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Abstract

While inhibition of T cell co-inhibitory receptors has revolutionized cancer therapy, the 

mechanisms governing their expression on human T cells have not been elucidated. Here we 

show that type 1 interferon (IFN-I) regulates co-inhibitory receptor expression on human T 
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cells, inducing PD-1/TIM-3/LAG-3 while inhibiting TIGIT expression. High-temporal-resolution 

mRNA profiling of IFN-I responses established the dynamic regulatory networks uncovering three 

temporal transcriptional waves. Perturbation of key transcription factors (TFs) and TF footprint 

analysis revealed two regulator modules with different temporal kinetics that control expression 

of co-inhibitory receptors and IFN-I response genes with SP140 highlighted as one of the key 

regulators that differentiates LAG-3 and TIGIT expression. Finally, we found that the dynamic 

IFN-I response in vitro closely mirrored T cell features in acute SARS-CoV-2 infection. The 

identification of unique TFs controlling co-inhibitory receptor expression under IFN-I response 

may provide targets for enhancement of immunotherapy in cancer, infectious diseases, and 

autoimmunity.

Introduction

Immune checkpoint blockade targeting T cell co-inhibitory receptors has revolutionized 

cancer treatment. While signals such as IL-27 are associated with T cell expression of 

co-inhibitory receptors in mice1, 2, the regulatory mechanisms of co-inhibitory receptor 

induction in human T cells are still unknown. Type 1 IFN (IFN-I) serves as a first line 

defense system towards viral infection and its effect on T cells has been extensively studied 

in the context of T cell activation3, survival4, and effector functions5. IFN-I is also induced 

during chronic viral infection, autoimmunity, and cancer6, 7, 8, and accumulating evidence 

suggests that IFN-I may have immunomodulatory functions beyond their conventional 

role on T cells in acute viral infection9, 10, 11, 12. Notably, continuous exposure to IFN-I 

is implicated to promote T cell exhaustion which is marked by aberrant expression of 

co-inhibitory receptors (i.e., PD-1, TIM-3, LAG-3, and TIGIT) in chronic viral infection and 

cancer12, 13, 14, 15, 16. While IFN-I has a central role in regulating immune responses and 

murine models have enabled the elucidation of a functional role of IFN-I on T cells, it has 

become clear that this response varies greatly between rodents and human17. Thus, it is of 

critical importance to elucidate the biological consequences of IFN-I on human T cells and 

in the context of human diseases.

Here, we constructed a dynamic gene regulatory network of human primary T cell response 

to IFN-I stimulation using high-resolution gene expression profiling, chromatin accessibility 

analysis and perturbation of key network regulators. This regulatory network revealed both 

canonical and non-canonical IFN-I transcriptional regulators and identified unique regulators 

that control the expression of co-inhibitory receptors. To provide direct in vivo evidence for 

the role of IFN-I on co-inhibitory receptors, we then performed single-cell RNA-sequencing 

in subjects infected with SARS-CoV-2, where viral load was strongly associated with T 

cell IFN-I signatures. We found that the dynamic IFN-I response in vitro closely mirrored 

T cell features with acute IFN-I linked viral infection, with high LAG3 and decreased 

TIGIT expression. Finally, our gene regulatory network identified SP140 as a key regulator 

for differential LAG3 and TIGIT expression. The construction of co-inhibitory regulatory 

networks induced by IFN-I and unique transcription factors controlling their expression 

provides further resource for the identification of targets for enhancement of immunotherapy 

in cancer, infectious diseases, and autoimmunity.
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Results

The impact of IFN-β on co-inhibitory receptors in human T cells

IL-27 has been identified as a crucial cytokine that promotes the induction of a co-inhibitory 

receptor module, with T cell exhaustion in murine tumor models1. Several reports have 

suggested that IL-27 functions downstream of IFN-β18, an important member of the 

IFN-I family. Thus, we hypothesized that IFN-β facilitates the induction of co-inhibitory 

receptors in humans. We first assessed the effect of IL-27 and IFN-β on the induction 

of core co-inhibitory receptors (TIM-3, LAG-3, PD-1, and TIGIT) in vitro using human 

primary naïve CD4+ and CD8+ T cells (Extended Data 1). Both IL-27 and IFN-β promoted 

significantly higher TIM-3 expression as compared to the expression of control groups 

without addition of exogenous cytokines. Of note, IFN-β induced more LAG-3 and TIM-3 

expression compared to IL-27 in both CD4+ and CD8+ T cells (Figure 1a, Extended Data 

2a). Both IL-27 and IFN-β suppressed the expression of TIGIT in CD4+ and CD8+ T cells 

(Extended Data 2b). We also observed increased production of IL-10 induced by IFN-β; 

however, IL-10 induction by IL-27 was modest in our in vitro culture settings which may 

reflect the difference between mouse and human T cell responses toward IL-27 stimulation 

(Extended Data 2c). Next, we further determined the impact of IFN-β treatment on gene 

expression kinetics for co-inhibitory receptors by qPCR. Gene expression dynamics for 

core co-inhibitory receptors (HAVCR2, LAG3, PDCD1) were upregulated by IFN-β for 

most time points. In contrast, TIGIT was downregulated, which was confirmed by protein 

expression using flow cytometry (Figure 1b, c). We examined the expression of other 

co-inhibitory receptors and found IFN-β induced co-expression of multiple co-inhibitory 

receptors (e.g., HAVCR2, PDCD1, LAG3) but inhibited expression of others (e.g., TIGIT, 
CD160, BTLA) (Figure 1d, Extended Data 2d). As T cell activation and entry into cell 

cycle could be confounding factors on the measurement of co-inhibitory receptor expression, 

we performed proliferation assays using cell trace violet dye and examined the level of 

T cell activation markers (CD25, CD44, and CD69) with IFN-β treatment. There was no 

statistical difference in cellular division or degree of T cell activation between control and 

the IFN-β condition after four days of human primary T cell culture. Additionally, there was 

even less proliferation of memory CD4+ T cells with IFN-β, indicating that the induction 

of co-inhibitory receptors by IFN-β is not affected by T cell activation state (Extended Data 

3a-c), consistent with previous studies 19, 20. Furthermore, we confirmed a dose dependent 

effect of IFN-β treatment on co-inhibitory receptor expressions (Extended Data 3d). The 

effects of IFN-β on the level of LAG-3, TIM-3, PD-1 and TIGIT were consistently observed 

across each cellular division status, strongly suggesting that IFN-β induced changes on co-

inhibitory receptors were not biased by T cell proliferation (Extended Data 3e). Collectively, 

these data elucidate a role for IFN-β as a cytokine that can directly control multiple co-

inhibitory receptors in both human CD4+ and CD8+ T cells in vitro.

High resolution transcriptomic dynamics of IFN-β response

To uncover the regulatory mechanisms underlying the IFN-β response in human primary 

T cells, we generated a transcriptional profile at high temporal resolution. We used bulk 

mRNA-seq at ten time points along a 96-hour time course with and without IFN-β treatment 

(Extended Data 4a). To avoid inter-individual genetic variation, we selected one healthy 
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subject whose T cells exhibited a stable response to IFN-β, and repeated the experiment 

three times at a two-week interval for each experiment, analogous to studying one mouse 

strain. We identified 1,831 differentially expressed genes (DEGs) for CD4+ T cells and 

1,571 DEGs for CD8+ T cells across time points with IFN-β treatment, revealing a temporal 

shift of gene expression patterns in both CD4+ and CD8+ T cells (Figure 2a, Extended Data 

4b, Methods). The genome-wide transcriptional profiles from three independent experiments 

demonstrated highly consistent results across time points (Figure 2b). Specifically, three 

transcriptional waves were observed during 96 hours of IFN-β response: early phase (1–2 h), 

intermediate phase (4–16 h), and late phase (48–96 h). As expected, we observed abundant 

induction of classical IFN stimulated genes (ISGs) (i.e., IFI6, MX1/2, RSAD2, STAT1/2/3, 
SP100/110/140), which peaked at the early-intermediate phase. IFN-I induced cytokines 

produced by T cells (IFNG, IL10, GZMB, PRF1) were also upregulated at intermediate-late 

phase (Figure 2c, Extended Data 4c). OSM (Oncostatin M), which is reported to amplify 

IFN-β response and suppress Th17 differentiation20, was significantly induced by IFN-β 
from the early phase and maintained induction at all time points (Extended Data 4c). Among 

DEGs, we identified dynamic expression of 134 transcription factors (TFs) for CD4+ T 

cells and 100 TFs for CD8+ T cells, which were both up- and down-regulated over the 

course of differentiation (Figure 2c). We further explored the dynamic changes at the level of 

chromatin accessibility by using an assay for transposase accessible chromatin sequencing 

(ATAC-seq)21 for CD4+ and CD8+ T cells over three different time points corresponding 

to three transcriptional waves (2, 8, and 72 h) (Extended Data 5a). Principal component 

analysis (PCA) highlighted the differential chromatin accessibility at the late phase (72 

h) compared to the other phases (Extended Data 5b). Differential chromatin accessibility 

analysis at each time point identified temporal changes of chromatin accessibility; in the 

control the chromatin accessibility was reduced at the early time point (2 h) and then became 

more accessible over time (Extended Data 5c). This temporal change was altered by IFN-β 
treatment with more chromatin accessibility compared to control condition at 8 h, which was 

further enhanced at 72 h (Extended Data 5d). Taken together, these high temporal resolution 

transcriptional and chromatin accessibility data highlight the impact of IFN-β treatment on 

both the dynamics of T cell activation and their final differentiation state.

