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Abstract: Fibromyalgia is a chronic and systemic syndrome characterized by muscle, bone, and
joint pain. It is a gender-specific condition with a 9:1 incidence ratio between women and men.
Fibromyalgia is frequently associated with psychic disorders affecting the cognitive and emotional
spheres. In the reported work, we compared 31 female fibromyalgia patients to 31 female healthy
controls. They were analyzed for biochemical clinical parameters, for autoimmune markers, and
were subjected to 1H-NMR metabolomics analysis. To identify a correlation between the metabolomic
profile and the psychic condition, a subset of 19 fibromyalgia patients was subjected to HAM-A
and HAM-D Hamilton depression tests. Multivariate statistical analysis showed the dysmetabolism
of several metabolites involved in energy balance that are associated with systemic inflammatory
conditions. The severity of depression worsens dysmetabolic conditions; conversely, glycine and
glutamate, known for their critical role as neuromodulators, appear to be potential biomarkers of
fibromyalgia and are associated with different severity depression conditions.

Keywords: fibromyalgia syndrome; NMR metabolomics; Hamilton test

1. Introduction

Fibromyalgia syndrome (FMS) is a chronic syndrome characterized by pain, muscle
stiffness, and joint and tendon pain [1–3]. The primary disorders of FMS are restless sleep,
tiredness, fatigue, anxiety, depression, and intestinal function disorders. The areas most
affected are the neck, buttocks, shoulders, arms, upper back, and chest [4–6].

Fibromyalgia is a gendered pathology, with higher incidence in females [7]. Therefore,
fibromyalgia is one of the chronic conditions of interest in gender-specific medicine. De-
veloped over the last two decades, gender-specific medicine is a branch of medicine that
considers the influence of gender on the pathophysiology of many disorders. It focuses on
the differences in pathophysiology and clinical treatment of certain diseases with a higher
incidence in one gender [8]. Previous scientific evidence has identified fibromyalgia as a
gender-related disease with a 9:1 incidence ratio between women and men. Fibromyalgia
has a different pathognomonic profile in females than in male subjects, with higher indices
in the severity of pain, overall fatigue, and psyche conditions in women than in men [9].
The causes of this gender difference are still being debated. However, they might result
from the different impact that biological, psychological, and sociocultural factors have on
males and females [10].

The currently known biological factors underlying the onset of fibromyalgia con-
cern alterations in the hypothalamic–pituitary–adrenal axis. These cause alterations in
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the production of stress regulating hormones, such as cortisol. Serological biochemistry
abnormalities show that fibromyalgia presents an autoimmune nature as characterized by
the production [11] of serotonin antibody(5-HT), anti-ganglioside antibody (anti GD-3, anti
GM-1, anti-GQ1b), and antiphospholipid antibody (APL) [12].

Fibromyalgia is strictly related to the psychic conditions, with disorders affecting
cognitive and emotional spheres [13–15].Both biological and psychological dysfunction
have a higher incidence in women than men, worsening their clinical conditions [11].

Depression is one of the most common mental disorders, and it is characterized by
sleep disorders, interest deficit, guilt, energy deficit, and appetite deficit [16]. The diagnosis
of depression is primarily carried out by excluding the presence of other neurological
disorders by laboratory analysis and, subsequently, evaluating the psychic picture through
structured psychiatric diagnostic interviews such as the diagnostic interview schedule
(DIS) [17], as well as diagnostic tests such as the Hamilton anxiety test and the depression
test (HAM-A and HAM-D). According to the HAM-A or HAM-D score, these tests eval-
uate an individual’s state of anxiety and depression, which are both pathological states
associated with HAM-A > 17 and HAM-D > 21 [18].

Over the past decade, metabolomic studies have played a significant role in identifying
the metabolomic profile that characterizes many pathologies [19–23]. Nuclear magnetic
resonance (NMR) spectroscopy is a suitable technique for omic approaches, enabling the
qualitative and quantitative detection of low-molecular-mass compounds in biological
samples [24].

