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Abstract: We consider acquisition schemes that maximize the fraction of
images that contain only a single activated molecule (as opposed to multiple
activated molecules) in superresolution localization microscopy of fluores-
cent probes. During a superresolution localization microscopy experiment,
irreversible photobleaching destroys fluorescent molecules, limiting the
ability to monitor the dynamics of long-lived processes. Here we consider
experiments controlled by a single wavelength, so that the bleaching and
activation rates are coupled variables. We use variational techniques and
kinetic models to demonstrate that this coupling of bleaching and activation
leads to very different optimal control schemes, depending on the detailed
kinetics of fluorophore activation and bleaching. Likewise, we show that the
robustness of the acquisition scheme is strongly dependent on the detailed
kinetics of activation and bleaching.
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The diffraction limit in fluorescence microscopy can be overcome the use of molecules that
canswitch between a fluorescent “activated” state and a non-fluorescent “dark” state [1, 2, 3, 4].
In these techniques, only a small fraction of the molecules are fluorescing at any given time,
producing a sparse image consisting of (usually) non-overlapping blurs (the shapes of which
are related to the point spread function (PSF) of the imaging system). A molecular position can
be determined from each blur, by fitting the intensity profile to the PSF. By repeatedly acti-
vating and localizing different subsets of the molecules, one can thus build a complete map of
the fluorescently-labeled structure. The precision of the fitting procedure is determined by the
number of photons collected [5, 6] and if the sample is labeled at sufficiently high density [7]
then the resolution of the final image can be significantly better thanλ/10 for photon counts
in excess of a few hundred per molecule. These “localization microscopy” techniques are now
being used to study a wide range of topics of biological significance, including the organization
of chromatin during mitosis [8], the organization of proteins involved in bacterial chemotaxis
[9], actin dynamics [10], clustering of membrane proteins [11], localization of proteins in mi-
tochondria [12], and interactions between mitochondria and the cytoskeleton [13].
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In initial localization microscopy experiments, the fluorophores were usually controlled by
two separate wavelengths, with one bringing the molecule from the dark state to the acti-
vated state and the other causing the activated state to fluoresce [2, 3, 4]. In that case, the
probability p that a molecule is in the activated state is, to a good approximation, indepen-
dent of the (irreversible) bleaching rateβ per activated molecule. In more recent approaches
[14, 15, 16, 17, 18, 19], the switching between dark and activated states is controlled by the
same wavelength that excites fluorescence from the activated molecules. Such approaches have
the advantage of greater simplicity in hardware, at the expense of reduced latitude of control.

During a localization microscopy experiment, the number of fluorophoresn in a region of
sizeλ decreases over time if the fluorophores bleach irreversibly. (We distinguish irreversible
bleaching, which damages the molecules and permanently renders them non-fluorescent, from
the reversible bleaching that is used to temporarily switch fluorophores to dark states in some
implementations [16].) The effect of irreversible bleaching is to change the tolerances for con-
trolling the activation probabilityp per molecule: The need for non-overlapping bright spots
dictates that, in a region of sizeλ , on average no more than 1 of then fluorophores should
be activated, sop(t) must be less than or equal to 1/n(t). Due to irreversible bleaching,n(t)
is a decreasing function of time, and sop(t) can be an increasing function of time. The result
of bleaching is thus to enable faster acquisition: At later times, the activation probability can
increase, decreasing the probability that no molecules will be on at any given time.

For an experimenter seeking a ”snapshot” image of a short-lived structural feature, this speed
effect of bleaching may be advantageous and hence worth optimizing. Conversely, for studies
of long-term dynamics (in which case bleaching limits the durations of processes that can be
studied), quantitative studies of image acquisition in the presence of bleaching are necessary to
at least minimize the negative effects of bleaching. Even for fluorophores that can go through a
very large number activation/deactivation cycles before irreversibly bleaching [20], maximizing
the number of usable (i.e.single-molecule) images obtained is still desirable if monitoring
small structures during a very long process.

Given that bleaching affects the tolerances on the activation probability per molecule and
thus the image acquisition rate, the question that we study here is how to controlI(t) (and
hence the activation probabilityp and bleaching rateβ ) to optimize the portion of the time in
which exactly 1 of then fluorophores is activated. We previously showed that ifβ and p can
be varied independently (the 2-wavelength case) then the number of single-fluorophore images
is maximized by varying the activation probability in such a way that the number of molecules
decreases as a linear function of time:n(t) = n(0)− ṅt, where the derivative ˙n is constant in
time [21]. In this acquisition scheme, the 2-molecule error rateE2, defined as the ratio of the
number of 2-molecule images obtained (and accepted by the analysis software) to the number
of 1-molecule images obtained (and accepted by the analysis software) [22], is also constant.
Deviations from the optimal scheme (which manifest as perturbations of the linear dependence
of n(t) on time) cause the number of single-molecule images to decrease. Interestingly, for
fast acquisition (corresponding to largerp andE2), deviations from the optimal scheme also
decrease the number of 2-molecule images, partially mitigating the effects of a deviation on the
ratio of 1-molecule to 2-molecule images.