Genetic perturbation identifies two IFN-I regulatory modules

Genetic perturbation of key transcription factors allows inference of the gene regulatory 

network with our high temporal resolution transcriptional data, leading to the elucidation 

of the regulatory mechanisms by which IFN-I response controls co-inhibitory receptor 

expressions. To narrow the list of TFs for perturbation, we prioritized TFs that are 

differentially expressed in both CD4+ and CD8+ T cells. We then further selected TFs 

associated with T cell exhaustion: 1) human tumor infiltrating T cells (TILs) 22, 23, 24, 25; 2) 

HIV specific T cell signature in progressive patients 26; and 3) IL-27 driven co-inhibitory 

regulators 1 (see Methods). We confirmed that these TFs are identified as ISGs in human 

immune cells by the Interferome dataset27 (Figure 3a). In total, 31 TFs were listed as 

candidates based on the overlap between ISG, TIL and IL-27 signatures and we chose 19 of 

them for perturbation. Since TCF-1 (encoded by TCF7) and Blimp-1 (encoded by PRDM1) 

are known to express functionally distinct isoforms, we also targeted a unique sequence 
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for the long isoforms (TCF7L and PRDM1L, respectively), resulting in perturbation of 21 

different targets in total.

Considering the majority of these regulators are induced at the early (1–2 h) and 

intermediate (4–16 h) phases, it was important to perform gene deletion prior to T cell 

receptor activation. For human primary T cells gene knockdown, we adopted lentiviral 

delivery of shRNAs with lentiviral gene product X (Vpx) containing virus-like particles 

(VLPs) to efficiently transduce lentivirus into unstimulated primary human naïve T 

cells28, 29 (Figure 3b). Spinoculation with Vpx-VLPs significantly increased the number 

of GFP expressing T cells (~30–60 %) compared to normal LV particle transduction without 

Vpx-VLPs (~1–5 %) and resulted in successful transduction of lentiviral vectors into non-

blasting/quiescent cells (Extended Data 6a). We achieved efficient knockdown of at least 60 

% gene expression for 21 target TFs in human naïve CD4+ T cells (Figure 3c).

To identify the effect of perturbation for each regulator, PCA was applied to determine the 

changes in RNA expression associated with each transcription factor knockdown (Figure 

3d). PC1 divided the impact of perturbation into two modules of regulators: BATF, MAF, 
ETS2, HOPX, SP140, BCL3, ID3, and BATF3 constituted ‘IFN-I regulator module 1’, 

and IRF1, IRF2, IRF4, STAT1, STAT3, ARID5A, ARID5B, TCF7, PRDM1, PRDM1L, 
KLF5, and TCF7L constituted a distinct ‘IFN-I regulator module 2’. To visualize the 

contribution of the selected genes to the PCs and the directionality of the contribution, a 

PCA biplot analysis was adopted. In these biplots, the loadings of each variable (gene) are 

represented as arrows and the changes of gene expression by perturbation are represented as 

points, providing a faithful representation of the relationships among each gene (arrows) 

based on the contribution to the effect of each perturbation. We found that ISGs are 

divided into two groups: classical ISGs that are correlated with ‘IFN-I regulator module 1’ 

(depicted in orange arrows in Figure 3e), and the other ISGs that are correlated with ‘IFN-I 

regulator module 2’ (depicted in green arrows in Figure 3e, Extended Data 6b), which 

is predominantly explained by PC1. These results suggest that ISGs are bi-directionally 

regulated by different modules of TFs. Furthermore, these modules contributed differently 

to the regulation of co-inhibitory receptors; TIGIT, CD160, BTLA as one module and 

LAG3, HAVCR2, PDCD1 as another module (Figure 3f, Extended Data 6c). Within ‘IFN-I 

regulator module 1’, STAT3 positively regulated HAVCR2 but not LAG3 and PDCD1 
expression, which is predominantly contributed by PC2 in the biplot (Figure 3f). Taken 

together, our perturbation with the Vpx-VLP system elucidated two distinct TF modules 

simultaneously regulating opposing IFN-I target genes, which sheds light on the central 

roles of non-canonical IFN-I induced regulators in human T cells.

Given that mRNA expression of TFs is not necessarily linked with the regulatory function 

of TFs, we performed footprint analysis on our ATAC-seq data by using TOBIAS30. 

IFN-β treatment enhanced the enrichment of IRFs and STATs footprints at the early and 

intermediate phases, in contrast, AP-1 footprints were highly enriched at the late phase 

by IFN-β (Extended Data 6d). This dynamic switch of TF footprints from IRFs/STATs 

to AP-1 family under IFN-I response represents the two differential regulatory modules 

indicated as ‘IFN-I regulator module 1’ (containing IRF1/2/4/9 and STAT1–3) and ‘IFN-I 

regulator module 2’ (containing AP-1 family TFs: BATF and BATF3) (Figure 3g, h). In 
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light of the role of AP-1 facilitating human T cell exhaustion with higher PD-1 and LAG-3 

expression31, the enhanced AP-1 footprints at the later phase of IFN-β treatment supports 

the role of IFN-I on induction of T cell exhaustion in human T cells11, 12. Taken together, 

the perturbation of key regulatory factors with ATAC-seq footprint analysis revealed two 

different regulator modules that have different temporal characteristics of activation and 

differentially control ISGs and co-inhibitory receptors under IFN-I response.

Dynamic regulatory network reveals central IFN-I regulators

To characterize the impact of differentially expressed transcription factors (DETFs) in 

response to IFN-β, we generated transcriptional regulatory networks describing TFs and 

their target genes for each of the transcriptional waves identified (Figure 4a, Methods). 

When comparing the three regulatory networks, early and late networks had similar numbers 

of TFs (46 and 42 TFs, respectively), although the intermediate network contained 73 

TFs (Figure 4b, top). The ratio between up and down-regulated TFs differs between the 

three regulatory waves. The early and intermediate networks contained more up-regulated 

TFs than down-regulated TFs; in contrast, the late network had more down-regulated than 

up-regulated TFs. Thus, IFN-I induced differentiation involves dominance of up-regulated 

TFs in the first 16 hours, replaced by the dominance of down-regulated TFs after 48 

hours. We next ranked the TFs based on the enrichment of their target genes and their 

centrality in the networks (Methods), highlighting the significance of each TF to the network 

(Figure 4b, bottom). STAT1/2, which are well established as being directly downstream of 

IFN-I signaling, were highlighted as one of the top ranked up-regulators in the early and 

intermediate wave networks (Figure 4b, Extended Data 4c). Of note, STAT1 and STAT2 
showed contrastive scores with Hypergeometric test (HG) and Centrality (Cent) 32; STAT1 
was higher in Centrality and lower in Hypergeometric scores. In contrast, STAT2 was 

higher in Hypergeometric and lower in Centrality scores. These data suggest that STAT2 is 

specialized to control IFN-I regulatory TFs at early and intermediate phases, while STAT1 is 

less specific to IFN-I signaling but plays a more general role in T cell survival and memory 

formation 26, 33. In the late network, effector function related regulators were upregulated 

(TBX21, HIF1A, FOSL1/2, MAF); in contrast, the TFs associated with Treg differentiation 

and maintenance (IKZF2, MYB, FOXP1, STAT5A) were down-regulated, suggesting the 

skewed differentiation toward an effector-like signature.