The metabolomic profile of fibromyalgia patients has previously been characterized
using mass spectroscopy (MS) and NMR spectroscopies. Abnormal urinary concentrations
of citric acid, two hydroxybutyrates, and threonine have been identified [5] with the
dysregulation of numerous pathways related to energy metabolism [25].

In the present work, we studied 31 female fibromyalgia patients compared to 31
healthy female controls. They were analyzed for biochemical and clinical parameters,
autoimmune markers, and the NMR metabolomics profile. The study of the complete
patient set led to the identification of fibromyalgia biomarkers, thus confirming the known
metabolic abnormalities [25]. To unveil a relationship between the fibromyalgia metabolic
profile and the severity of depression, we analyzed the clinical and metabolomic parameters
of a 19 fibromyalgia patient subset compared to the patients’ psychic conditions. Our
analysis was based on the HAM-A and HAM-D Hamilton depression tests.

Our study demonstrates the alteration of metabolic pathways involved in the energy
balance and associated with systemic inflammatory conditions. The severity of depression
worsens dysmetabolic conditions, while glycine and glutamate, known for their critical
role as neuromodulators, appear as potential biomarkers of fibromyalgia associated with
different severity depression conditions.

2. Results
2.1. Clinical and Autoimmune Analysis

Blood sera of 31 female subjects diagnosed with fibromyalgia, according to the revised
diagnostic protocols [26], and 31 healthy controls were analyzed for the following bio-
chemical and clinical parameters: hemoglobin, creatinine, uric acid, parathormone (PTH),
calcium, creatine kinase (CK), sideremia, ferritin, fibrinogen, C reactive protein (PCR), and
rheumatoid factor (RF).

To analyze autoimmunity, fibromyalgia patients were evaluated for antinucleus an-
tibodies (ANA), nuclear extractable antigens (ENA), and anti-parietal cell antibodies
(APCA) [27,28]. A negative ANA titer was considered as ANA < 80 U/mL, while a
positive titer was ANA > 160 U/mL. By following this criterion, 19.35% of the patients
were ANA negative, 51.61% were weakly positive, and 9.68% were positive. All patients
tested were negative for ENA and APCA, showing serum concentration values lower than
20 UC and 5 U/mL, respectively.
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2.2. Psychological Test Results

Fibromyalgia female patients were diagnosed with depression using Hamilton anxiety
(HAM-A) and Hamilton depression (HAM-D) [29,30] tests. The pathological condition
was considered for HAM-D > 17 and HAM-A> 21. Accordingly, seven subjects reporting
scores of HAM-A > 17 and HAM-D > 21 manifested severe depression, whereas 12 patients
reporting scores of HAM-A > 17 and HAM-D < 21 manifested moderate depression.

By defining severe depression and moderate depression clusters, we calculated the
variable influence on the projection (VIP) score using the R package [31]. Therefore, we
identified variables discriminating between the two groups as those having a VIP value
of >1. Table 1 shows that the discriminating clinical parameters for fibromyalgia patients
are ferritin, reactive protein C (PCR), and creatine kinase (CK). Moderate depression
fibromyalgia patients show higher ferritin and CK concentrations, whereas severe depres-
sion fibromyalgia patients show lower PCR concentrations. No significant correlation was
observed between autoimmune parameters and psychological tests.

Table 1. VIP score and p-value calculated (calculated by MetaboAnalyst.R) for clinical parameters of
fibromyalgia patients suffering from moderate depression (1) or severe depression (2).

