considered, the training and test set

performances are similar for each method, and similar
classification accuracy implies an underlying similarity in the
structure of the compounds that make up each set. That is, if
training and test set compounds are chemically similar, then
they should be classified similarly. To analyze the extent of
training and test set overlap, we utilize a popular invariant
scaffold representation: graph frameworks.33 A graph frame-
work can be generated from any molecule by converting all

Table 3. EF at FPF of 0.001 Determined on Training and Test Sets of Best Performing Ensembles Selected To Maximize EF at
FPF of 0.001a

androgen receptor CDK2 PPAR-δ

method size training test size training test size training test

exhaustive 4 232.1 ± 87.2 151.8 ± 73.9 2 211.9 ± 57.9 148.3 ± 50.3 3 183.3 ± 83.0 116.7 ± 64.04
slow heuristic 4 232.1 ± 87.2 151.8 ± 73.9 2 211.9 ± 57.9 148.3 ± 50.3 3 183.3 ± 83.0 116.7 ± 64.04
fast heuristic 3 232.1 ± 87.2 133.9 ± 70.1 1 207.63 ± 57.5 152.5 ± 50.9 2 175.0 ± 76.6 125.0 ± 62.2

aThe column labeled “size” gives the number of target conformations in the optimally performing ensemble identified by each method; 95%
confidence intervals are given. Androgen receptor ensembles were constructed from 10 MD conformations identified using pocket volume clustering
and a crystal structure. CDK2 ensembles were constructed from five MD conformations identified using RMSD-based pocket clustering and a crystal
structure. PPAR δ ensembles were constructed from 12 crystal structures.

Figure 4. Receiver operating characteristic (ROC) curves for ensembles trained to maximize the EF at a FPF of 0.001. Dotted black lines illustrate
random classification. Training set values are shown in (A)−(C). Test set values are shown in (D)−(F). To be consistent with the training
condition, the early portion of the ROC curve, with FPF values between 0 and 0.002, is shown.
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atoms to Sp3 hybridized carbon atoms and removing acyclic
substructures that do not connect ring systems.
Training and test set similarity was estimated by determining

the percentage of molecules whose graph frameworks were
unique to each set and the percentage that was shared by each
set (Figure 5). Across the three targets, between 65% and 76%

of molecules can be represented by frameworks that are found
in both the training and test sets, and between 12% and 18% of
molecules are represented by graph frameworks found only in
the training or test sets. Hence, the underlying chemical
similarities shared by the training and test sets help explain the
similar classification performance observed for these sets.
However, the existence of molecules whose graph frameworks
are unique suggests that the trained ensembles are able to
correctly classify molecules structurally distinct from those used
during training.

■ DISCUSSION
Given a collection of target conformations generated either by
experiment or by simulation, it is difficult or impossible to
know a priori which subset will result in the best VS
performance. The problem becomes increasingly challenging
as the number of target conformations grows, and this is the
result of the combinatorial nature of the problem. To address
this problem, we presented three knowledge-based ensemble
selection methods: the exhaustive method, the slow heuristic
method, and the fast heuristic method. For each method, the
discussion includes schematic illustrations that describe the
underlying selection algorithm and an examination of perform-
ance, scaling, and limitations; results from the androgen
receptor, CDK2, and PPAR-δ provide context.
Exhaustive Method. By enumeration of all possible

combinations of conformers, the exhaustive method generates
the complete ensemble population and only retains the highest
performing individual; that is, the exhaustive method is

guaranteed to identify the best performing member of the
population. This is illustrated schematically in the “Exhaustive”
column of Figure 6. Three receptor conformers, colored red,

green, and blue are shown, and the ensembles that can be
constructed at each size are also shown. The population
constitutes all of the ensembles at each size, and in the simple
schematic, contains seven members. By performing a census of
the population, the best performing ensemble is readily
identified. This was realized for each target considered here.
Applying conformation enumeration to generate ensembles

is not new, and the idea has appeared in the literature. For
example, to retrospectively compare the VS performance of
ensemble and single crystal structure VS protocols, Korb et al.62

used a similar enumerative approach. However, in their work,
enumeration was not tied to ensemble training, and we later
proposed that enumeration could be used to identify ensembles
with the greatest VS utility.63 It is that concept that we
demonstrated here.

Slow Heuristic. Performing a population census, as the
exhaustive method does, guarantees that the best performing
ensemble will be identified, but the process is computationally
expensive. To reduce expense, we introduced the slow heuristic,
which builds ensembles recursively. Beginning with the best
performing target conformer, each conformation not yet
assigned to an ensemble is grouped with the best performing
ensemble of the current size. This produces a sample of
ensembles, each with one additional conformation and a
characteristic VS performance, from which the best ensemble is
selected. The process continues until all conformers have been
included in an ensemble, and the ensemble that performs best
overall is retained. Following this heuristic produces a biased
sample that neglects population members that do not contain
the best performing ensembles of smaller sizes.
To clarify how the slow heuristic results in biased samples,

we have illustrated the process schematically in the “Slow
heuristic” column in Figure 6. Of the three conformations, the
red one performs best, the green next best, and the blue
conformation performs worst. The one-membered ensemble is
made up of the single best performing target conformer, or the
red conformer, in this case. After identifying the one-membered
ensemble, two two-membered ensembles are then generated.
Each contains the best one-membered ensemble: red-blue and

Figure 5. Percentages of compounds whose graph frameworks (FWs)
are unique to, and shared between, training and test sets. Percentages
are given for (A) androgen receptor, (B) CDK2, and (C) PPAR-δ.