In this work, we assume that the bleaching rateβ and activation probabilityp are both
functions of the same excitation intensityI , and are hence no longer independent quantities.
We consider 4 related scenarios, based on plausible kinetic models of bleaching in switchable
fluorophores used for superresolution microscopy. We show that the optimal data acquisition
scheme depends very sensitively on the bleaching mechanism, highlighting the critical need
for a detailed understanding of bleaching mechanisms in fluorophores used for superresolution
localization microscopy. We will use a quasi-steady state model for the activation probabil-
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ity, assuming that at any instant in time the probability of a fluorophore being in a given state
dependsonly on the excitation intensityI and the rate constants for different upward and down-
ward transitions. We will assume that the fluorophores are independent of each other (i.e.we
are not considering processes such as Forster Resonance Energy Transfer).

Our focus will be on maximizing the number of single-fluorophore images while minimizing
multi-fluorophore images. Recent work has shown that multi-fluorophore images can also be
analyzed to obtain fluorophore position information [23], in which case one would want to
maximize the number of images withmmax or fewer activated fluorophores. While we do not
consider this situation directly, we expect that many of the techniques developed here will carry
over to the multi-fluorophore case, as one of the key results below (that in many cases the
relevant integrals are stationary if the expected number of activated molecules per frame is
kept constant) does not require the assumption that we only obtain information from single-
fluorophore images.

1. Formalism and essential concepts

1.1. Activation probabilities

If we assume that the molecules are independent of each other, the probability ofm molecules
being simultaneously activated in a region of sizeλ is given by the binomial distribution:

pm =
n(n−1)...(n−m+1)

m!
pm(1− p)n−m (1)

wheren is the number of molecules in a region of sizeλ . If the sample is labeled densely
enough to resolve features of sizeλ/10 or smaller [7], thenn will be greater than 100 in 2D, or
1000 in 3D. We can thus assumen≫ 1, which simplifies Eq. (1) considerably. The fractional
error in approximatingn(n−1)...(n−m+1) asnm is small forn≫ 1, so Eq. (1) becomes:

pm =
(np)m

m!
(1− p)n−m (2)

We can set a bound on the activation probabilityp and derive two useful results for this work,
by invoking a result derived previously [22]:

p =
E2

f2/2 f1

1
n

(3)

whereE2 is the 2-molecule error rate discussed above. The parameterf1 is the probability that
the image analysis algorithm being used to process the data will correctly identify an image of
a single-molecule and determine its position, whilef2 is the probability that the image analysis
algorithm will correctly recognize 2-molecule overlaps as such and not analyze them. Conse-
quently,p is bounded, and the upper bound decreases asn increases.

We also showed previously that maximizing the number of single-fluorophore images in
a single cycle requires thatp be less than 1/n[22]. Increasingp above this level actually
decreases the number of 1-molecule images obtained (which can be shown by differentiating
p1 with respect top in Eq. (1)) while increasing the number of 2-molecule images. The result
is that there is a maximum error rate. In the case of non-bleaching fluorophores the maximum
error rate isf2/2 f1 [22], while in the case of bleachable fluorophores it isf2/ f1 [21]

We will normalize the error rate to simplify our notation forp:

p =
2 f1E2/ f2

n
≡ Ẽ

n
(4)
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whereẼ is the normalized error ratẽE = 2 f1E2/ f2. Note that in this notation,np= Ẽ.
With these results, it is possible to further simplify Eq. (2). Usingp = Ẽ/n, and the identity

(1+ x
n)n → ex for largen and fixedx, we get:

pm =
Ẽm

m!
(1− Ẽ

n
)n−m =

Ẽm

m!

(1− Ẽ
n )n

(1− Ẽ
n )m

→ Ẽm

m!
e−Ẽ

(1−0)m =
Ẽm

m!
e−Ẽ (5)

1.2. Expected times

We will be computing the expected amount of time in which exactlymmolecules are activated.
We thus consider the integral:

tm =
∫ t f

0
pm(t)dt =

∫ t f

0

(n(t)p(t))m

m!
e−n(t)p(t)dt (6)

If we wish to pick p(t) in such a way to maximize this integral (form = 1) or minimize it
(for m 6= 1), we have a problem in variational calculus. The most commonly-used tools of
variational calculus, the Euler-Lagrange equations [24, 25], require formulating the integral in
terms of a time-dependent function and its first derivative, and then varying that function to
make the integral an extremum. Note that while satisfaction of the Euler-Lagrange equations
makes the integrals in Eq. (6) stationary, this is only a first-order condition that is satisfied by
maxima, minima, and saddle points alike. Later, we will consider second-order conditions to
determine whent1 is maximized.