VIP Score 1 2 p-Value

Ferritin 2.60 + - 0.0054
C-reactive

protein 1.35 - + 0.0134

Creatine kinase 1.00 + - 0.0471

2.3. Statistical Analysis
Statistical Analysis of NMR Data

Matrices, including metabolites and their concentrations derived from 1H NMR 1D-
NOESY spectra, were analyzed with MetaboAnalyst 4.0 using univariate and multivariate
statistical analysis [32,33]. Using t-tests p-value < 0.05 and fold change ≥75%, D-glucose
(p-value: 2.34 × 10−28), 2-hydroxybutyrate (p-value: 8.69 × 10−28), citric acid (p-value:
1.21 × 10−24), L-tryptophan (p-value: 4.21 × 10−21), and L-carnitine (p-value: 1.02 × 10−16)
as criteria resulted in metabolites significantly discriminating female fibromyalgia patients
in comparison to healthy female controls (see Supplementary Material Tables S1 and S2).

An analysis of related operating characteristic (ROC) curves on the same dataset [34–36]
demonstrated increases in 2-hydroxybutyrate, hypoxanthine, acetic acid, L-carnitine, L-
proline, and L-tryptophan (100% AUC) in patient sera, with a concurrent decrease in
D-glucose (see Supplementary Material Figure S1).

A multivariate data analysis (MVA) using non-supervised (PCA) and supervised
methods (PLS-DA) was carried out [37] on a matrix, including 42 metabolites collected
from 62 samples (deriving from 31 fibromyalgic and 31 healthy female subjects) [38].
Normalization by constant sum and Pareto scaling was applied to the dataset. The first
component explained the 47.7% variance, while the second component explained the 11.3%
variance. The choice of components was made considering the confidence value (R2X)
of 96% and the predictive value (Q2X) of 95% on the first component and 98–95% on the
second component (see Supplementary Material Table S3). Figure 1a,b and Figure 2a,b
show PCA and PLS-DA scores and loading scatter plots. Discrimination between the
two metabolomic profiles is evident; according to the PLS-DA analysis, L-lactic acid
and L-serine mainly characterize the patient group, whereas D-glucose and L-threonine
characterize the healthy control group.
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Figure 2. PLS-DA score scatter plot (a) and PLS-DA loading scatter plot (b) for the 1H NMR data collected in 1D-1H-CPMG
spectra acquired at 600 MHz. Data represent the sera from 31 controls (0, red) and 30 fibromyalgic patients (1, green).

To evaluate the impact of the single metabolite in discriminating female fibromyalgia
patients from healthy female controls, we performed a VIP score analysis (Figure 3).
Accordingly, the metabolite considered as the best classifiers between the two clusters
(VIP score > 1) is D-glucose; L-threonine decreased in fibromyalgia patients, while L-
proline, citric acid, and 2-hydroxybutyrate increased in fibromyalgia patients. To evaluate
the impact of the observed metabolite abnormalities on the biochemical pathways, we
performed a metabolic pathway analysis. Table 2 reports the matched pathways, classified
according to the p-values, the false discovery rate (FDR), and the number of hits found in
the KEGG database [39].



Metabolites 2021, 11, 429 5 of 14

2.4. NMR Data and Psychological Tests

FMS is often associated with an abnormal psychic condition typical of depression
and anxiety [4,40,41]. To evaluate a possible correlation between the metabolomic and
psychic profiles, we repeated the MVA by considering the results of HAM-D and HAM-A
depression tests on the sub-group of 19 female fibromyalgia patients; this was performed
in conjunction with the metabolomic data. Twelve out of 19 fibromyalgia patients were
classified as moderately depressed, and seven were classified as severely depressed [42,43].