Figure 6. Training method schematic: selecting the best performing
ensemble from three target conformers. As indicated by the greater
than symbols, the VS performance, measured by either the AUC or
EF, is greatest for the red conformer, followed by the green conformer,
and the blue conformer is the poorest performer. Each method is
found in a column, and all combinatorial possibilities are shown. The
VS performance of enumerations marked with an “X” are not explicitly
evaluated. Hence, the exhaustive method evaluates all combinatorial
possibilities. The slow heuristic assumes the next largest optimal
ensemble is formed only from a combination of the current ensemble
and one of the remaining conformers. The fast heuristic method ranks
the VS performance of each target conformer and assembles
ensembles by successively including conformers of decreasing
performance.
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red-green. Since the blue-green ensemble does not contain the
best performing one-membered ensemble, it is neglected.
While it is not a given that the slow heuristic will result in

samples biased to favor high performing ensembles, that did
prove to be the case in the three targets considered in this work.
This was illustrated in part by the overlap of the population and
slow heuristic sample distributions in Figure 1 and in part by
the ability of the method to identify the best performing
ensemble from the population. For example, in Figure 1, the
slow heuristic sample favored ensembles that produced larger
values of both classification metrics considered, and this was
true across all three targets. Additionally, the slow heuristic
identified the best performing ensemble from the population in
five out of the six cases considered (Tables 2 and 3). These
observations provide further support for the claim that the
method produces biased samples favoring high performing
ensembles, and they suggest that the method may be generally
applicable across different target classes and ROC-based
objective functions.
Nevertheless, because the slow heuristic samples the

population, it may miss ensembles in which synergism between
poor performing conformations can lead to a higher performing
ensemble. To help clarify this, consider the blue and green
conformations in Figure 6. Despite their poorer individual
performances, if they pair to form a high performing two-
membered ensemble, it will not be sampled by the slow
heuristic. However, while missing potential synergism is
possible, when the sample is biased toward high performing
ensembles, the best performing sample member may perform
comparably to the highest performing population member.
This proved true in this study. For example, when the slow
heuristic was used to train androgen receptor ensembles to
maximize the AUC, the sample did not contain the optimal
ensemble from the population; however, the performances of
the best ensemble from the sample and the best ensemble from
the population were within confidence intervals of one another
(Table 2).
The slow heuristic appears to offer a reasonable compromise

between computational efficiency and performance. To
illustrate the computationally efficiency, in the Supporting
Information, we show that the exhaustive method scales as
O(2N), given N target conformations, while the slow heuristic
scales as O(N2). For example, if 23 receptor conformations are
considered, the exhaustive method considers roughly 8.3
million ensembles, while the slow heuristic method only
evaluates 264 ensembles. However, since each of the
enumerated ensembles can be evaluated on a single processor,
it is noteworthy to point out that the exhaustive method is
embarrassingly parallel.
Fast Heuristic. By constructing ensembles of increasing size

by successively merging conformations of decreasing perform-
ance, the fast heuristic ignores the pools of ensembles
generated at each size by the slow heuristic and further reduces
computational expense. Thus, the fast heuristic produces a
small, biased sample that neglects the poorest performing
conformations at each ensemble size.
To clarify how the fast heuristic produces biased samples, we

have illustrated the process schematically in the “Fast heuristic”
column in Figure 6. Since the red conformation performs best,
it is selected as the one-membered ensemble, and the poorer
performing conformations are neglected. By merging the one-
membered ensemble with the next best performing con-
formation, the two-membered red-green ensemble is produced.

The green-blue ensemble is ignored, just as it is by the slow
heuristic, but the red-blue ensemble is also ignored, which
results in a smaller sample.
Relative to the exhaustive solution, which generates the

entire ensemble population, the fast heuristic sample is
significantly smaller. In general, given N target conformations,
the ensemble population has a size 2N − 1, and the fast heuristic
only considers 2N − 1 of these. In practice, this can quickly
amount to thousands of possibilities. For example, with 11
androgen receptor conformations, the fast heuristic method
ignores 2026 of the 2047 possible ensembles.
The fast heuristic is nearly identical to the method of Xu and

Lill,30 which was described in the Introduction. However, rather
than using the value of a ROC classification metric, they ranked
target conformations by the differences in average docking
scores of decoy and active molecules to each conformer. While
Xu’s and Lill’s results were promising, the effect of ignoring a
significant fraction of the ensemble population was not
assessed.
To provide insight into the severity of the heuristic relative to

the enumerative solution, we compare the exhaustive and fast
heuristic results. Consistent with the small sample size, the fast
heuristic was only able to identify the best performing
population member in one of the six cases considered (Tables
2 and 3). Despite this, the ensembles identified performed
similarly to the best performing ensemble of the population:
fast heuristic performance values were within confidence
intervals of the best performing members of the population
for all three targets and both objective functions. Despite the
much smaller sample size, the fast heuristic may be a generally
applicable approach that offers linear scaling without a dramatic
sacrifice in classification ability.

■ CONCLUSIONS

Docking to structural ensembles is a promising means of
identifying novel, structurally diverse active compounds.
Despite the potential of ensemble docking, it is difficult to
know which structures will synergize and perform well during a
virtual screen. This problem emerges from the combinatorial
nature of ensemble selection. To address the selection problem,
we presented three promising knowledge-based methods. Each
method scales differently in the limit of a large number of
receptor conformations but can perform similarly, which was
demonstrated by constructing ensembles of the androgen
receptors, CDK2, and PPAR-δ and with either X-ray crystallo-
graphic structures or snapshots from all-atom molecular
dynamics trajectories. As with all other knowledge-based
methods, those presented here are fundamentally limited by
the availability of high quality ligand sets. Nevertheless, virtual
screens are often carried out on targets for which active and
inactive molecules are known. In these cases, the ensemble
selection methods presented have broad applicability.
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