We will expresstm in terms ofn(t) andṅ(t). Physically, it may seem natural to pickp(t) as
the function to be varied, since that is the experimentally-controllable parameter. However, the
Euler-Lagrange equations apply to problems that are formulated in terms of functions and their
derivatives. As we show in the next section, if we have a kinetic model of the bleaching process
we can formulate the problem in terms ofn(t) andṅ(t), and use the kinetic model to express
p(t) in terms ofn andṅ.

It is important to note that we arenot trying to maximize the number of single-fluorophore
images obtained in a single activation cycle. As discussed above, the number of single-
fluorophore images in a given cycle is maximized whenẼ = 1 [22]. Rather, we are trying
to maximize the total number of single-fluorophore molecules imaged over a fixed time period
(generally longer than a single cycle), subject to the constraint that a given number of molecules
bleach in that time. The use of the Euler-Lagrange equations contains an implicit assumption
that the numbers of unbleached moleculesn(t) at the beginning and end of the experiment are
fixed. Given that constraint, we are trying to obtain as many single-fluorophore images as possi-
ble while bleaching a given number of molecules in a given time. However, a person following
the prescriptions given below can pick the time interval and number of molecules bleached in
that time interval (i.e.pick the constraints to impose) and then pick the appropriate error rate
to bleach the designated number of molecules in the designated time.

2. Bleaching models

Because single-wavelength superresolution methods are a rapidly evolving area, we will con-
sider several different models that might describe plausible methods and bleaching mechanisms
for different fluorophores. In each case, we can write down a kinetic model of one of the fol-
lowing forms:

ṅ = −β (I(t))n(t)

{

p(I(t))
1− p(I(t))

(7)
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where the first case corresponds to a bleaching mechanism with a rate proportional to the oc-
cupationprobability of the activated state, and the second case corresponds to a bleaching
mechanism proportional to the occupation probability for the dark state. The parameterβ (I(t))
is the intensity-dependent rate at which molecules bleach. In either case, we can divide both
sides byn(t) and get:

−ṅ/n= β (I(t))

{

p(I(t))
1− p(I(t))

(8)

Because the right hand side depends only on the intensityI in either case, it follows thatI can be
expressed as a function of−ṅ/n, i.e. there is a one-to-one relationship between the bleaching
rate per molecule and the excitation intensityI . Therefore,p is also a function of−ṅ/n. We can
thus write our integrals as:

tm =

∫ t f

0

(np(−ṅ/n))m

m!
e−np(−ṅ/n)dt (9)

Once we have determined the form ofp(−ṅ/n) via a model of the bleaching process, we use
the Euler-Lagrange equations to obtain a differential equation forn. Our procedure is therefore:

1. Using a model of bleaching kinetics, expressI in terms of−ṅ/n.

2. Using a model of the activation process, expressp(I) in terms of−ṅ/n.

3. From the relationship betweenp and−ṅ/n, express the integrandspm in terms ofn and
−ṅ/n.

4. Obtain a differential equation forn via the Euler-Lagrange equations.

We now consider four cases:

2.1. Excitation from the dark to activated state, followed by bleaching from the excited state

Dark

Activated

Excited
FluorescenceExcitation

Activation

Bleaching

Fig. 1. Schematic of states and transitions for a fluorophore in which the dark state is the
default state and bleaching occurs from the activated state. We assume multiple vibrational
sublevels in the activated and excited states, to account for Stokes shifts of the absorption
and emission spectra. The bleaching process depicted occurs from the excited state, and is
assumed to not require the absorption of an additional molecule from the excited state.

Our first case is similar to initial superresolution experiments, in which the default state of
a molecule is the dark state and light is needed to raise the molecule to the activated state. A
schematic is given in Fig. 1. While such fluorophores are generally controlled with multiple
wavelengths in experiments, in principle a single wavelength could be used (for simplicity)
if a fluorophore has strongly overlapping activation and excitation bands. The existence of
spontaneous activation [26, 27] when only the longer-wavelength (excitation) beam is turned
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on suggests that control via a single wavelength may be feasible in some cases. We therefore
assume,initially, that the activation probability is given by:

p =
I

1+ I
(10)

Notethat throughout this work we will be measuringI in units of a saturation intensity chosen
so that whenI = 1 the probability of being in the higher state is 1/2. Eq. (10) can be derived
by setting the rate of upward transitions (proportional toI and (1− p)) equal to the rate of
downward transitions (proportional top).