PCA and PLS-DA evidenced no metabolomic discrimination by considering healthy
controls, moderate depression patients, and severe depression fibromyalgia patients (see
Supplementary Material Figure S2 and Table S4). However, ROC curve analysis indicates
that glycine, betaine, glutamate, glutamine (AUC = 0.65), proline (AUC = 0.65), and
creatinine (AUC = 0.65) can be considered biomarkers of depression severity in fibromyalgia
patients when AUC values are given as follows: glycine (AUC = 0.69), betaine (AUC = 0.68),
and L-glutamate (AUC = 0.65) (see Supplementary Material Figure S3). At the same
time, VIP score analysis (Figure 4) indicates a progressive increase in concentrations of
hypoxanthine, acetic acid, creatinine, 2-hydroxybutyrate, and betaine from the healthy
subjects (0) to those affected by severe depression (2). An opposite trend is evident for
glucose and lactic acid.
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Table 2. Pathway analysis using MetaboAnalyst and Reactome.

Pathway Name Pathway Source Hits Raw p FDR

Alanine, aspartate, and glutamate
metabolism Metaboanalyst 4.0 8 4.09 × 10−18 1.60 × 10−16

Purine metabolism Metaboanalyst 4.0 2 1.42 × 10−12 2.04 × 10−11

Glyoxylate and dicarboxylate
metabolism Metaboanalyst 4.0 8 1.76 × 10−12 2.04 × 10−11

Aminoacyl-tRNA biosynthesis Metaboanalyst 4.0 19 2.09 × 10−12 2.04 × 10−11

Glycine, serine, and threonine
metabolism Metaboanalyst 4.0 7 1.20 × 10−8 9.36 × 10−8

Glycolysis/gluconeogenesis Metaboanalyst 4.0 3 8.12 × 10−8 3.52 × 10−7

Arginine and proline metabolism Metaboanalyst 4.0 6 6.76 × 10−7 2.46 × 10−6

Arginine biosynthesis Metaboanalyst 4.0 5 6.93 × 10−7 2.46 × 10−6

Pyruvate metabolism Metaboanalyst 4.0 3 3.45 × 10−6 1.12 × 10−5

Cysteine and methionine
metabolism Metaboanalyst 4.0 3 4.70 × 10−6 1.41 × 10−5

D-glutamine and D-glutamate
metabolism Metaboanalyst 4.0 2 2.63 × 10−5 6.84 × 10−5

Nitrogen metabolism Metaboanalyst 4.0 2 2.63 × 10−5 6.84 × 10−5

Citrate cycle (TCA cycle) Metaboanalyst 4.0 3 4.15 × 10−5 1.01 × 10−4

Porphyrin and chlorophyll
metabolism Metaboanalyst 4.0 2 5.56 × 10−4 1.14 × 10−2

Glutathione metabolism Metaboanalyst 4.0 3 7.58 × 10−3 1.48 × 10−3

Propanoate metabolism Metaboanalyst 4.0 2 1.80 × 10−3 3.53 × 10−2

Valine, leucine, and isoleucine
biosynthesis Metaboanalyst 4.0 4 2.36 × 10−1 4.19 × 10−1

Tyrosine metabolism Metaboanalyst 4.0 3 0.00010325 0.00017

Defective SLC16A1 causes
symptomatic deficiency in lactate

transport (SDLT)
Reactome 2 0.005466565 0.37265

Creatine metabolism Reactome 3 0.007243495 0.37265

Proton-coupled monocarboxylate
transport Reactome 2 0.007763673 0.37265

Transport of bile salts and organic
acids, metal ions, and amine

compounds
Reactome 5 0.037453248 0.50662

Organic cation/anion/zwitterion
transport Reactome 3 0.038381951 0.50662

SLC-mediated transmembrane
transport Reactome 8 0.042023926 0.50662

Organic anion transporters Reactome 2 0.042882355 0.50662
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Figure 4. Metabolites discriminating healthy controls (0) from fibromyalgic patients with moderate
depression (1) and fibromyalgia patients with severe depression (2), according to VIP score values.

3. Discussion

FMS is a chronic and systemic syndrome characterized by muscle, bone, and joint pain.
It is a gender-specific condition with a 9:1 incidence ratio between women and men [9].

