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Abstract
In this manuscript, we consider an epidemic model having constant recruitment of susceptible individuals with non-monotone
disease transmission rate and saturated-type treatment rate. Two types of disease control strategies are taken here, namely
vaccination for susceptible individuals and treatment for infected individuals to minimize the impact of the disease. We
study local as well as global stability analysis of the disease-free equilibrium point and also endemic equilibrium point
based on the values of basic reproduction number R0. Therefore, disease eradicates from the population if basic reproduction
number less than unity and disease persists in the population if basic reproduction number greater than unity. We use center
manifold theorem to study the dynamical behavior of the disease-free equilibrium point for R0 = 1. We investigate different
bifurcations such as transcritical bifurcation, backward bifurcation, saddle-node bifurcation, Hopf bifurcation and Bogdanov–
Takens bifurcation of co-dimension 2. The biological significance of all types of bifurcations are described. Some numerical
simulations are performed to check the reliability of our theoretical approach. Sensitivity analysis is performed to identify the
influential model parameters which have most impact on the basic reproduction number of the proposed model. To control
or eradicate the influence of the emerging disease, we need to control the most sensitive model parameters using necessary
preventive measures. We study optimal control problem using Pontryagin’s maximum principle. Finally using efficiency
analysis, we determine most effective control strategy among applied controls.

Keywords Center manifold theorem · Backward bifurcation · Bogdanov–Takens bifurcation · Sensitivity analysis · Optimal
control

1 Introduction

Epidemiology is a part of mathematical biology which
mainly associates with the study of infectious and vector-
bornedisease and its control strategies in a humanpopulation.
To study the influence and effect of the communicable dis-
ease, researchers often usedmathematicalmodelswhich lead
a significant role in theory of epidemiology [1,2]. Mathemat-
ical models are used to provide understanding the dynamical
behavior of the disease and to improve plans for eradicat-
ing the infection. In epidemiology, first known mathematical
model is invented and worked by Daniel Bernoulli [3]. In
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the middle of twentieth century, mathematical epidemiol-
ogy strode widely around the world [4–6]. The father of
modern mathematical epidemiology, Ronald Ross, derived
a threshold quantity, called as basic reproduction number,
which helps the planners to conclude when the infection will
eliminate. In 1927, Kermack andMcKendrick wieldedmath-
ematical epidemiology to a new level by his contribution for
infectious disease [7]. Later on, researchers formulate vari-
ous mathematical models for developing strategies to control
disease outbreak and making a trade-offs in choosing a best
possible treatment for seizing the infection [8–10].

In mathematical modeling, recruitment rate of suscepti-
ble population, incidence rate of disease transmission and
recovery rate have been playing a crucial role in deterministic
approachofmathematical epidemiology.Mainly two types of
recruitment rates are considered to formulate mathematical
models. Constant birth rate has been taken into considera-
tion for discussing compartmental model by the authors in
[11,12], which is not realistic in many certain cases. Under
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this circumstances, logistic growth rate of susceptible has
been used to make mathematical models more realistic in
case of limited resources and space capacities, disease with
long lasting disease [13,14].

Incidence rate has a vital role for discussing nature of
a disease in theory of epidemiology. In early, bilinear inci-
dence rate in the form βxy and standard incidence rate in the

form
βxy

N
are used in epidemic model where β is the rate

of disease transmission per contact, x and y denote number
of susceptible population and number of infected population
respectively, and N is the total number of population [15,16].
In such cases, epidemic model has relatively simple dynam-
ical behavior that means model does not have any periodic
oscillations and condition for persistence and eradication of
the infection can be determined simply by calculating basic
reproduction number (R0). The authors established that if R0

< 1, then disease will eliminate and otherwise disease will
permanent [17]. But these types of incidence rates are not
realistic as they do not include social awareness of suscep-
tible population and crowding effect of infected population.
To get rich dynamical phenomenon of the infectious disease,
many authors studied nonlinear types of incidence rate [18–
21]. To avoid unboundedness of infection, Capasso and Serio
[22], Anderson and May [23] introduced saturated types of

infection rate in the form
βxy

1 + αy
where β y denotes force

of infection and
1

1 + αy
measures inhibition factors due to

crowding effect of infected class and also for social aware-
ness of the population, α is inhibition coefficient. Later on, to
get rich dynamics of infectious disease thatmeans to get peri-
odic oscillations, multiple peaks of infection, Ruan and Xiao
[24] introduced a non-monotone type of infection rate in the

form
βxy

1 + αy2
to include psychological effect of population.