It is important to not take Fig. 1 too literally. It is a schematic, and the key point is a sequence
of steps: dark→ activated→ repeated excitation and fluorescence→ eventual deactivation or
bleaching. We make no assumptions about short-lived or transient intermediate steps; our key
assumptions are that (1) these processes have reached a steady state and (2) upward transitions
proceed at a rate proportional to the excitation intensity.

After activation, bleaching requires the absorption of a second photon (to go to a more reac-
tive excited state, which may be either the fluorescent single state or a long-lived triplet state),
with a rate that is proportional to the intensity, so our kinetic model is:

−ṅ/n=
kbI2

1+ I
(11)

This problem is easily solved in the experimentally relevant limit thatn ≫ 1, in which case
p ≪ 1, meaning that theI term in the denominator is negligible. We then have the following
results:

I =

√

−ṅ
kbn

(12)

np≈ nI =

√

− ṅn
kb

≡ c1n· (−ṅ/n)
1
2 (13)

wherec1 ≡
√

1/kb. We will now show that whenp is a power lawp = c(−ṅ/n)a, it follows
thatẼ = np is a constant ifn(t) is chosen to make the integrals in Eq. (6) stationary.

The Euler-Lagrange equations that must be satisfied to make the integrals in Eq. (6) station-
ary are:

d
dt

Π =
∂

∂n
pm (14)

Π =
∂

∂ ṅ
pm (15)

In the terminology of classical mechanics,Π is a momentum, andpm is our Lagrangian. In the
case wherep is a power law, we get:

Π = p′m(nc· (−ṅ/n)a)
∂

∂ ṅ
nc· (−ṅ/n)a = −p′m(nc· (−ṅ/n)a)ac· (−ṅ/n)a−1 (16)

wherep′m is the derivative ofpm with respect to its argumentnp.
Rather than using our result in Eq. (16) to derive the Euler-Lagrange equations and then solve

them, we will instead use an approach analogous to energy conservation in classical mechanics:
Because the Lagrangian in Eq. (6) has no explicit time-dependence (i.e.the time-dependence
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of pm is solely due to the time-dependence ofn and ṅ), if we pick n(t) to satisfy the Euler-
Lagrange equations then the HamiltonianH will be a constant (i.e.time-independent)[24]:

H = ṅΠ− pm(nc· (−ṅ/n)a)

= ac
(−ṅ)a

na−1 p′m

(

c
(−ṅ)a

na−1

)

− pm

(

c
(−ṅ)a

na−1

)

(17)

BecauseH is time-independent and is a function of a single argument(−ṅ)a/na−1, it there-
fore follows that its argument(−ṅ)a/na−1 = Ẽ/c is also time-independent, and henceẼ is a
constant, even asn andp change.

The requirement of a constant error rate gives us a simple differential equation to solve:

ṅ = −
(

Ẽ
c

)

1
a

n1− 1
a (18)

For the case considered here, wherea= 1/2 andc= c1 =
√

1/kb, the differential equation can
be written as:

ṅ = −
(

Ẽ

1/
√

kb

)

1
1/2

n
1− 1

1/2 = kbẼ2/n

nṅ = −kbẼ2 =
1
2

d
dt

n2 (19)

with solution:

n(t) =
√

n2(0)−2Ẽ2kbt (20)

Note that, as in our previous work [21], a higher error rate causes a faster decline in the number
of unbleached molecules. However, in this case the dependence on time involves the square
root of time rather than a linear function of time.

0

n(0)

time

n(t)

 

 

E = 0.5
E = 1.0

4*n2(0)/2k
b

n2(0)/2k
b

(a)

0 time

p(t)

 

 

E = 0.5
E = 1.0

4*n2(0)/2k
b

0.5/n(0)

1/n(0)

(b)

n2(0)/2k
b

Fig. 2. (a)n(t) and (b)p(t) for acquisition at different constant error rates, under scenario
1.

The time-dependent activation probability and illumination intensity are easy to obtain. Be-
cause this is a constant error rate scheme,p(t) = Ẽ/n(t) (from Eq. (4)), and from Eq. (10) we
know that (for smallI ) p = I , so we get:

I(t) ≈ p(t) =
Ẽ

n(t)
=

Ẽ
√

n2(0)−2Ẽ2kbt
(21)

Results forn(t) andp(t) are shown in Fig. 2.
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Dark

Activated

Excited

Fluorescence

Photo-induced
Bleaching (2)

Photo-induced
Bleaching (3)

Bleaching (4)

Fig. 3. Schematic of a fluorophore whose default state is activated (i.e. fluorescent). Three
plausible bleaching pathways are illustrated, numbered in the order in which they are con-
sidered here. Blue upward arrows indicate absorption of a photon, solid diagonal lines
indicate bleaching upon the absorption of an additional photon, and diagonal dashed lines
indicate bleaching without the absorption of an additional photon.