Although the mechanisms underlying gender differences in fibromyalgia incidence
are not fully known, there is an agreement that the possible causes can be found in
the specific biological, psychological, and sociocultural factors that characterize the two
genders [9,10,44].

Fibromyalgia syndrome is frequently associated with mood disorders, particularly
depression. To investigate biochemical correlations between fibromyalgia and depression
and to identify possible common fibromyalgia and depression biomarkers, we performed
a 1H-NMR metabolomics study on the blood sera of 31 female fibromyalgia patients; then,
NMR data were correlated to the results of HAM-A and HAM-D tests from 19 out of 31
fibromyalgia patients.

MVA statistical analysis of our NMR data confirms previous evidence of the specific
metabolomic pathways discriminating healthy female controls from female fibromyalgia
patients (Figures 1 and 2) [45]. The metabolites glucose, citric acid, and 2-hydrossybutirrate
are significant disease classifiers (Figure 3 consistently with a pathological picture character-
ized by an alteration in energy-related biochemical pathways. This evidence is reinforced
by the occurrence of gluconeogenesis and glycolysis biochemical pathways among those
significantly perturbed (p-value = 8.12 × 10−8 ), as reported in Table 2.

The association between fibromyalgia and alteration of energetic metabolism could
explain the significant female gender incidence of the pathology. Indeed, alteration in
energy-related pathways is correlated to the hormonal estrogen pathway: previous studies
have shown that 17β-estradiol has a critical role in the brain to regulate energy homeostasis,
with implications on glycolysis and gluconeogenesis [46–48]. The alteration of glucose
metabolism is in line with abnormal citric acid concentrations (AUC = 100% Figure S1) [45].
Increased concentrations of citric acid (Figure 3 and Figure S1), together with increased
acetate and hypoxanthine levels—the AUCs of all these metabolites are 100%—are typical
of a high incidence of anaerobic muscle metabolism [49]. This metabolic feature, also
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evident in the lactate transport dysmetabolism observed in Reactome analysis (p-value:
0.005) (Table 2), induces chronic fatigue and frequent migraines, the latter of which was an
oft-cited complaint from the fibromyalgia patients [4,8,50–54].

The analysis of data in fibromyalgia patients classified according to depression severity
indicates that metabolites involved in energy balance, such as glucose, hypoxanthine crea-
tinine, and acetate, are proportionally altered with the severity of the depressive condition.
This shows that energetic dysbalance is the cause of fibromyalgia and depression comor-
bidity and that a highly perturbed energetic balance may have reciprocal consequences in
terms of fibromyalgia and depression symptoms [45,55–57] (Table 2).

Low blood glucose concentrations are a hallmark of fibromyalgia disease [45]. As
shown in Figure 4, subjects with severe depression have a progressively low glucose
concentration. A correlation between mood disorders and glucose dysmetabolism has
been demonstrated previously [58]. Glucose is the only energy source for brain cells,
and the correct function of several biochemical pathways is necessary for the following
healthy glucose metabolism: (i) glycolysis and mitochondrial oxidation; (ii) metabolization
of glucose in the pentose cycle, to produce NADPH needed for reactive oxygen species
removal; (iii) hormone glucocorticoids, insulin, and incretin control [59–61]. Recently,
abnormal glucose-related metabolic markers have been found in the hippocampus and
frontal cortex, both brain regions that are primarily impaired in depression conditions [58].

Our data show that acetate, hypoxanthine, and creatinine are progressively high in
fibromyalgic patients with severe depression (Figure 4 and Figure S2). These metabolites
are also related to energetic dysmetabolism; previous evidence proved that increased
purine concentration is related to mitochondrial dysfunction, increased oxidative stress
conditions (Figure 3), and muscle damage [62]. Indeed, high purine concentrations can be
found in FMS [63], and they are markers for severe depression, especially in females [58].