The function
y

1 + αy2
has maximum value at y = 1√

α
, it

is increasing first upto y = 1√
α
, then decreases to zero as y

goes to infinity. Here, initially infection rate increases due to
lack of knowledge about the disease, but taking appropriate
awareness and protection measures, incidence rate gradu-
ally diminishes by avoiding unnecessary contacts [10,25].
Thereafter, many researchers used general types of nonlin-
ear incidence rate for describing critical situation of disease
spreading [21,26].

Spreading of the disease and influence of the infection
can be controlled by taking proper treatment and giving suit-
able vaccine to infected class. Usually, in classical epidemic
model, treatment function of infection is taken as propor-
tional to number of infectives, i.e., every infected should take
up treatment for a curable disease. But there is a maximum
capacity ofmedical resources for treating against the disease.

So, for largely populated countries, this type of recovered rate
is unusable for treatment of the disease. Therefore, saturated
types of treatment functions are more realistic as they tend
to a finite limit when infected populations increase. In order
to include limited number of medical resources such as hos-
pital facilities, medicines, doctors etc., Wang and Ruan [27]
considered constant treatment function T (y) into epidemic
model where

T (y) =
{
r , y > 0

0, y = 0,

where a constant capacity of medical resources is used to
cure from the infection. They studied that model experi-
ences Hopf bifurcation, saddle-node bifurcation, Bogdanov–
Takens bifurcation varying two parameters of the system.
Later on, Wang [28] introduced a piecewise treatment func-
tion which is proportional to the number of infected before
reaching its maximum capacity, by

T (y) =
{
ky, 0 ≤ y ≤ y0
ky0, y > y0

where ky0 is maximum number of medical resources avail-
able for curing the disease. In this model, authors established
that model undergoes with backward bifurcation and also
observed that basic reproduction number (R0) is not remain
as a threshold quantity. The authors in [14,27,29,30] consid-
ered treatment function as

h(y) = r y

1 + αy

for discussing the limited number of available medical facili-

ties. Above function h(y) has maximum available limit
r

α
as

medical treatment. For a large number of population, treat-
ment may be delayed to receive infected class. This function
includes the parameter α as a extent of effect of infective as
delaying the treatment [31].

Our objective is to reduce spread of infection and eradicate
disease from the community. Therefore, we have to find an
optimal control strategy which is suitable for minimizing the
invade of infection, i.e., we should find an optimal value of
applied controls to reduce the infection. The aim of applying
optimal control is to reduce the density of infected population
andminimize control cost [32]. Sometimes, researchers used
only vaccination to reduce the infection [33,34], whereas
researchers considered only treatment function to control the
invade of infection [35]. Further both treatment and vaccina-
tion used to minimize the spread of infection [13,36]. In this
paper, we consider both vaccination and treatment to control
the spread of the disease.
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The motivation behind this paper is the extension of the
work [19,24]. In [19], authors proposed an epidemic model
having constant birth rate of susceptible population with
saturated incidence rate and saturated treatment rate. They
studied biological properties of the considered model and
also proved local as well as global stability of different equi-
libriumpoints. They showedmodel system exhibited through
backward bifurcation; moreover, they studied optimal con-
trol of the proposed model. In [24], authors considered
an epidemic model having constant birth rate of suscep-
tible population with non-monotone incidence rate. They
showed stability analysis of equilibrium points. In both
papers, authors gave less attention to study critical dynamical
behavior like Hopf bifurcation, Bogdanov–Takens bifurca-
tion, etc. In this paper, we have considered an epidemic
model having constant birth rate of susceptible population
with non-monotone incidence rate and saturated treatment
rate. After model formulation, we are interested to exam-
ine more critical dynamical behavior of the model such as
transcritical bifurcation, saddle-node bifurcation,Hopf bifur-
cation, Bogdanov–Takens bifurcation, etc. Moreover, we try
to find an optimal paths of applied controls to reduce the
spread of infection by studying optimal control theory.