To further study the relationships between these IFN-I driven transcriptional regulators, 

we generated directed backbone networks that displayed the TFs that participate in 

each transcriptional time wave and visualized the interactions among them using the 

ECOplusMaST algorithm32 (Figure 4c, Extended Data 7a, Methods). This analysis 

emphasizes that much of the signaling involves cross regulation between the TFs 

themselves. The central regulatory TFs, which are represented as more connected with 

the other TFs, were dominated by down-regulated TFs in response to IFN-β (Figure 

4d) in all temporal transcriptional networks. In contrast, TFs less central were primarily 

up-regulated. Interestingly, we found TGF-β associated TFs (i.e. SKI, SMAD3, IKZF2) 

and gene signatures enriched in the downregulated genes at each time wave (Figure 4b; 

bottom heatmap, Extended Data 7b), indicating counter regulatory mechanisms between 

IFN-I response and TGF-β signaling in human T cells 34, 35. These results suggest that a 
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loss of suppression by the key TFs that configure the backbone network may trigger the 

activation of downstream effector TFs under IFN-I response.

Although T cell differentiation under IFN-β is characterized by three major transcriptional 

waves, we hypothesized that there are key TFs that bridge each wave to the next. 

To this end, we specifically identified TFs that participate in more than one of these 

transcriptional waves, and termed these ‘Bridging TFs’ (Figure 4e). Examples of dominant 

Bridging TFs between early and intermediate waves include KLF5 and STAT2. Examples 

of intermediate to late waves include MAF, PRDM1, and MYB. Finally, there are TFs that 

were upregulated throughout the entire differentiation; such as STAT1, HIF1A, and TBX21. 

Generally, Bridging TFs tend to be more dominant than other TFs; thus, it is possible 

that Bridging TFs play an important role in the transition between different transcriptional 

waves. Indeed, our perturbation experiment demonstrated the critical roles of those Bridging 

TFs in the regulation of ISGs and co-inhibitory receptors (Figure 4e). Our computational 

analysis revealed the temporal dynamics of complex regulatory interactions during the IFN-I 

response and highlighted the usefulness of our approach in discovering this new aspect of 

IFN-I induced transcriptional regulation.

In vivo link of IFN-I regulators and co-inhibitory receptors

To provide direct in vivo evidence for the role of IFN-I on T cell co-inhibitory receptor 

expression, we sought to validate our regulatory network in humans where the IFN-I 

response of T cells is induced acutely. As acute viral infections are strongly associated 

with IFN-I responses, we examined a number of clinical models where viral infection is 

closely linked to IFN-I T cell response. Our analysis of single cell RNA seq (scRNA-seq) 

data of T cells in COVID-19 patients revealed an extremely high correlation between viral 

load and IFN-I score (r=0.8), and time difference between paired samples and the respective 

change in IFN-I score (r=0.97) 36, providing a unique opportunity to generate a rich dataset 

to determine whether the in vitro T cell response to IFN-I can be validated during an acute 

viral human infection strongly associated with a IFN-I signal.

By using our scRNA-seq data, we subclustered T cell populations into 13 subpopulations 

and identified five CD4+ T cell and five CD8+ T cell subsets (Figure 5a, Extended Data 8a, 

b). We first focused on total CD4+ T cells and CD8+ T cells and confirmed that the IFN-I 

response signature is higher in progressive patients who required admission to the ICU 

and eventually succumbed to the disease (Figure 5b). Expression of co-inhibitory receptors 

differed across disease conditions, but the trend was conserved between CD4+ and CD8+ 

T cells. We observed a strikingly similar pattern of co-inhibitory receptor expression with 

IFN-I stimulation in vitro and in vivo. Indeed, we observed the upregulation of ‘IFN-I 

up co-inhibitory receptors’ (LAG3/HAVCR2) and the downregulation of ‘IFN-I down co-

inhibitory receptors’ (TIGIT/LAIR1/SLAMF6) in T cells from COVID-19 patients (Figure 

5c, d). As expected, ‘IFN-I up co-inhibitory receptors’ were positively correlated with 

expression of canonical ISGs, but ‘IFN-I down co-inhibitory receptors’ were not, suggesting 

that different regulatory mechanisms are dictating co-inhibitory receptor expression patterns 

(Figure 5e). Next, we investigated which subpopulation of CD4+ and CD8+ T cells is more 

affected by the IFN-I response and computed the IFN-I score across subpopulations for each 
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T cell subtype in COVID-19 patients (Figure 5f). Within the subpopulations that exhibited 

higher IFN-I scores, dividing CD4+/CD8+ T cells and ISG+ CD8+ T cells were increased 

in COVID-19 patients, particularly in severe patients 36 37. Moreover, these subpopulations 

and effector T cells expressed higher level of co-inhibitory receptors compared to the other 

subpopulations (Figure 6a, Extended Data 8c). Of note, the ‘IFN-I regulator module-1’ score 

was higher in these T cell subsets than the ‘IFN-I regulator module-2’ score (Extended Data 

8d), implying a more profound role of ‘IFN-I regulator module 1’ on controlling T cell 

signature in COVID-19.

We then examined which subpopulations were more enriched in the three transcriptional 

waves of IFN-I response. DEGs specific for each wave were used to compute the scores 

for the CD4+ and CD8+ T cell subpopulations in COVID-19 patients (Supplementary Table 

1, Methods). We found that T cells induced in vitro with IFN-I strongly mirrored the 

intermediate wave score on dividing CD4+ and CD8+ T cells, and the late wave score on 

effector CD4+ T cells and ISG+ CD8+/effector CD8+ T cells (Figure 6b) in COVID-19 

patients. Given that expansion of dividing CD4+/CD8+ T cells are a unique characteristic 

of acute viral infections, including COVID-19, we applied the intermediate phase IFN-I 

regulatory network with the dividing CD4+ T cell gene expression signature to examine 

the relationships between regulators and target genes in this subpopulation. This analysis 

highlights the regulators that function in establishing the characteristics of the dividing 

CD4+ T cell population under IFN-I response in vivo (Extended Data 8e). As LAG-3 is the 

most upregulated co-inhibitory receptor in the dividing CD4+ T cell population, we utilized 

the network analysis to elucidate the specific regulation of LAG3 and TIGIT that were 

regulated in an opposing manner under IFN-I response both in vivo (Figure 5c, d) and in 
vitro (Figure 1). Analysis of the intermediate wave gene regulatory network demonstrated 

that SP140 is a bi-directional regulator for LAG3 and TIGIT under IFN-I response, which is 

supported by the observation in COVID-19 patients, where increased SP140 and LAG3 but 

decreased TIGIT expression were demonstrated (Figure 5c, d, Figure 6c, d, Extended Data 

8c). In addition, the late wave network demonstrated the complex interaction of regulators 

for LAG3, HAVCR2, and PDCD1, in which BCL3 and STAT3 are highlighted as positive 

regulators on LAG3 and HAVCR2 respectively (Figure 6c). Importantly, both BCL3 and 

STAT3 were significantly elevated in T cells in COVID-19 patients (Figure 6d). This can 

be highly relevant to effector T cell development under acute viral infection in which these 

co-inhibitory receptors play a critical role in regulating effector function38 and, of note, 

the late wave signature was enriched in effector T cells in COVID-19 patients (Figure 6b). 

Finally, we validated the actions of these key regulators on major co-inhibitory receptor 

expressions (LAG-3, PD-1, TIM-3, and TIGIT) at the protein level with our in vitro system, 

where T cell proliferation was further controlled by determining T cell division state in 

parallel with gene knockdown (Extended Data 9a, b). Additionally, STAT5A overexpression 

suppressed PD-1 induction under IFN-β treatment in human primary CD4+ T cells, which 

validated the observation that STAT5A negatively regulates co-inhibitory receptors, and its 

downregulation is necessary to elicit IFN-I mediated PD-1 expression (Figure 6e, Extended 

Data 9c). We also confirmed that T cell activation was not significantly altered by gene 

perturbation across conditions (Extended Data 9d), suggesting that our in vitro perturbation 

system with shRNA-mediated gene knockdown was not confounded by T cell activation or 
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proliferation, two well-known factors linked with co-inhibitory receptor expression. Taken 

together, these findings strongly suggest that in vitro regulatory networks can be utilized as a 

powerful tool to explore the human acute viral response in vivo.

Discussion

Here, our systematic, computational and biological approach identifies IFN-I as a major 

driver of co-inhibitory receptor regulation in human T cells. While classical ISG induction 

has been extensively studied, those investigations have focused primarily on the canonical 

JAK-STAT pathway downstream of IFN-I receptor. Given that IFN-I exhibits multiple 

functions in context-dependent roles, a more complex understanding of the IFN-I response 

beyond this canonical pathway with a more extensive analysis of ISG transcriptional 

regulation in T cells is critical for elucidating the mechanism of co-inhibitory receptor 

regulation.