2.2. Excitation from the activated state to the dark state, followed by photo-induced bleaching

In many single-wavelength superresolution experiments, the ground state of a molecule is ac-
tually not the dark state; the dark state is reached by the absorption of a photon [14, 15, 16].
Typically, this dark state is a long-lived triplet state. A schematic of this process is shown in
Fig. 3. We assume that the rate of transitions from the activated state to the dark state is pro-
portional to the illumination intensityI and the occupation probabilityp for the activated state,
while the rate of transitions from the dark state to the activated state is proportional to 1− p
(the probability of being in the dark state). By setting the dark state probability equal to 1− p
we are implicitly assuming that fluorophores spend a negligible amount of time in the excited
state. This assumption is valid if the typical fluorophore yields of order 103 photons per second
(a common number in superresolution experiments,e.g. [3, 28, 14, 19] and has an excited state
lifetime of order 10−9 seconds, for a total excited state time of order 10−6 seconds, while the
time in the dark state is of order milliseconds to tens of milliseconds [14, 15]. Putting these
assumptions together, we can do some algebra to get the following for the activated state prob-
ability:

p =
1

1+ I
(22)

whereI is again normalized so that the probability of being in the higher-energy dark state is
1/2 whenI = 1.

We obtain an expression of the same form if we assume that the dark state is reached by first
passing through the excited state (e.g.a transition from a single ground stateS0 to a first singlet
excited stateS1, from which some fraction of the molecules are transferred to a triplet state
T1). Because a variety of microscopic models give the same result, it is important to not take
Fig. 3 too literally; it is a schematic illustrating that upon absorption of a photon the molecule
can either go to a state from which it will fluoresce and return to the ground state (called
“activated” here for convenience), or a long-lived state from which it will not fluoresce. The
key assumptions are that the dark state is longer-lived than the state producing fluorescence,
and that it is reached via photon absorption from the ground state (which we call “activated”
here).

While bleaching mechanisms in different fluorophores are an area of continued investigation,
if the dominant bleaching process occurs from the dark state and is induced by the absorption
of a second photon [29, 30](pathway 2 in Fig. 3), the bleaching rate per molecule is given by:

− ṅ/n = kb(1− p) =
kbI2

1+ I
(23)
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If the activation probability per molecule is assumed to be less than 1/nfor n≫ 1, it follows
that p≪ 1 and soI ≫ 1. We get the following relationship between−ṅ/n andI :

I = − ṅ
kbn

(24)

Theactivation probability is then:

p≈ 1/I = −kbn
ṅ

(25)

This is again a power law in−ṅ/n with exponent−1, and so it follows that̃E is again constant.
Our differential equation is:

1
np

= − ṅ
kbn2 =

1
kb

d
dt

1
n

=
1

Ẽ
(26)

with solution:

n(t) =
n(0)

1+n(0)kbt/Ẽ
(27)

Note that in this case, lower error rates actually cause the number of molecules to deplete more
rapidly. This is because achieving a low error rate requires a high excitation intensity to place
more fluorophores in the dark state. At the same time, increasing the intensity increases the rate
at which dark molecules are bleached as well as the number of molecules that are in the dark
state and hence available to be bleached.

Givenn(t), it is again straightforward to determinep(t) andI(t). For a constant error rate,
p = Ẽ/n (Eq. (4)), and for this energy level schemep = 1/I, so we get:

p(t) =
Ẽ

n(0)
+kbt (28)

I(t) =
n(0)

Ẽ +n(0)kbt
(29)

2.3. Photo-induced bleaching from the activated state

Next, let us suppose that bleaching can only happen if activated molecules absorb a photon,
at a rate proportional to the excitation intensity. (Pathway 3 in Fig. 3) The bleaching rate per
molecule is given by:

−ṅ/n= kbI p =
kbI

1+ I
(30)

In this case,I = −ṅ/(ṅ+kbn), so p = 1/(1+ I) = 1+ ṅ/kbn and we get the following for the
error rate:

Ẽ = np= n+ ṅ/kb (31)

Before we solve this model, we will examine one more case, and show that it is equivalent.