Organization of this paper: In Sect. 2, we formulate model
and discuss basic properties of the model system such as
positivity and boundedness of the solution of the model
system. In Sect. 3, we examine different types of equilib-
rium points and also find basic reproduction number (R0).
In Sect. 4, we examine local as well as global stability of the
disease-free equilibrium point (R0) and also endemic equi-
librium point (E∗). In Sect. 5, bifurcation of co-dimension
1, namely transcritical bifurcation, backward bifurcation,
saddle-node bifurcation, Hopf bifurcation and bifurcation
of co-dimension 2, namely Bogdanov–Takens bifurcation
of co-dimension 2 are investigated. In Sect. 6, numerical
simulations are performed to check the reliability of theo-
retical findings. Sensitivity analysis is done to identify the
most influential model parameters which have most affect
on basic reproduction number R0 in Sect. 7. Optimal control
problem and efficiency analysis is performed in Sect. 8 and
9. Finally, critical dynamical behavior of the model system,
and its biological significance are discussed in Sect. 10.

2 Model formulation

Let the total populations are classified into three com-
partments, namely susceptible individuals (x(t)), infected
individuals (y(t)) and recovered individuals (z(t)) at any
time t . In this study, we consider an epidemic model having
constant birth rate of susceptible class with non-monotone
incidence (affected by inhibitory factors, namely social

awareness, psychological factors, etc.) in the form
βxy

1 + αy2
with vaccination and saturated treatment(
in the form

au2y

1 + bu2y

)
.

In reality, at first disease spreads rapidly among the pop-
ulation due to their unconsciousness. But for psychological
effect as well as awareness of susceptible population and also
for crowding effect of infected population, transmission rate
of the disease starts to decrease after someday. Therefore,
considering non-monotone incidence rate is appropriate for
describing the spreadof anydisease.Also there is amaximum
capacity for treatment facility. When the number of infected
peoples are very small, then every people gets treatment as
saturated treatment function shows linear type behavior for
this case. But for huge number of infected peoples, the sat-
urated treatment tends to its maximum capacity. Therefore,
in this case, every people does not get treatment, which is
realistic. For these reasons, we have considered here non-
monotone incidence rate and saturated treatment function.
Two types of death are considered, one for normal death and
another for disease induced death. Some infected peoples are
recovered for natural immunity from infected class at a rateμ.
Considering all of above assumptions, the differential equa-
tion of the proposed model can be placed in the following
form:

dx

dt
= A − βxy

1 + αy2
− (d + u1) x

dy

dt
= βxy

1 + αy2
− (d + μ + δ)y − au2y

1 + bu2y
dz

dt
= au2y

1 + bu2y
+ μy + u1x − dz

(1)

satisfying x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0 with nonnegative
model parameters are enlisted in Table 1, and flow diagram
of the proposed model is given in Fig. 1.

Table 1 Model parameters and their descriptions

Parameter Description

A Birth rate of the population

β Transmission rate of the disease

α Parameter measuring inhibitory factors

d Natural death rate of population

δ Disease-induced death rate

μ Natural recovery rate of infectives

u1 Vaccinated control parameter

u2 Treatment control parameter

b Delayed parameter of treatment

a Cure rate

123



P. Saha, U. Ghosh

Fig. 1 Flow diagram of the proposed model

We notice that recover class (z) does not appear in the
first two equations of the model (1), thus we can omit third
equation for analysis purpose of the system and focus only
on the following subsystem of (1) which is proposed below:

dx

dt
= A − βxy

1 + αy2
− (d + u1) x

dy

dt
= βxy

1 + αy2
− (d + μ + δ)y − au2y

1 + bu2y
(2)

First, we show that all the solutions of model (2) with non-
negative initial condition remain nonnegative for t ≥ 0.