In this study, we comprehensively explored the induction of co-inhibitory receptor 

expression with IFN-I, elucidating previously unrecognized patterns of T cell co-inhibitory 

receptors. Although previous studies have shown that PD-1 is induced by IFN-I in T cells 

using mouse models of viral infection39 and the blockade of IFN-I restores T cell effector 

capacity with reduction of PD-1 and TIM-3 in the chronic HIV infection model16, the full 

spectrum of co-inhibitory receptor expression controlled by IFN-I in the context of human 

diseases has not been investigated. Here, we build a dynamic gene regulatory network that 

controls IFN-I response, and identify key regulatory modules of ISG transcription in T 

cell responses to IFN-β. Our approach revealed two mutually antagonistic modules of ISG 

regulators, which exhibit opposite temporal kinetics under IFN-β treatment, may explain 

how the harmonized IFN-I induced T cell response is achieved. Within the two modules, we 

highlighted SP140 as a potential regulator that controls LAG-3 and TIGIT in an opposing 

manner, and STAT3 as a positive regulator for TIM-3. SP140 might have a DNA binding 

motif similar to AP-140, which supports our findings of SP140 as one of ‘IFN-I regulatory 

module 1’ TFs that contains AP-1 family TFs. These findings provide novel insight into the 

landscape of the ISG transcriptional network, and sheds light on the large contribution of 

the noncanonical IFN-I pathway during IFN-I response in T cells 37, 41, 42. Although the 

newly identified regulators (e.g., SP140, BCL3) in this study are not necessarily directly 

downstream of the conventional JAK/STAT pathway and may act differently depending on 

the context, they are nevertheless attractive targets for manipulation of specific downstream 

functional molecules such as co-inhibitory receptors in T cells. One of the limitations in this 

study is that although our regulatory network takes into account all differentially expressed 

genes by IFN-β treatment, which were further ranked the key regulatory factors for the 

enrichment score under treatment with IFN-β, it does not exclude the possibility that they 

play an important role regulating certain genes or perhaps the same genes under other 

conditions.

We demonstrate the relevance of our in vitro T cell IFN-I response to humans by integrating 

scRNA-seq data from COVID-19 patients, where a predominant T cell IFN-I response was 

observed. Intriguingly, the expression pattern of co-inhibitory receptors on T cells in vitro 
are highly replicated in severe COVID-19 cases, and classical ISGs were well correlated 
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with one module of co-inhibitory receptors (LAG3/PDCD1/HAVCR2), but not with the 

other modules (TIGIT/CD160/BTLA/LAIR1). While dynamics of IFN-I on T cells from 

COVID-19 patients should be considered with higher temporal profiling, we confirmed that 

the IFN-I response was clearly reduced at a later point; thus, our data based on an earlier 

collection of blood should reflect the active ISG transcriptomics during human acute viral 

response. Given the IFN-I response has been shown to contribute to chronic viral infection 

and cancer, the novel regulators that we identified can be examined in these diseases, as 

in vitro T cell culture systems only partially model chronic infection or cancer milieu in 
vivo. Further investigations of factors that characterize acute viral infections are likely to 

differ from chronic viral infections and will be of interest to explore in the context of 

long-term human infections not well modeled by COVID-19. Finally, we have previously 

shown that TIM-3 is decreased on T cells in patients with multiple sclerosis. As predicted 

based on our investigations, TIM-3 expression increased on T cells in MS patients after 

IFN-β treatment43. Further studies in COVID-19 patients who are treated with IFN-β may 

provide further insight into the functional relevance of T cell IFN-I response in COVID-19 

pathogenesis44, 45.

In conclusion, our systems biology approach identified cytokine signals and regulatory 

mechanisms that drive the expression of co-inhibitory receptors in humans, and provided 

a pathway to comprehensively capture the dynamics of their expression in humans. Our 

results will advance the understanding of the host immune response to a variety of viral 

infections and could serve as a resource for mining of existing datasets. Uncovering 

novel ISG regulators controlling co-inhibitory receptors will create a foundation for further 

development of new therapeutics for a multitude of different malignant and infectious 

diseases.

Methods

Study subjects

Peripheral blood was drawn from healthy controls who were recruited as part of an 

Institutional Review Board (IRB)-approved study at Yale University, and written consent 

was obtained. All experiments conformed to the principles set out in the WMA Declaration 

of Helsinki and the Department of Health and Human Services Belmont Report.

Human T cell isolation and culture

Peripheral blood mononuclear cells (PBMCs) were prepared from whole blood by Ficoll 

gradient centrifugation (Lymphoprep, STEMCELL Technologies) and used directly for total 

T cell enrichment by negative magnetic selection using Easysep magnetic separation kits 

(STEMCELL Technologies). Cell suspension was stained with anti-CD4 (RPA-T4), anti-

CD8 (RPA-T8), anti-CD25 (clone 2A3), anti-CD45RO (UCHL1), anti-CD45RA (HI100) 

and anti-CD127 (hIL-7R-M21, all from BD Biosciences) for 30 minutes at 4°C. Naïve CD4+ 

T cells (CD4+/CD25neg/CD127+/CD45ROneg/CD45RA+) and naïve CD8+ T cells (CD8++/

CD25neg/CD127+/CD45ROneg/CD45RA+) were sorted on a FACSAria (BD Biosciences). 

Sorted cells were plated in 96-well round-bottom plates (Corning) and cultured in RPMI 

1640 medium supplemented with 5 % Human serum, 2 nM L-glutamine, 5 mM HEPES, 
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and 100 U/ml penicillin, 100 μg/ml streptomycin, 0.5 mM sodium pyruvate, 0.05 mM 

nonessential amino acids, and 5% human AB serum (Gemini Bio-Products). Cells were 

seeded (30,000–50,000/wells) into wells pre-coated with anti-human CD3 (2 μg/ml, 

clone UCHT1, BD Biosciences) along with soluble anti-human CD28 (1μg/ml, clone 

28.2, BD Biosciences) in the presence or absence of human IFN-β (500 U/ml: Pestka 

Biomedical Laboratories) or IL-27 (100 ng/ml: BioLegend) without adding IL-2. To avoid 

interindividual batch effects, T cells used for RNA-seq and ATAC-seq were isolated from 

one individual (37-year-old, male, healthy individual with no evidence of viral infection, 

cancer, and autoimmune diseases at the time of sample collection).

Lentiviral and Vpx-VPLs production

Lentiviral plasmids encoding shRNA for gene knockdown or open reading frame (ORF) of 

STAT5A for overexpression were obtained from Sigma-Aldrich (MISSION shRNA, Sigma) 

and Horizon Discovery Biosciences (Precision LentiORF), respectively. Scramble shRNA 

(Sigma; for perturbation experiment) or GFP control vectors (Origene; for protein validation 

experiment, Horizon Discovery Bioscience; for overexpression experiment) are used as the 

controls for lentiviral transduction. Each plasmid was transformed into One Shot Stbl3 

chemically competent cells (Invitrogen) and purified by ZymoPURE plasmid Maxiprep 

kit (Zymo research). Lentiviral pseudoparticles were obtained after plasmid transfection of 

293T cells using Lipofectamine 2000 (Invitrogen) or TurboFectin 8.0 Transfection Reagent 

(Origene). To prepare Vpx-VLPs, 293T cells were co-transfected by Lipofectamine 2000 

or TurboFectin 8.0 Transfection Reagent with the 5 μg pMDL-X, 2.5 μg pcRSV-Rev, 

3.5 μg X4-tropic HIV Env, and 1 μg pcVpx/myc, as described previously with some 

modifications37,38. The medium was replaced after 6–12 h with fresh media with 1X Viral 

boost (Alstem). The lentivirus or Vpx-VLPs containing media was harvested 72 h after 

transfection and concentrated 80 times using Lenti-X concentrator (Takara Clontech) or 

Lenti Concentrator (Origene). LV particles were then resuspended in RPMI 1640 media 

without serum and stored at −80°C before use. Virus titer was determined by using Jurkat T 

cells and Lenti-X GoStix Plus (Takara Clontech).