2.4. Bleaching from the dark state without the absorption of a second photon

Alternatively, let us consider the case where the dark state is reached via absorption of a photon,
and bleaching occurs from the dark state without the absorption of a second photon. (Pathway
4 in Fig. 3) Such a scenario would correspond to a first order bleaching process, in which a
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Fig. 4. (a)n(t) and (b)p(t) for acquisition at constant error rate, under scenario 2. The time
at which the number of molecules has decreased by half is shown for each plot in (a).

molecule in the dark state has a constant probability per unit time of undergoing an irreversible
bleaching reaction. In this case, the bleaching rate is proportional to the probability of being in
the dark state:

−ṅ/n= kb(1− p) = kb
I

1+ I
(32)

We can solve Eq. (32) forI in terms ofṅ/n, and getI = −ṅ/(kbn+ ṅ). This givesp = 1/(1+
I) = 1+ ṅ/kbn, so we again have for̃E:

Ẽ = np= n+ ṅ/kb (33)

Interestingly, in this case the error rate is not constant. We can show, however, that it is
a decreasing function of time. To see this, we need to use the Euler-Lagrange equations and
some properties of our Lagrangian. The momentumΠ for this case is:

Π =
∂

∂ ṅ
pm(n+ ṅ/kb) =

1
kb

p′m(n+ ṅ/kb) (34)

wherep′m is evaluated with respect to its argumentn+ ṅ/kb. The time derivative ofΠ is:

d
dt

p′m/kb = (ṅ+ n̈/kb) · p′′m/kb =
∂
∂n

L(n+ ṅ/kb) = p′m (35)

Note thatṅ+ n̈/kb is just the time derivative of̃E, so we get that:

˙̃E = kbp′m/p′′m (36)

To go further, we will assume that our Lagrangian isp1 (given in Eq. (6) asẼe−Ẽ), i.e. we
are trying to maximize the number of single-molecule images. The derivatives ofp1 are:

p′1 = (1− Ẽ)e−Ẽ (37a)

p′′1 = −(2− Ẽ)e−Ẽ (37b)
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The time derivative of̃E is then:
˙̃E = −kb

1− Ẽ

2− Ẽ
(38)

This differential equation has an unstable fixed point atẼ = 1, and a singularity at̃E = 2. The
most interesting cases for our purposes are initial error rates less than 1, for whichẼ decreases
as a function of time.

We can get the time-dependence ofẼ from Eq. (38), which can be solved analytically:

∫ Ẽ(t)

Ẽ(0)

(

1+
1

1− Ẽ

)

dẼ = −
∫ t

0
kbdt ′

Ẽ(t)− Ẽ(0)+ ln
1− Ẽ(0)

1− Ẽ(t)
= −kbt (39)

Because the initial conditions show up additively with the time, changing the initial condition
merely shifts the plot in time. Also,̃E reaches 0 at a finite timet f = (Ẽ(0)− log1− Ẽ(0))/kb,
which increases as̃E(0) increases. Solutions of Eq. (39) are plotted for different initial errors
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Fig. 5. Solution to Eq. (38) for different initial error rates.

in Fig. 5.
Once we havẽE(t), we can solve forn(t) usingẼ = n+ ṅ/kb. BecausẽE < 1 andn≫ 1, the

time dependence ofn(t) is, to an excellent approximation, an exponential decay with ratekb.
The difference between ˙n and−kbn is very small. Fortunately, however, the quantity that needs
to be controlled with high precision isI(t), notn or ṅ. Also, becauseI ≫ 1, there is considerable
latitude in the control ofI .

To obtainI(t), we recall thatp = 1/(1+ I), and solving Eq. (32) gaveI = −ṅ/(kbn+ ṅ) =
−ṅ/kbẼ. The time-dependence ofn is approximatelyn(0)e−kbt , so−ṅ = kbn(0)e−kbt , and we
get the following forI(t):

I(t) = n(0)e−kbt/Ẽ(t) (40)

Solutions to Eq. (40) are plotted in Fig. 6. Because large relative changes inI(t) are required to
obtain the optimal scheme, the excitation intensity does not need to be finely-tuned. We show
I(t) for 2 pairs of initial error rates, each pair differing by 10%. In each case, the intensityvs.
time graphs differ by approximately 10% initially, and the percentage difference inI increases
substantially over time. We thus conclude that the optimal acquisition scheme is achievable
without delicate fine-tuning. This issue of robustness is further explored in the next section.
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3. Second-order conditions and robustness

The Euler-Lagrange equations that we solved above are only first order conditions. Maxima,
minima, and saddle points are distinguished by second-order conditions. Because a variational
calculus problem is a calculus problem in infinite dimensions, it is often difficult to formu-
late necessary second-order conditions without producing an infinite set of equations (one for
each direction in function space). However, there aresufficientsecond-order conditions that
are straightforward to apply: If the Lagrangianpm is everywhere a convex function (second
derivative non-negative) of its inputsn and ṅ then the integral ofpm is minimized whenn is
chosen to satisfy the Euler-Lagrange equations [25]. Conversely, ifpm is everywhere a concave
function (second derivative non-positive) ofn andṅ then the integral ofpm is maximized when
n is chosen to satisfy the Euler-Lagrange equations.