The perturbation of several amino acid biochemical pathways (Table 2) indicates amino
acid dysmetabolism in fibromyalgia patients: Alanine, aspartate, and glutamate biochem-
ical pathways (p-value 4.09 × 10−18); Glycine serine and threonine biochemical pathways
(p-value 1.20 × 10−8). On the other hand, a reduction in L-threonine concentrations and an
increase in L-proline concentrations discriminate FM patients, as shown in VIP score anal-
ysis (Figure 3). The relationship between proline concentration and FM disease has been
previously demonstrated: using MS metabolomics analysis proline concentrations were
shown to be proportional with Fibromyalgia Impact Scores Questionnaire (FIQ) values [64].

Alteration in the amino acid pathways further proves the relationship between fi-
bromyalgia and depressive syndrome. A ROC curve analysis of metabolites in fibromyal-
gia patients classified in moderate and severe depression patients revealed progressively
altered levels of glycine and glutamate (Figure S3) (Table 1). These are important neuro-
mediators whose alterations have previously been demonstrated in mood disorders as
being correlated to the inflammatory processes and increased inflammation markers [65].
Moreover, abnormal glutamate and glutamine levels have been shown by NMR imaging
within the insula and the posterior gyrus [66,67], both brain regions that suffer significantly
in depression disorders.

Consistent with the chronic inflammatory nature of fibromyalgia, it is well known that
fibromyalgia patients suffer from chronic fatigue and report increased PCR serum concen-
trations. This is confirmed by our biochemical, clinical data [68]. Interestingly, abnormally
high PCR levels have been previously found in high severe depressive conditions [69].
Moreover, our data also evidence a reduction in ferritin concentrations in subjects with
severe depression (Table 1) [70–72], confirming previous scientific evidence on ferritin
reduction in patients affected by fibromyalgia and depression.

Among other dysfunctions such as irritable bowel syndrome, chronic fatigue syn-
drome, and temporomandibular disorder [73], fibromyalgia is characterized by an alter-
ation in intestinal microflora [74–76]. Our data show a progressive increase in acetate
and 2-hydroxybutyrate (AUC = 100%, Figure S1) in fibromyalgia patients affected by se-
vere depression. These metabolites are catabolic products of intestinal microflora [5] and
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are suggestive of microbiome disorders that, commonly to fibromyalgia and depressive
syndrome, have a negative synergic effect on the clinical picture as a whole.

4. Materials and Methods
4.1. Partecipants and Study Design

Thirty-one (31) participants were selected from the Clinical Pathology Laboratory of
DEA III Liv. Nocera-Pagani, ASL Salerno, Italy. (Table 3) Blood sera samples were collected
from 31 female subjects diagnosed with fibromyalgia according to the revised diagnostic
protocols the fibromyalgia diagnostic criteria [8]. The institutional ethical committee of
Azienda Ospedaliera “ASL Salerno” approved the study protocol, which followed the
1964 Declaration of Helsinki and its later amendments, and all subjects gave written
informed consent.

Table 3. Demographic and clinical information related to fibromyalgia patients and controls.

Fibromyalgic
Group (N = 31)

Control Group
(N = 31)

Sex (male/female) 0/31 0/31
Age (mean ± SD, years) 42.8 ± 14.04 50.0 ± 9.90
Number of participants

psychological tests 19/31 19/31

ANA positive 19/31 0/31
ENA positive 0/31 0/31

ACPA positive 2/31 0/31
HAM-A > 17 and HAM-D < 21 12/19 0/19
HAM-A > 17 and HAM-D > 21 7/19 0/19
HAM-A < 17 and HAM-D < 21 0/19 19/19

ANA = antinuclear antibodies, ENA = extractable nuclear antigen, ACPA = anti-citrullinated protein antibodies.