Lentiviral transduction with Vpx-VPLs

Two step Vpx-VLP and LV transduction was performed as described previously with some 

modiciations36. Vpx are pseudotyped with X4-tropic HIV Env to promote efficient entry of 

Vpx-VLPs into quiescent human T cells37. FACS-sorted naïve CD4+ T cells were plated at 

50,000 cells/well in round bottom 96 well plate and chilled on ice for 15 min. 25–50 μl of 

Vpx-VLPs were added to each well and mixed with cold cells for an additional 15 min, then 

spinfected with high-speed centrifugation (1200 g) for 2 hour at 4 °C. Immediately after 

centrifugation, cells are cultured overnight at 37 °C. Vpx-transduced cells are spinoculated 

again with LV particles containing shRNAs or ORF with high-speed centrifugation (1000 g) 

for 1.5 hours at RT. After 24 hours of incubation, the second transduction of LV particles 

with shRNAs or ORF were performed as well as the first time spinoculation. After a second 

LV transduction, cells were washed and plated into 96-well round-bottom plates pre-coated 

anti-human CD3 (2 μg/ml) with soluble anti-human CD28 (1 μg/ml), in the presence or 

absence of human IFN-β (500 U/ml). Cells are collected at day 4–6 after anti-CD3/CD28 

stimulation and GFP positive cells were sorted by FACSAria or analyzed by Fortessa.
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Real time quantitative PCR

Total RNA was extracted using RNeasy Micro Kit (QIAGEN), or ZR-96 Quick-RNA kit 

(Zymo Research), according to the manufacturer’s instructions. RNA was treated with 

DNase and reverse transcribed using TaqMan Reverse Transcription Reagents (Applied 

Biosystems) or SuperScript IV VILO Master Mix (Invitrogen). cDNAs were amplified with 

Taqman probes (Supplementary Table 2) and TaqMan Fast Advanced Master Mix on a 

StepOne Real-Time PCR System (Applied Biosystems) according to the manufacturer’s 

instructions. Relative mRNA expression was evaluated after normalization with B2M 
expression.

Flow cytometry analysis

Cells were stained with LIVE/DEAD Fixable Near-IR Dead Cell Stain kit (Invitrogen) 

and surface antibodies for 30 min at 4 °C. For intracellular cytokine staining, cells 

were treated with 50 nM phorbol-12-myristate-13-acetate (MilliporeSigma) and 250 nM 

ionomycin (MilliporeSigma) for 4 hours in the presence of Brefeldin A (BD Biosciences) 

before harvesting. Cells were washed and fixed with BD Cytofix™ Fixation Buffer (BD 

Biosciences) for 10 min at RT, then washed with PBS. Intracellular cytokines were stained 

in permeabilization buffer (eBioscience) for 30 min at 4 °C. Antibody details are provided 

in Supplementary Table 3. Cells were acquired on a BD Fortessa flow cytometer with 

FACSDiva (BD Pharmingen) and data was analyzed with FlowJo software v10 (Threestar).

RNA-seq library preparation and data analysis

10,000 cells per condition were subjected to RNA-seq. cDNAs were generated from 

isolated RNAs using SMART-Seq v4 Ultra Low Input RNA Kit for sequencing (Takara/

Clontech). Barcoded libraries were generated by the Nextera XT DNA Library Preparation 

kit (Illumina) and sequenced with a 2×100 bp paired-end protocol on the HiSeq 4000 

Sequencing System (Illumina).

After sequencing, adapter sequences and poor-quality bases (quality score < 3) were 

trimmed with Trimmomatic. Remaining bases were trimmed if their average quality score 

in a 4 bp sliding window fell below 5. FastQC was used to obtain quality control metrics 

before and after trimming. Remaining reads were aligned to the GRCh38 human genome 

with STAR 2.5.246. We used Picard to remove optical duplicates and to compile alignment 

summary statistics and RNA-seq summary statistics. After alignment, reads were quantitated 

to gene level with RSEM 47 using the Ensembl annotation. Normalized Fragments Per 

Kilobase Million (FPKM) expression values of the three replicates were used for the 

analysis below.

Identification of three transcriptional waves

The correlation matrix is created by Pearson correlating 48 the IFN-β expression profile 

of each time point with all the other time points, creating a symmetric matrix of Pearson 

correlation coefficients.
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Differential expression calculation

The differential expression (DE)49 for each timepoint was calculated using the DEseq2 50 

R package. Three separate testing methods were used for calculating DE genes: Wald 51, 

likelihood ratio test (LRT) 52, and time-course 53. For each of the three methods, genes 

with false discovery rate (FDR) adjusted P.value bellow 0.05, were regarded as DE. More 

specifically, for CD4+ T cells, if TFs appeared in two out of the three calculating methods 

(agree by two), they were regarded as DE. For CD8+ T cells, if TFs appeared in any of the 

methods above, they were regarded as DE.

Selection of regulators for perturbation

The list of TFs for perturbation was selected based on following criteria: 1) overlapped 

differentially expressed TFs across the time points between CD4+ and CD8+ T cells based 

on the above-mentioned method. Intersection of DETFs in our in vitro data were chosen; 

2) differentially expressed TFs in human tumor infiltrated T cells22, 23, 24, 25 that were 

significantly correlated with exhausted T cell cluster (defined by the upregulation of LAG-3/

PD-1/TIM-3). ‘Human TIL score’ – defined as the number of times a gene was shared 

between the four different human cancer TIL datasets; 3) HIV specific T cell signature 

upregulated in progressive patients compared to stable patients26; 4) TFs that were induced 

by IL-27 and categorized as IL-27 driven co-inhibitory receptor modules1. ‘Human ISG 

score’ – defined as the number of times it was shared between the three different categories 

(T cells, PBMCs, and all immune cells) of human ISGs identified by Interferome database. 

All perturbed TFs were confirmed as IFN-I induced genes and showed ‘human ISG score’ 

greater than 1.

Expression data of all time points under IFN-β treatment expression was divided by the 

control expression data, creating fold-change ratio data of treatment over control. For 

visualization purposes, the fold change data in figure 2a was then shown for the DE genes 

only, logged with a base of 10, and scaled per row. The results were clustered hierarchically. 

In Figure 2c specific genes of interest were picked, such as ISGs, co-inhibitory receptors, T 

cell related genes, and transcription factors.

Heatmap of perturbed TFs

21 TFs were perturbed using lentiviral shRNA, together with a scramble shRNA (SCR) 

as control. ISGs (IFN Score B54) and co-inhibitory receptors were selected to visualize 

the expression differences in the two modules, in Extended Data 5b and c, respectively. 

The effect of TF perturbation on IFN-β response for each gene of interest (GOI) was 

calculated as follows. For each shRNA perturbation, the effect of IFN-β treatment over 

control condition was calculated for GOIs. This fold change value was then logged with a 

base of 2. To normalize the effect of the shRNA protocol, we further normalized the data by 

the scrambled shRNA (SCR), in an identical manner to the shRNA perturbation described 

above. Finally, the log2 transformed shRNA values were subtracted by the log2 transformed 

SCR values as shown in the equation bellow:

log2
GOI expression in Perturbed TF + IFNβ treatment

GOI expression in Perturbed TF − log2
GOI expression in SCR + IFNβ treatment

GOI expression in SCR
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For the heatmap visualization, the normalized values calculated by the equation above were 

clustered hierarchically.

Differential expression analysis for each TF perturbation was conducted as follows: 

Perturbed TF+IFN-β treatment expression vs Perturbed TF untreated expression. DE genes 

in this analysis that were regarded as significant (FDR adjusted P.value lower than 0.05) 

were marked with a white plus sign on their tile.

PCA and PCA biplot analysis

The PCA was applied to the DE genes (defined above) as variables, and perturbed genes as 

observations. The data was normalized by the scramble shRNA control, in the same manner 

as the Heatmap of perturbed TFs. Although PDCD1 was not defined as a DE gene across 

the time course, it was differentially expressed at later time points in mRNA-seq and qPCR, 

thus we manually added it to Figure 5f. Genes of IFN Score B54 (see Supplementary Table 

1) were represented as ISGs in Figure 3e. The PCA and biplot analysis were calculated and 

visualized using the R package FactoMineR55.

Regulatory networks

Following the DE analysis in each transcriptional wave, the DE genes were defined as TFs 

and their targets (from->to). The targets of all DE TFs were determined using ChIP-seq data 

from the database GTRD56. TFs and target genes defined as DE were added to the network 

as nodes (circles), and edges (lines) were added between them. The network plots were 

created using the Cytoscape57 software.

Top Regulatory TFs Heatmaps

We ranked the DE TFs of each transcriptional time wave to identify the dominant regulators 

in each stage of the differentiation process using two methods. Hyper-geometric (HG), 

were the values in the heatmap are the log P. value of the hypergeometric enrichment test 

−log10 P . value . The HG calculation was conducted using the python SciPy package58. 

The second method was network centrality (Cent), which is a parameter that is given to 

each node, based on the shortest path from the node to the other nodes in the network. It 

represents how central and connected a node is to the rest of the network59. The centrality 

calculation was conducted using the python NetworkX60 package. The rank column is an 

average of both HG and Cent values, after scaling to the range of 0 to 1.