Theorem 1 All solutions (x(t), y(t)) of model (2)with initial
conditions x(0) ≥ 0, y(0) ≥ 0 are nonnegative for all t ≥ 0.

Proof From first equation of model (2), we get

dx

dt
= A − βxy

1 + αy2
− (d + u1) x (3)

Using the integrating factor, we obtain the solution of the
above differential equation in the form:

x(t) = exp

(
−
∫ t

0

β y(s)ds

1 + αy2(s)
+ (d + u1)t

)

×
∫ t

0

(
x(0) + A

(
exp

∫ v

0

β y(s)ds

1 + αy2(s)
+(d + u1)v) dv) dt, (4)

i.e., x(t) > 0 for all t ≥ 0. Similarly, we can show y(t) ≥ 0
∀t ≥ 0.

This completes the proof. ��
In the next theorem, we shall establish the boundedness of
the solutions for all t ≥ 0.

Theorem 2 Let, M= min{(d + u1), (d + μ + δ)}, then the

region
∏ =

{
(x, y) ∈ R2+ : x + y ≤ A

M

}
is a positively

invariant and attracting set for the model (2).

Proof First, we assume that N (t) = x(t) + y(t).
Adding both equations in (2), we get

dN

dt
= A − (d + u1)x − (d + μ + δ)y − au2y

1 + bu2y

i.e.,
dN

dt
≤ A − (d + u1)x − (d + μ + δ)y

i.e.,
dN

dt
≤ A − M(x + y)

i.e.,
dN

dt
≤ A − MN

where M = min{(d + u1), (d + μ + δ)}. Integrating and

taking limit as t −→ ∞, we get N (t) ≤ A

M
. Thus, we have

0 ≤ N (t) ≤ A

M
for sufficiently large t . So, all solutions of

model (2) are bounded and enter the region
∏
. ��

In the next section, we shall describe the conditions for exis-
tence of different equilibrium points.

3 Existence of equilibria and basic
reproduction number

The equilibria of the model (2) are solutions of the following
equations:

A − βxy

1 + αy2
− (d + u1) x = 0

βxy

1 + αy2
− (d + μ + δ)y − au2y

1 + bu2y
= 0 (5)

It is clear from system (5) that the model (2) always has a
disease-free equilibrium

E0 =
(

A

d + u1
, 0

)
.
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As the disease-free equilibrium E0 exist, the basic reproduc-
tion number (R0) of the model (2) exists. In the following
theorem, we compute basic reproduction number of the pro-
posed model using next-generation matrix method [37].

Theorem 3 Basic reproduction number of the proposed
model system (2) is given by

R0 = Aβ

(d + u1)(d + μ + δ + au2)
.

Proof Basic reproduction number plays a crucial role in the
disease spreading dynamics. The number of secondary infec-
tions produced by a single infected individual in its entire life
span as an infectious host is defined as basic reproduction
number. Based on the values of basic reproduction number,
epidemiologist can predict when the disease persists or erad-
icates from the population. Now, we find basic reproduction
number of the proposed model using next-generation matrix
approach [37].

In next-generation matrix approach, we consider two
matrices F and V with containing newly infected terms
and the remaining terms, respectively. Therefore, F =(

βxy

1 + αy2

)
and V =

(
(d + μ + δ)y + au2y

1 + bu2y

)
. Dif-

ferentiating F and V with respect to infected component y

at disease-free equilibrium point E0

(
A

d + u1
, 0

)
, we get F

=

(
βA

d + u1

)
and V=

(
(d + μ + δ + au2)

)
. Now, next-

generation matrix K is given by K = FV−1. Basic
reproduction number is the spectral radius of the next-
generation matrix K . Here, K = FV−1 =(

Aβ

(d + u1)(d + μ + δ + au2)

)
.