4.2. Autoimmune Parameter Analysis

The IIF technique was used to detect ANA using Hep-2 cells (Euroimmun, Lübeck,
Germany) [77]. The cover sheets coated with cells fixed with acetone were cut in biochips
and placed on microscope slides. Serum samples were diluted to 1:100 and incubated with
the cell substrate Hep-2 × 30 m at room temperature. They were washed with PBS-Tween,
followed by incubation for 30 min with anti-human goat Igg conjugated with fluorescein
isothiocyanate plus propidium iodide. Finally, after the last wash, the slides were evaluated.
IIF slides were subjected to automated immunofluorescence microscopy, and fluorescence
models were evaluated using the Europattern software (Euroimmun) [78].

The technique used to determine ENA and ACPA antibodies is based on the principle
of chemiluminescence [79] carried out by Bio-flash (Biokit, Barcelona, Spain) [80]. All
samples were performed by QUANTA Flash DFS70 CIA on Bio-flash tool (Inova Diagnos-
tics, San Diego, CA, USA) [81]. The instrument Bio-flash® is an automated analyzer for
immunometric tests, and its technology is based on the reading of samples in chemilumi-
nescence. The protocol used was the standard protocol of the instrument [81]. The cut-off
line was defined as 20 chemiluminescence units (CU).

4.3. Psychological Test: Hamilton Anxiety Test (HAM-A) and Hamilton Anxiety Depression
(HAM-D)

For each fibromyalgia patient, the depressive state was calculated using the anxiety
assessment scale (Ham-A) and the Hamilton depression assessment scale (Ham-D) [82].
The Ham-A scale consists of 14 points, each of which defines the extent of symptoms such
as psychological stress and mental agitation, as well as somatic symptoms such as physical
disorders related to anxiety [83]. The score assigned to each question is reported on a scale
ranging from 0 (not present) to 4 (serious), and where a score is less than 17, we use a
slight index entity in which 18 to 24 represents mild to moderate and 25 to 30 represents
moderate to severe [82]. Ham-D is a questionnaire designed for adults in which the severity
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of depression is evaluated by testing mood, agitation, insomnia, weight loss, and somatic
disorders [84]. Each element of the questionnaire is evaluated on a scale of 3 or 5 points,
and then, the total score is calculated; the evaluation time is about 20 min [18]. Different
levels of depression were established based on the score obtained: (i) not depressed: 0–7;
(ii) mild depression: 8–13; (iii) moderate depression: 14–18; (iv) grave depression: 19–22;
(v) very serious depression: >23.

4.4. Sample Pretreatment for NMR Analysis

NMR sample preparation and NMR spectra acquisition were performed as previously
reported [19,23,24]. To obtain the blood serum, whole blood was collected into tubes not
containing anticoagulant and was allowed to clot at room temperature for 30 to 120 min.
After centrifugation at 12,000× g, the blood serum was aliquoted and stored at −80 ◦C in
Greiner cryogenic vials before NMR spectroscopy measurements. Before being transferred
to a 5 mm heavy-walled NMR tube, samples were thawed at room temperature. NMR
samples were prepared by mixing 300 µL of blood serum with 200 µL of phosphate buffer,
including 0.075 M Na2HPO4·7H2O, 4% NaN3, and H2O. Trimethylsilyl propionic-2,2,3,3-d4
acid, sodium salt (0.1% TSP in D2O) was used as an internal reference for the alignment
and quantification of NMR signals; the mixture, homogenized by vortexing for 30 s, was
transferred to a 5 mm NMR tube (Bruker NMR tubes) before analysis started [24].