Integration of Perturbation Data to Regulatory Networks

Following the generation of the regulatory network mentioned above, we further refined 

the network by integrating the TF perturbation data. Genes that were significantly affected 

by a TF perturbation were added as a “validated” edges between the perturbed TF and the 

target gene. If a gene was up-regulated by a TF perturbation, the interaction between them 

is registered as down-regulation. If a gene was down-regulated by a TF perturbation, the 

interaction between them is registered as up-regulation.
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Reduced TF networks

For visualization purposes we used a network reduction algorithm. The algorithm presents 

all the TFs in the network (nodes) but reduces some of the connections between them 

(edges). The reduced TF networks were calculated using the NetworkToolbox61 package 

in Rstudio. The method of the reduction calculation was ECOplusMaST32, which applies 

the efficiency cost optimization (ECO) neural network filtering method combined, with the 

Maximum Spanning Tree (MaST)62 filtering method.

The bar plots depicted at the bottom represent the mean level of the degree63 value for either 

up or down regulated TFs, in the complete networks (not reduced ones). The degree of a 

node is the number of connections it has to other nodes. An independent two-way t-test was 

conducted between the degree values of the up and down TFs for each time wave. The P 

value of each test is presented in the caption of each bar plot.

Bridging TFs Network

DE TFs and their target genes from the three transcriptional waves were combined to create 

a comprehensive network emphasizing the dynamics between transcriptional waves. In this 

network TFs and their target genes were annotated by the transcriptional wave in which they 

appear as DE. TFs that participate in more than one transcriptional wave are regarded as 

bridging TFs.

ATAC-seq library preparation and data analysis

Cells were split into RNA-seq (10,000 cells) and ATAC-seq (15,000 cells) at the time 

of collection. Cells for ATAC-seq were cryopreserved by using Recovery Cell Culture 

Freezing Medium (Gibco) with concentration of 15,000 cells/100 μl. Cryopreserved cells 

were thawed and immediately proceeded to Tn5 digestion (50 μl of transposase mixture: 25 

μl of 2x TD buffer, 2.5 μl of TDE1 (both from Illumina), 0.5 μl of 1% digitonin (Promega), 

22 μl of nuclease-free water)64. Transposition reactions were incubated at 37°C for 30 

minutes in a thermal shaker with agitation at 300 RPM. Transposed DNA was purified using 

a Zymo DNA Clean and Concentrator-5 Kit (Zymo research) and purified DNA was eluted 

in 10 μl elution buffer. Transposed fragments were amplified and purified as described 

previously64 with modified primers65. Libraries were quantified using qPCR (KAPA Library 

Quantification Kit) prior to sequencing. All ATAC libraries were sequenced using a 2×150 

bp paired-end protocol on the Nova-seq Sequencing System (Illumina).

ATAC-seq Alignment, Feature Calling and Quantitation

We trimmed adapter sequences before aligning reads to the GRCh38 human genome 

assembly with Bowtie 2. We used FastQC (http://www.bioinformatics.babraham.ac.uk/

projects/fastqc/) to obtain sequence quality control metrics both before and after 

read trimming. We obtained alignment summary metrics with Picard tools (http://

broadinstitute.github.io/picard). We retained reads that mapped uniquely to the primary 

assembly with MAPQ >= 30 and re- moved optical duplicates. We shifted cut sites by +4bp 

and −5bp on positive and negative strands, respectively.
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We used MACS266 to call ATAC-seq peaks within individual samples using a q < 0.2 

threshold. For each library, we use ataqv67 to calculate TSS enrichment and the fraction of 

reads in peaks (FRiP). We excluded peaks within ENCODE blacklist regions.

We used Markov clustering68 to identify a preliminary set of consensus features across 

libraries. Edges were weighted by the proportion of overlapping bases between each pair of 

peaks. Peaks that did not overlap with at least one peak from another library were excluded 

from further analysis. After clustering, we defined preliminary clusters to be the maximal 

(union) coordinates of all constituent peaks.

We used a two-state Hidden Markov Model to identify the central, maximally replicated 

portion of each preliminary feature. Consensus features were defined as the maximal extent 

of all “open” segments within each cluster.

We used featureCounts69 to quantitate the number of reads within each peak for each library. 

Outliers were identified through principal component analysis.

ATAC-seq Samples PCA

The PCA was conducted on ATAC-seq peaks from 19 CD4+ T cell samples, and from 21 

CD8+ T cell samples. Two samples were removed from the CD4+ samples due to large 

variability relative to the other replicates.

Differential Chromatin Accessibility

Differentially accessible ATAC peaks were calculated using DEseq2 R package. Peaks with 

FDR adjusted P.value below 0.05, and fold change of ±1 are regarded as differentially 

accessible peaks.

Transcription Factor footprint analysis

We used TOBIAS30 to identify transcription factor footprints within accessible chromatin 

features. We pooled libraries by cell type (CD4+ and CD8+ T cells) and treatment status 

(control and IFN-β) at 2 h, 8 h and 72 h time points. Within each pool, we corrected for Tn5 

cut site bias and calculated footprint scores with TOBIAS. We used TOBIAS to identify TF 

motifs differentially footprinted at each time point.

Reanalysis of COVID-19 single-cell RNA sequencing data

A PBMC single-cell RNA seq data set of 10 COVID-19 patients and 13 matched controls 

was reanalyzed which had been previously performed and reported by us36. We have 

described the full cohort and detailed methods elsewhere. From eight of the ten COVID-19 

samples, PBMCs from two different time points had been analyzed. Four of the COVID-19 

patients had been classified as progressive, the other six COVID-19 patients as stable. 

Briefly, single cell barcoding of PBMCs and library construction had been performed using 

the 10x Chromium NextGEM 5prime kit. Libraries had been sequenced on an Illumina 

Novaseq 6000 platform. Raw reads had been demultiplexed and processed using Cell 

Ranger (v3.1) mapping to the GRCh38 (Ensembl 93) reference genome. Resulting gene-

cell matrices had been analyzed using the package Seurat63 in the software R including 
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integration of data, clustering, multiplet identification and cell type annotation. The final 

annotated R object was used and re-analyzed in Seurat with default settings - unless 

otherwise specified - as follows:

The three cell populations “Dividing T & NK”, “Effector T” and “Memory CD4 & MAIT” 

were each subsetted and reclustered to obtain a finer cell type granularity as they included 

a mix of CD4, CD8, MAIT and gamma delta T cells. Per subset, the top 500 variable 

genes were determined by the “FindVariableFeatures” function using the “vst” method. Data 

was scaled using the “ScaleData” function regressing out the total number of UMI and the 

percentage of UMIs arising from the mitochondrial genome. After Principal Component 

(PC) Analysis, the first 10 Principal Components (PCs) were utilized to detect the nearest 

neighbors using the “FindNeighbors” function and clustered by Seurat’s Louvain algorithm 

implementation “FindClusters” using a resolution of 0.2 for “Dividing T & NK”, of 0.3 

for “Effector T” and of 0.1 for “Memory CD4 & MAIT” subsets. Cluster-specific gene 

expression profiles were established using the “FindAllMarkers” per cluster and per subset 

to annotate the clusters. New cell type annotations were then transferred back to the full 

dataset.

A new Uniform Approximation and Projection (UMAP) embedding was created by 

integrating the datasets on a subject level as follows: A subset containing all T cells 

was generated, which was then split by subject. For each subject, the top 2000 variable 

genes were selected, then integration anchors determined by “FindIntegrationAnchors” (with 

k.filter = 150). These anchors were used to integrate the data using the “IntegrateData” 

function with top 30 dimensions. The integrated data was scaled, subjected to a PC analysis 

and the top 13 PCs used as input for the “RunUMAP” function on 75 nearest neighbors.

Module scores were calculated using the “AddModuleScore” function using a) all genes 

within the GO list “RESPONSE TO TYPE I INTERFERON” (GO:0034340)64 and b) all 

genes significantly associated with either of the three waves in our in vitro perturbation 

experiments (see Supplementary Table 1). Differential gene expression was established 

using Seurat’s implementation of the Wilcoxon Rank Sum test within the “FindMarkers” 

function with a Bonferroni correction for multiple testing.

Statistical analysis

Detailed information about statistical analysis, including tests and values used, is provided in 

the figure legends. P-values of 0.05 or less were considered significant.
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Extended Data

Extended Data Fig. 1. FACS gating strategy for isolating naïve CD4+ and CD8+ T cells and 
schematic experimental workflow
Representative gating strategy for sorting naïve CD4+ and CD8+ T cells are shown. FACS 

isolated cells were immediately plated on 96 well round bottom plates coated with anti-CD3 

(2 μg/ml) and soluble anti-CD28 (1 μg/ml) in the absence or presence of human IL-27 (100 

ng/ml) or IFN-β (500 U/ml).
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Extended Data Fig. 2. IFN-β differently regulates co-inhibitory receptors in human T cells
a, Representative histograms of surface expression of TIM-3, LAG-3, and PD-1 assessed 

by flow cytometry at 72–96 hours after stimulation. Dotted lines represent isotype control 

staining. Percent single positive cells for TIM-3, LAG-3, and PD-1 (middle) and triple 

positive cells (right) are shown (n = 6–8; biologically independent samples). *p < 0.05, 

**p < 0.01, ****p < 0.0001. b, Representative contour plots of flow cytometry analysis for 

TIM-3 and TIGIT expression in naïve CD4+ and CD8+ T cells (left). Cells were treated 

as Extended Data 1 and analyzed at 72 hours of culture. Percent TIGIT positive cells in 

naïve CD4+ T are shown (n = 8; biologically independent samples). *p < 0.05, **p < 0.01. 