Therefore, basic reproduction number of the proposed
model system (2) is given by R0 =

Aβ

(d + u1)(d + μ + δ + au2)
. ��

The endemic equilibria of the considered model system is
E(x∗, y∗) where

x∗ =
A −

{
(d + μ + δ) + au2

1 + bu2y∗

}
y∗

(d + u1)
, (6)

and y∗ is the positive root of the cubic equation

Q(y) ≡ A3y
3 + A2y

2 + A1y + A0 = 0 (7)

where A3 = αbu2(d + u1)(d + μ + δ), A2 = α(d + u1)
(d + μ + δ + au2) + bβu2(d + μ + δ)A1 = β(d + μ + δ +

au2)+ bu2[(d + u1)(d +μ+ δ)− Aβ], A0 = (d + u1)(d +
μ + δ + au2)(1 − R0).

Discriminant [38] of cubic equation (7) is

 = A2
1A

2
2 − 4A0A

3
2 − 4A3

1A3 + 18A0A1A2A3

−27A2
0A

2
3 (8)

Letting B1 = A2
2 − 3A1A3, B2 = A1A2 − 9A0A3 and B3 =

A2
1 − 3A0A2, the expression of () can be written in the

form:

 =
(

−1

3

)
0 (9)

where

0 = B2
2 − 4B1B3 (10)

Here, coefficients A2 and A3 are always positive and sign of
A0 depends on R0 in (7). So, we have the following cases for
positive roots of Q(y) = 0 :

Case-1 R0 > 1, then Q(0) = A0 < 0; in this case, unique
positive solution of Q(y) = 0 exists, regardless of the sign
of Q

′
(0) = A1.

Case-2 R0 < 1, in this case, Q(0) = A0 > 0.

(i) If Q
′
(0) = A1 > 0, the equation Q(y) = 0 has no

positive solution.
(ii) If Q

′
(0) = A1 < 0, the following cases arise,

(a) 0 < 0, then Q(y) = 0 has two positive solutions.
(b) 0 = 0, there is unique positive solution of the equa-

tion Q(y) = 0.
(c) 0 > 0, we get no positive solution.

Summarizing the above discussions, we get following theo-
rem.

Theorem 4 (1) Model system (2) always has a disease-free
equilibrium point E0.

(2) When R0 > 1, model system (2) has a unique endemic
equilibrium.

(3) When R0 < 1 and

(a) A1 > 0, model system (2) has no endemic equilib-
rium.

(b) A1 < 0 and also 0 < 0, there exist two endemic
equilibria E1(x∗

1 , y
∗
1 ) and E2(x∗

2 , y
∗
2 ).

(c) For A1 < 0 and also 0 = 0, these two endemic
equilibria coalesce into the same endemic equilib-
rium E∗(x∗, y∗).

Otherwise, model system (2) has no endemic equilibrium.

123



P. Saha, U. Ghosh

4 Stability analysis of equilibria

For discussing stability of the equilibrium point, we need to
compute Jacobian matrix J (E(x∗, y∗)) of model system (2)
at any equilibrium point E (x∗, y∗). The Jacobian matrix of
model (2 ) is given by

J (E) ≡ J (E(x∗, y∗))

=

⎛
⎜⎜⎜⎜⎜⎝

− β y∗

1 + αy∗2 − (d + u1) −
βx∗

(
1 − αy∗2

)
(
1 + αy∗2)2

β y∗

1 + αy∗2
βx∗

(
1 − αy∗2

)
(
1 + αy∗2)2 − (d + μ + δ) − au2

(1 + bu2y∗)2

⎞
⎟⎟⎟⎟⎟⎠ . (11)

Next, we shall prove local stability of disease-free equi-
librium point for R0 < 1 in Theorem 5. Then, we shall
show global stability of disease-free equilibrium for R0 < 1
using Lyapunov stability theorem in Theorem 6. Further,
we shall discuss local stability of endemic equilibrium for
R0 > 1 in Theorem 7, and next we shall prove global sta-
bility of endemic equilibrium using Dulac function criterion
for R0 > 1 in Theorem 8.