3.1. Constant Error Rate Schemes

In the constant error rate scenarios considered, the Lagrangians are of the form:

pm =
Ẽm

m!
e−Ẽ =

c(−ṅ)am

m!nm(a−1)
e

c(−ṅ)a

na−1 (41)

with a = 1/2 (section 2.1),−1 (section 2.2), and 1 (previous work [21]). In what follows, we
choose our units of time so thatc = 1. The second derivatives ofpm are:

∂ 2pm

∂ ṅ2 = a
Ẽm

m!ṅ2 eẼ (

aẼ2 + Ẽ(1−a−2am)+m(am−1)
)

(42a)

∂ 2pm

∂n2 =
a−1
m!n2 ẼmeẼ (

(a−1)Ẽ2 + Ẽ(2m−2am−a)+(a−1)m2 +m)
)

(42b)

We can use these expressions to determine which integrals are maximized or minimized for
smallẼ.

The second derivatives change sign when they are equal to zero, which occurs when:

Ẽ =
−1+a+2am±

√

(a−1)2 +4a2m
2a

(setting
∂ 2pm

∂ ṅ2 = 0) (43a)

Ẽ =
2m(a−1)+a±

√

4m(a−1)2 +a2

2(a−1)
(setting

∂ 2pm

∂n2 = 0) (43b)
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Our results for the second derivatives are summarized below in Tables 1 and 2

3.1.1. Thea = 1
2 case

Table 1. Summary of second derivatives of integrands for the constant error rate scheme
described in section 2.1.
tm Second derivative

for smallẼ:
Sign change: Comment

t0 positive none Always minimized.
t1 negative Ẽ = 1.62 Maximized for smallẼ
t2 negative Ẽ = 3 Maximized for smallẼ

t3+ positive at value ofẼ that increases
with m (0.697 form= 3)

Minimized for smallẼ

In this case, the integrandspm arefunctions of
√

nṅ, which is symmetric under exchange of
n and ṅ. It is thus only necessary to calculate second derivatives with respect to one of those
variables, rather than both.

We find thatt0 satisfies sufficient conditions for a minimum for allẼ; deviations from a con-
stant error rate scheme will increase the number of zero-fluorophore images. This is consistent
with our previous findings for two-wavelength acquisition schemes [21]. Likewise, form≥ 3,
tm is minimized for small error rates. This is exactly what we’d expect from an optimal acqui-
sition scheme. It is also not surprising thatt1 is maximized forẼ < 1.62, consistent with our
goal of getting as many single-fluorophore images as possible.

It may seem unfortunate thatt2 is alsomaximized for smallẼ. However, consider the effects
of deviations from the optimal scheme: Ift1 andt2 are both maximized, then deviations reduce
the number of 1-fluorophore images and also the number of 2-fluorophore overlap images.
The loss of 2-fluorophore images partially compensates for the loss of 1-fluorophore images,
mitigating the effect on the 2-fluorophore error rate (which is the ratio of 2-molecule images to
single-molecule imgaes). This is hence a robust acquisition scheme.

One might wonder whether it would then be even more advantageous to also maximize the
number of 3-fluorophore images, 4-fluorophore images, etc. However, when one deviates from
the optimal scheme, reducing the number of images with 3 or more activated fluorophores
is less important than reducing the number of images with 2 activated and overlapping fluo-
rophores, for two reasons. First, for smallẼ, the 2-fluorophore images are more common than
images with more activated fluorophores, because for smallẼ p2 > pm (m≥ 3). Second, the
2-fluorophore images are, in general, more difficult to identify and reject than images with 3
or more fluorophores: 2-fluorophore images generally have fewer photons than images with 3
or more fluorophores, and are larger in cross-section. Also, 2-fluorophore images likely to be
only slightly elliptical, while images with more activated fluorophores are more likely to have
irregular and large shapes that are easier to identify. Thus, when one deviates from the optimal
scheme it is most important that the number of 2-fluorophore images be reduced along with
the number of 1-fluorophore images. We therefore conclude that acquisition is optimized for
Ẽ < 1.62 in this scenario.

3.1.2. Thea = −1 case

In this case, zero-fluorophore images are actuallymaximizedfor small error rates (̃E < 0.5),
while single-fluorophore and multi-fluorophore images are minimized. Specifically,t1 satisfies
sufficient conditions for a minimum for̃E < 0.219, Acquisition at constant error rate can only
be considered optimal for higher error rates (Ẽ > 0.586), in which case the integrand satisfies
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Table 2. Summary of second derivatives of integrands for the constant error rate scheme
describedin section 2.2.