(middle). qPCR analysis of TIGIT expression over the time course (13 time points from 0 

to 96 hours). Each dot represents the average expression of two independent individuals’ 

data. ****p < 0.0001. c, qPCR analysis of IL10 and IFNG expression over the time course 

(13 time points from 0 to 96 hours). Each dot represents the average expression of two 
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independent individuals’ data (left). IL-10 and IFN-γ production assessed by intracellular 

staining (right). Cells are treated as in a, and cytokines are stained intracellularly. Cytokine 

positive cells are detected by flow cytometry (n = 6; biologically independent samples). d, 
Representative contour plots of flow cytometry analysis for CD160 and BTLA expression 

and overlayed histogram for BTLA expression in naïve CD4+ and CD8+ T cells (left). Cells 

were treated as outlined in b and analyzed at 72 hours of culture. Percent positive cells for 

CD160 and BTLA in naïve CD4+ T are shown (n = 8; biologically independent samples) 

(right). *p < 0.05, **p < 0.01. Repeated-measures one-way ANOVA with Tukey’s multiple 

comparisons test (a-c), and paired student’s t-test (d).

Extended Data Fig. 3. The impact of IFN-β on co-inhibitory receptors is not associated with T 
cell activation
a, Representative plots for T cell proliferation assay using cell trace violet dye. Naive and 

memory CD4+ T cells were stimulated with anti-CD3 and anti-CD28 in the absence or 
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presence of IFN-β. TIM-3 expression and cellular proliferation were assessed at 24, 48, 72, 

and 96 hours after stimulation. Overlayed histogram for control and IFN-β condition were 

shown at right. b, Frequency of living cells at each cellular division state was calculated in 

naïve CD4+ T cells (left) and naïve CD8+ T cells (right) at 96 hours. There is no statistical 

difference observed between control vs IFN-β condition (n=5; biologically independent 

samples). c, T cell activation markers (CD44, CD25, CD69) were quantified by flow 

cytometry in naïve CD4+ T cells at 96 hours. There is no statistical difference observed 

between control vs IFN-β condition (n=4–5; biologically independent samples). d, Dose 

dependent effects of IFN-β on co-inhibitory receptors assessed by flow cytometry (n=6; 

biologically independent samples). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 

Two-way ANOVA with Dunnett’s multiple comparisons test. e, LAG-3, PD-1, TIM-3, and 

TIGIT expressions were assessed by flow cytometry at each cellular division state (n=4; 

biologically independent samples). *p < 0.05, **p < 0.01, ***p < 0.001. Paired t test at each 

time point. Data was represented with mean +/− SEM.
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Extended Data Fig. 4. Dynamic transcriptomic changes by IFN-β in human T cells
a, Schematic experimental setup for high temporal resolution transcriptional profiling. b, 
Heatmap showing log fold change of DE gene expression between IFN-β and control Th0 

condition at each timepoints for naive CD4+ (left) and CD8+ T cells (right). Genes are 

clustered based on the three transcriptional wave or bi-modal pattern. c, Line plots for IFI6, 
IFNG, LAG3, OSM, STAT1, and STAT2 expression in naive CD4+ (left) and CD8+ T cells 

(right).
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Extended Data Fig. 5. Dynamic changes of chromatin accessibility by IFN-β in human T cells
a, Schematic experimental setup for ATAC-seq experiment. b, PCA plots based on ATAC-

seq peaks. Each dot represents one sample demonstrating the difference between the control 

and IFN-β groups, and the four different time points (0h, 2h, 8h, 72h). c, Pie charts depicting 

the differential chromatin accessibility between two time points, for both control and IFN-β 
treatment. The red or blue colored areas represent the numbers of opened or closed ATAC 

peaks compared to earlier time point, respectively. d, Bar plots describing the differential 

accessibility between IFN-β treatment and control at each time points.
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Extended Data Fig. 6. Two IFN-I regulatory modules govern both transcriptional and epigenetic 
changes during IFN-I response
a, Contour plots for total living cells and backgating analysis for GFP positive cells. Primary 

naïve CD4+ T cells were transduced with scramble shRNA control LV with or without 

Vpx-VLPs pre-transduction. Cells are collected at 96 hours after starting stimulation and 

analyzed by flow cytometry. b, c, Heatmaps showing the effect of TFs perturbation under 

IFN-β stimulation on ISGs (b) and co-inhibitory receptors (c). Values in the heatmap were 

normalized by subtractions of log10 fold change of scramble shRNA control over perturbed 

expression. The “+” sign indicates a statistically significant effect with an adjusted P.value 

< 0.05 (details in Methods). d, Volcano plots depicting differential TF binding activity 

against the −log10(p value) (both provided by TOBIAS) of all investigated TF motifs; each 

dot represents one motif. Positive binding activity represents more enrichment in IFN-β 
treatment compared to control. The motifs for IFN-I regulator module 1 and IFN-I regulator 

module 2 were highlighted in orange and green, respectively.
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Extended Data Fig. 7. Backbone network analysis identify downregulated TGF-β signature 
during IFN-I response
a, Directed TF backbone networks at the early and intermediate waves. The regulation 

and interaction of each DETFs at each transcriptional wave were depicted. TF footprints 

enriched in IFN-β condition were highlighted in yellow. b, ssGSEA for TGF-β signaling 

pathways with upregulated TFs (Up) and downregulated TFs (Down) at each transcriptional 

wave. Adjusted p values are shown and the dotted line indicates a threshold of significance 

defined by adjusted p value = 0.05. **p < 0.01, ***p < 0.001. Data was represented with 

mean +/− SEM.
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Extended Data Fig. 8. IFN-I regulator expression profiles in T cells from COVID-19
a, b, UMAP representation of T cells from healthy control samples (n = 13; biologically 

independent samples) and COVID-19 samples (n = 18; biologically independent samples) 

color coded by a, disease conditions and b, each individual. Cells from the same individual 

were labeled as one subject code, which resulted in 10 individual codes shown in b. c, 
Heatmap showing the expression of DETFs for CD4+ and CD8+ T cells in each T cell 

subset. d, IFN-I regulator module 1 and 2 scores for CD4+ and CD8+ T cells across 

sub cell types. e, Bundled regulatory network showing interactions between regulators at 

intermediate phase and transcriptional signature of dividing CD4+ T cells in COVID-19. 

Regulators at the intermediate phase are marked with circles (red; upregulated TFs, blue; 

downregulated TFs), and genes that are differentially expressed in dividing CD4+ T 

cells in COVID-19 were marked with squares (light red; upregulated DEGs, light blue; 

downregulated DEGs).
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Extended Data Fig. 9. Validation of key IFN-I regulators controlling co-inhibitory receptors in 
human T cells
a, Co-inhibitory receptor expression was assessed at each cellular division state (division 

#2–6) under each TF gene knockdown performed as well as in Figure 3. The effects of 

each gene perturbation over GFP control vector (GFP) treated with IFN-β were determined 

by repeated-measures two-way ANOVA with Fisher’s LSD test. The statistical significance 

between GFP control vector with IFN-β (GFP + IFN-β) vs gene knockdown with IFN-β 
(shRNA + IFN-β) condition was shown. *p < 0.05, **p < 0.01. b, Frequency of TIGIT 

positive cells was determined in perturbation for SP140 and STAT3 (n=4; biologically 

independent samples). *p < 0.05. c, STAT5A was overexpressed on human primary naïve 

CD4+ T cells and PD-1 expression was shown at each cellular division state (division 

#3–7). Repeated-measures two-way ANOVA with Fisher’s LSD test was applied and 

the comparison between GFP control vector with IFN-β (GFP + IFN-β) vs STAT5A 

overexpression with IFN-β (STAT5A overexpression + IFN-β) condition was shown (n=6; 

biologically independent samples). **p < 0.01. d, CD69 expression was assessed at each 

cellular division state with three TF perturbation experiments (SP140, STAT3, and BCL3) 