First, we discuss local aswell as global stability at disease-
free equilibrium point E0.

Theorem 5 If R0 < 1, then disease-free equilibrium point
E0 is locally asymptotically stable and unstable for R0 > 1.
For R0 = 1, disease-free equilibrium point E0 is a saddle-

node of co-dimension 1 if
β2A

(d + u1)2
�= abu22 and is a semi-

hyperbolic attracting node of co-dimension 2 if
β2A

(d + u1)2
=

abu22, αA ≥ abu22.

Proof Jacobian matrix of the proposed model (2) at disease-
free equilibrium point E0 is given by

J (E0) =
⎛
⎝− (d + u1) − βA

d + u1
0 (d + μ + δ + au2)(R0 − 1)

⎞
⎠ .

Therefore, characteristic roots of J (E0) are −(d + u1) and
(d + μ + δ + au2)(R0 − 1). Therefore, for R0 < 1, both
eigenvalues are negative, and for R0 > 1, one of them is pos-
itive. So, we can conclude that E0 is locally asymptotically
stable for R0 < 1 and unstable for R0 > 1.

For R0 = 1, one eigenvalue of the Jacobian matrix JE0

is zero; therefore, in this case, disease-free equilibrium point
E0 is non-hyperbolic type, and to examine dynamical behav-
ior of the disease-free equilibrium point E0, we have to use
center manifold theorem [39].

First, we use a perturbation at disease-free equilibrium

point E0

(
A

d + u1
, 0

)
using the transformation X = x −

A

d + u1
, Y = y, thus model system (2) becomes:

dX

dt
= −(d + u1)X − βA

d + u1
Y − βXY + αβA

d + u1
Y 3

+ o(|X ,Y |4)
dY

dt
= βXY + abu22Y

2 −
(

αβA

d + u1
+ ab2u32

)
Y 3

+ o(|X ,Y |4) (12)

Next, we use the transformation X = v − βA

(d + u1)2
u,

Y = u; then, system (12) becomes:

du

dt
= βuv +

(
abu22 − β2A

(d + u1)2

)
u2

−
(

αβA

d + u1
+ ab2u32

)
u3 + o(|u, v|4)

dv

dt
= −(d + u1)v − βuv + β2A

(d + u1)2
u2 + β2A

(d + u1)2
uv

− βA

(d + u1)2

[
αβA

d + u1
+ ab2u32 − α(d + u1)

]
u3

+o(|u, v|4) (13)

From (13), it is clear that if
β2A

(d + u1)2
�= abu22, then disease-

free equilibrium point E0 is a saddle-node of co-dimension

1 [39]. Now if
β2A

(d + u1)2
= abu22, then we have to use cen-

ter manifold theorem to find the nature of the disease-free
equilibrium point E0.

By definition of local center manifold of the system

Wc(0) =
{
(u, v) ∈ R2 : v = h(u) = a1u

2 + a2u
3 + a3u

3

+ . . . , |u| < δ′} (14)
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satisfying h(0) = 0, Dh(0) = 0 where δ′ is suffi-
ciently small, Dh represents the derivative of h with respect
to u. Using the conditions, we get the value of a1 as

a1 = abu22
d + u1

.

Therefore, local manifold of the system is given by v =
h(u) = abu22

d + u1
u2, and thus system (13) becomes

du

dt
= −

{
ab2u32 + β

αA − abu22
d + u1

}
u3 + o(|u|4)

dv

dt
= −(d + u1)v + o(|u, v|2) (15)

From (15), it is clear that if
β2A

(d + u1)2
= abu22, then disease-

free equilibriumpoint E0 is a semi-hyperbolic attractingnode
of co-dimension 2 for αA ≥ abu22.

Thus, proof of the theorem is complete. ��
Theorem 6 If R0 < 1 − R∗

0 , then disease-free equilibrium
point E0 is globally stable where R∗

0 is defined in the text.