4.5. NMR Data Acquisition

NMR experiments were carried out on a Bruker DRX600 MHz spectrometer (Bruker,
Karlsruhe, Germany) equipped with a 5 mm triple-resonance z-gradient CryoProbe. TOP-
SPIN, version 3.0, was used for spectrometer control and data processing (Bruker Biospin,
Fällanden, Switzerland) [23]. For nonfiltered biofluids, low-mass metabolites coexist with
high-mass biomolecules, such as lipids, proteins, and lipoproteins; therefore, to selectively
observe small-molecule components in solutions, Carr–Purcell–Meiboom–Gill (CPMG)
experiments were performed. Then, 1D-1H pulse-sequence CPMG experiments comprised
a spectral width of 7 kHz with 32,000 data points; water presaturation was applied over a
3.5 s relaxation delay, and we applied a spin-echo delay of 80 ms [85]. The pulse sequence
used included an excitation sculpting routine for the suppression of the water signal [86].
Due to the effect of excitation sculpting on the signal height of resonances in the region
close to the water resonance [87,88], the metabolites that had resonances close to this region
(ascorbate, glucose, mannose, and pyroglutamate) were quantified using resonances from
those metabolites in other spectral regions. A weighted Fourier transform was applied
to the time domain data with a 0.5 Hz line-broadening, followed by a manual phase and
baseline correction in preparation for targeted profiling analysis.

4.6. NMR Data Processing

NMR spectra were manually phased and baseline corrected. The quantification of
serum metabolites was achieved using Chenomx NMR-Suite v8.0 (Chenomx Inc., Edmon-
ton, Canada) [19,89]. Briefly, the Chenomx profiler was linked to the Human Metabolome
Database (HMDB), containing more than 250 metabolite NMR spectral signatures encoded
at different 1H spectrometer frequencies, including 600 MHz (https://hmdb.ca/, accessed
on 15 May 2021). A comparison of the spectral data obtained for each serum sample
with the Chenomx metabolite library resulted in a list of compounds together with their
respective concentrations and based on the known concentration of the added internal
reference compound TSP-d4 (5.8 mM).

4.7. Multivariate Analysis

All multivariate statistical analyses (PCA and PLS-DA) were made using MetaboAna-
lyst 4.0 (http://www.metaboanalyst.ca/, accessed on 15 May 2021) [37]. The performance
of the PCA and PLS-DA model was evaluated using a cross-validation method (Q2, R2
index). A loadings plot was used to identify significant metabolites responsible for maxi-

https://hmdb.ca/
http://www.metaboanalyst.ca/
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mum separation in the PLS-DA scores plot, and these metabolites were ranked according
to their variable influence on projection (VIP) scores. VIP scores were weighted sums of
squares of the PLS-DA weights, which indicate the importance of the variable.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11070429/s1, Table S1: Important features identified by fold change and logarithmic
fold change (log2(FC)) parameters calculated, Table S2: Important features identified by t-tests
values, p-values (Threshold < 0.05), logarithmic p-values, and false discovery rate (FDR) parameters
calculated for the most statistically significative compounds, Table S3: PLS-DA classification of
the five different components (comps) based on accuracy, R2, Q2 related to MVA analysis between
fibromyalgic patient and controls derived by NMR analysis, Table S4: PLS-DA classification of the
five different components (comps) based on accuracy, R2, Q2 related to MVA analysis between
healthy controls, patients with moderate depression and patients with severe depression, Figure S1:
ROC curve of biomarker. The sensitivity is on the y-axis, and the specificity is on the x-axis. The
area-under-the-curve (AUC) is in blue. On the right: box-plot of the concentrations of the selected
feature between controls (0) and fibromyalgic patients (1) within the dataset. A horizontal line is in
red indicating the optimal cutoff, Figure S2: PLS-DA score plot (a) and loading plot (b) for 1H NMR
data collected in CPMG spectra using 19 controls (0, red), 13 fibromyalgic with moderate depression
(1, green) and 6 fibromyalgic with severe depression (2, blue), Figure S3: ROC curve of biomarker.
The sensitivity is on the y-axis, and the specificity is on the x-axis. The area-under-the-curve (AUC) is
in blue. On the right: Box-plot of the concentrations of the selected feature between fibromyalgic
patients with moderate depression (1) and fibromyalgic patients with severe depression (2) within
the dataset. A horizontal line is in red indicating the optimal cutoff.
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