(n=4; biologically independent samples). Statistics were determined as well as in a. ns; not 

significant. Data was represented with mean +/− SEM.
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Figure 1. IFN-β differently regulates LAG-3, TIM-3, PD-1 and TIGIT in human T cells
Effects of IFN-β on LAG-3, TIM-3, PD-1, and TIGIT expression on human naïve CD4+ 

and CD8+ T cells cultured with anti-CD3/CD28 for 96h in the absence (Control) or with 

500 U/ml IFN-β (IFN-β). a, Representative contour plots of flow cytometry analysis on 

surface LAG-3, TIM-3, and PD-1 (left), quantitative expression for LAG-3, TIM-3, and 

PD-1 expression on naïve CD4+ T cells (n = 6; biologically independent samples) (middle), 

quantitative analysis for triple-positive (LAG-3, TIM-3, and PD-1) cells in naïve CD4+ T 

cells (n = 6; biologically independent samples) (right). b, Gene expression kinetics of LAG3, 
HAVCR2, PDCD1, and TIGIT quantified by qPCR with 13 timepoints in naïve CD4+ T 

cells. Average expression values from two subjects are plotted. c, IFN-β induces LAG-3 

but suppresses TIGIT expression on human naïve CD4+ and CD8+ T cells. Representative 

contour plots of flow cytometry analysis (left), quantitative analysis for TIGIT positive cells 

in naïve CD4+ T cells (n = 8; biologically independent samples) (right). d, Co-inhibitory 

receptors expression pattern under IFN-β treatment in naïve CD4+ T cells by qPCR (n = 4; 

biologically independent samples). Red and blue bars represent higher expression in IFN-β 
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treatment and Control conditions, respectively. Data was represented as mean +/− SD. **p < 

0.01, ****p < 0.0001. Paired Student’s t test.
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Figure 2. Three waves of dynamic transcriptomic changes by IFN-β in human T cells
a, Gene expression profiles under IFN-β treatment in naïve CD4+ and CD8+ T cells. 

Differential expression of gene levels for eight time points with IFN-β stimulation 

(log2(expression)) are shown in heatmap. Based on the expression kinetics, the genes 

are clustered into four categories: early, intermediate, late, and bimodal (up regulated at 

early and late phase). Representative individual gene expression kinetics from each cluster 

are shown (mean+/− SD). b, Correlation matrix of global gene expression representing 

three transcriptional waves on CD4+ (left) and CD8+ T cells: early (1–2h), intermediate 

(4–16h), and late (48–96h). Eight timepoints with three replicates are shown. c, Temporal 

transcriptional profiles of differentially expressed genes for four categories are shown; 

transcriptional regulators (transcription factors), ISGs, co-inhibitory receptors, and key T 

cell associated factors for CD4+ (left) and CD8+ T cells.
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Figure 3. Perturbation of key transcription factors in quiescent human T cells
a, Characterization of candidate TFs for perturbation. Perturbed TFs are listed based on the 

overlap between differentially expressed TFs of CD4+ T cells and CD8+ T cells. Human 

ISG score (top; blue), human TIL co-inhibitory receptors score (green), HIV specific 

T cell signature genes in progressive patients (yellow), and IL-27 driven co-inhibitory 

receptor regulators (orange) are shown for each TFs. b, Experimental workflow of Vpx-

VLP supported lentiviral shRNA perturbation. Ex vivo isolated naïve CD4 T cells were 

transduced with Vpx-VLPs, followed by two times of lentiviral particle transduction before 

starting T cell activation. T cells were stimulated with anti-CD3/CD28 in the absence 

or presence of IFN-β (500 U/ml) for 96h and GFP positive cells were sorted by FACS. 

RNAs were extracted from sorted cells and applied for mRNA-seq. Perturbations for all 

21 shRNAs are performed with human CD4+ T cells isolated from the same individual 

as in Figure 2. c, Gene knockdown efficiency is shown as relative expression over 
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scramble shRNA transduced controls. Dotted line represents 60% of gene knockdown. 

d-f, PCA plots and biplots based on differentially expressed genes by perturbation. d, 
PCA plot demonstrating the two modules of TF regulators on perturbation with 21 TFs. 

Characterization of shRNA-based gene knockdown for each TF being plotted. Labels 

represent perturbed TF gene names. ‘IFN-I regulator module 1’ is colored in green and 

‘IFN-I regulator module 2’ is in orange. e, f, PCA biplot showing differential regulation by 

modules of regulator TFs; e, for ISGs and f, for co-inhibitory receptors. Orange and green 

arrows (vectors) are highlighting two groups of genes affected inversely by the different 

modules of TFs. g, Footprint plots for BATF and IRF1 at three time points (2, 8, 72 h). The 

dashed lines represent the edges of each TF motif. h, A heatmap showing the TF footprint 

activity of perturbed TFs across three phases.
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Figure 4. Transcriptional regulatory network under IFN-I response
a, Overview of regulatory network generation. b, In depth view of the transcriptional 

regulation at each transcriptional wave. Top row; the representation of regulatory networks 

highlighting TFs interaction. The thicker and darker an edge is the more TF-target 

connections it represents. Target genes are represented by up and down hexagons, according 

to their response to IFN-β. Middle row: heatmaps representing a ranking of the TFs based 

on their centrality, connectivity and gene-target enrichment in the corresponding regulatory 

network. ‘Cent’ stands for centrality, which is a parameter that is given to each node, based 

on the shortest path from the node to the other nodes in the network. It represents how 

central and connected a node is to the rest of the network. ‘HG’ stands for hyper-geometric, 

the value in the heatmap is the −log10 P.value  of a hypergeometric enrichment test of target 

genes of each TF in the network. The rank column is an average of both HG and Cent 

values, after score rescaling (0–1). c, Directed TF backbone networks at the late wave. The 
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regulation and interaction of each DE TFs at each transcriptional wave were depicted. b,c, 
Red circles represent up-regulated TFs, blue circles represent down-regulated TFs, and the 

arrows represent the direction of regulation from TF to TF. TF footprints enriched in IFN-β 
condition were highlighted in yellow. d, Bar plot show the mean level of the degree of 

connectivity values for either up or down regulated DE TFs. p values were calculated by 

an independent two-way t-test. *p < 0.05, ***p < 0.001. e, Dynamics of TFs regulation 

across the transcriptional waves. Each hexagon represents targets from each transcriptional 

wave. Green circles represent regulatory TFs which are differentially expressed only in 

one transcriptional wave they are connected to, while purple circles represent bridging 

TFs, which are differentially expressed in all transcriptional waves they are connected to. 

Perturbed TFs in Figure 3 were highlighted in red. The thicker and darker an edge is, the 

more TF-target connections it represents.
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Figure 5. Linked IFN-I response and co-inhibitory receptor expression in T cells in COVID-19
a, UMAP representation of T cells from healthy control samples (n = 13; biologically 

independent samples) and COVID-19 samples (n = 18; biologically independent samples). 

13 subcluster were identified. b, IFN-I score for CD4+ and CD8+ T cells across the three 

disease conditions. c, Heatmaps for co-inhibitory receptors expression in CD4+ and CD8+ 

T cells across the three disease conditions. d, Expression of key co-inhibitory receptors 

between control vs COVID-19 for CD4+ and CD8+ T cells. Average expression per subject 

for each gene is shown. *p < 0.05, **p < 0.01, ***p < 0.001. Two-sided Kruskal-Wallis test. 

e, Correlation matrix of ISGs (dark gray) and co-inhibitory receptors (light gray) in CD4+ 

and CD8+ T cells in COVID-19 patients. f, IFN-I score for subsets of CD4+ and CD8+ T 

cells between control vs COVID-19.
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Figure 6. Integration of IFN-I regulatory network with T cell signature in COVID-19
a, Heatmap showing co-inhibitory receptors expression for subsets of CD4+ and CD8+ 

T cells in COVID-19. b, Computed three transcriptional waves (early, intermediate, and 

late) score for the subsets of CD4+ and CD8+ T cells in COVID-19 patients. Scores were 

calculated based on upregulated DEGs of CD4+ and CD8+ T cells for each transcriptional 

wave. c, Regulatory relationship between regulators in intermediate phase network for 

LAG3 and TIGIT (top) and late phase network for LAG3, HAVCR2, and PDCD1 (bottom) 

are shown. Positive regulation (TF to target) is highlighted in red and negative regulations 

in blue. TF footprints enriched in IFN-β condition were highlighted in yellow. d, Box plots 

showing expression of key regulators between control vs COVID-19 for CD4+ T cells. 

Average expression per subject for each gene is shown. *p < 0.05, **p < 0.01, ***p < 0.001. 

Two-sided Kruskal-Wallis test.
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