∂ 2pm/∂ ṅ2 ∂ 2pm/∂n2

tm SmallẼ: Sign change: SmallẼ: Sign change: Comment
t0 negative Ẽ = 2 negative Ẽ = 0.5 Minimized if Ẽ > 2,

maximizedif Ẽ < 1/2
t1 positive Ẽ = 0.586 positive Ẽ = 0.219 Maximized ifẼ > 0.586,

minimized if Ẽ < 0.219
t2+ positive at value ofẼ

that increases
with m (1.27
for m= 2)

positive at value ofẼ
that increases
with m (0.81
for m= 2)

Minimum for smallẼ

sufficient conditions for maximizingt1. At intermediate error rates it is difficult to say whether
t1 is a minimum, maximum, or saddle point for the constant error rate acquisition scheme. If
one wishes to maximizet2 to make the constant-error scheme more robust, as discussed above,
it is necessary to work at̃E = 1.27 (a very largeẼ value).

3.2. The exponential case

In cases 3 and 4 from Fig. 3, we found thatn(t) decays approximately exponentially in the
optimal acquisition scheme. In both of these cases,Ẽ = n+ ṅ/kb, so the second derivatives of
pm with respect ton and ṅ have the same form (up to a factor of 1/k2

b) and the concavity or
convexity of the integrand is easy to determine. The quantity that we need to consider is:

p′′m(n+ ṅ/kb) =
d2

dẼ2
Ẽme−Ẽ =

Ẽ2−2mẼ +m2−m
m!

e−Ẽ (44)

For m= 0, the right side of Eq. (44) is positive for anỹE, so the optimal acquisition scheme
minimizes the number of zero-fluorophore frames for any value of the error rate. Form= 1,
the right side of Eq. (44) is negative as long asẼ < 2, which means that even for very high
initial error rates the number of single-fluorophore frames is maximized. Since we established
in Eq. (38) that the error rate decreases monotonically ifẼ < 1, it follows that the bound on the
error rate set by the requirement of a decreasing error rate is stronger than the bound set by the
second order conditions.

For m≥ 2, the righthand side of Eq. (44) is always positive atẼ = 0 and has zeros at̃E =
m±

√
m. One consequence is that forẼ < 1 the number of images with 3 or more activated

fluorophores is always minimized. The case ofm= 2 is interesting: The second derivative of
p2 is positive forẼ < 0.587 and negative for 0.587< Ẽ < 2.414, so that forẼ < 0.587 the
number of 2-fluorophore images is minimized, while for largerẼ the number of 2-fluorophore
images is maximized.

As discussed above for acquisition at constant error rate, maximizing the number of 2-
fluorophore images along with the number of 1-fluorophore images makes the scheme more
robust. The key difference between this case and thea = 1/2 case is that acquisition here is ac-
tually optimized at larger error rates̃E > 0.587, while in the other case acquisition is optimized
for all Ẽ < 1.62. While working at higher error rates might seem problematic, if one uses good
rejection algorithms to remove multi-fluorophore images, a large normalized error rateẼ can
still correspond to a small absolute error rateE2 = 2 f2Ẽ/ f1.
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4. Conclusions

A major goal in any superresolution localization microscopy experiment is to maximize the
number of single-fluorophore images obtained. When the activation process is controlled by
the same light source as the bleaching process, it is necessary to balance bleaching effects
(which reduce the number of usable fluorophores but also reduce the probability of a nearby
fluorophore emitting light concurrent with the fluorophore of interest) against activation ef-
fects (which determine the relative probabilities of obtaining single-fluorophore and multi-
fluorophore images). Some of the details of the bleaching process therefore have significant
effects on the optimal acquisition scheme. While short-lived intermediate states do not affect
our results, the following aspects of the activation and bleaching kinetics are of critical impor-
tance:

1. Whether bleaching occurs from the dark or activated state

2. Whether bleaching requires the absorption of an additional photon after excitation

3. Whether the activated state is a default state or is reached via absorption of a photon.

We have analyzed 4 plausible models of the bleaching process in different superresolution
localization microscopy experiments, and have shown that in each case the optimal acquisition
scheme either involves acquisition at constant error rate or with a decreasing error rate. In each
case, only two numbers must be known to implement the optimal scheme: a saturation intensity
and a bleaching rate constant. In addition, we have shown that the robustness of the scheme (and
whether substantial robustness is achieved at low error rates or high error rates) also depends
on the details of the bleaching process. Finally, although new fluorophores are being rapidly
developed for use in localization microscopy, our methods are general, and can be used to
investigate almost any bleaching and activation process controlled by a single wavelength, as
well as to predict optimal acquisition schemes for techniques that extract information from
multi-fluorophore images [23].
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