Proof To show the global asymptotic stability of the disease-
free equilibrium point E0, we are using here Lyapunov’s
stability theorem [40,41].

Let L(x, y) = y is a Lyapunov function as it is positive
definite. Then,

dL

dt
= dy

dt
= βxy

1 + αy2
− (d + μ + δ)y − au2y

1 + bu2y

i.e.,
dL

dt
=
{

βx

1 + αy2
− (d + μ + δ) − au2

1 + bu2y

}
y

i.e.,
dL

dt
≤
[

βA

d + u1
− (d + μ + δ + au2)

]
y

− au2

⎛
⎜⎝ 1

1 + bu2
A

M

− 1

⎞
⎟⎠ y

i.e.,
dL

dt
≤ (d + μ + δ + au2)

[
R0 −

{
1 − abu22A

M + Abu2

}]
y

i.e.,
dL

dt
≤ (d + μ + δ + au2)

[
R0 − {

1 − R∗
0

}]

where R∗
0 = abu22A

M + Abu2
.

Therefore,
dL

dt
< 0 if R0 < 1 − R∗

0 .

So, by Lyapunov’s stability theorem, it follows that E0 is
globally stable if R0 < 1 − R∗

0 . ��

This result is epidemiologically more significant since if
basic reproduction number is less than a threshold quantity,
then disease eradicates from the population. Therefore to
control or eradicate the emerging disease, our aim will be
to maintain the value of the basic reproduction number less
than that threshold value.

Next, we study local as well as global stability of endemic
equilibrium point E(x∗, y∗) for R0 > 1.

Theorem 7 If R0 > 1, then model system (2) has a unique
endemic equilibrium which is locally asymptotically stable

for β ≥ max
{
abu22,

aα

b

}
Proof To prove the above-mentioned theorem, here we use
Jacobian approach of matrix [8,42]. The characteristic equa-
tion of the Jacobian matrix (11) at any endemic equilibrium
point E(x, y) is given by

F(λ) ≡

∣∣∣∣∣∣∣∣∣
− β y

1 + αy2
− (d + u1) − λ − βx

{
1 − αy2

}
{
1 + αy2

}2
β y

1 + αy2
βx
{
1 − αy2

}
{1 + αy2}2 − (d + μ + δ) − au2

(1 + bu2y)2
− λ

∣∣∣∣∣∣∣∣∣
= 0. (16)
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Therefore,

F(0) =

∣∣∣∣∣∣∣∣∣
− β y

1 + αy2
− (d + u1) −βx

{
1 − αy2

}
{
1 + αy2

}2
β y

1 + αy2
βx
{
1 − αy2

}
{1 + αy2}2 − (d + μ + δ) − au2

(1 + bu2y)2

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
− A

x
−βx

{
1 − αy2

}
{
1 + αy2

}2
− (d + u1)

abu22y

(1 + bu2y )2
− βx

(1 + αy2 )

∣∣∣∣∣∣∣∣∣

=
(

− A

x

)
∣∣∣∣∣∣∣∣∣

1
βA

{
1 − αy2

}
{
β y + (d + u1)(1 + αy2 )

}2
− (d + u1)

abu22y

(1 + bu2y )2
− βA{

β y + (d + u1)(1 + αy2 )
}

∣∣∣∣∣∣∣∣∣

= β y

(
− A

x

)[
abu22

β(1 + bu2y )2
− A {β + 2αy(d + u1)}{

β y + (d + u1)(1 + αy2 )
}2
]

.

(17)

Since, from second equation of (5), we have

x = A(1 + αy2)

β y + (d + u1)(1 + αy2)

= (1 + αy2)

β

[
(d + μ + δ) + au2

(1 + bu2y)

]
. (18)

Now, we consider a function f (y) defined as

f (y) = A

β y + (d + u1)(1 + αy2)
− (d + μ + δ)

β

− au2
β (1 + bu2y)

. (19)

So, for endemic equilibria, y component is the solution of the

equation f (y) = 0 with f (0)= (d+μ+δ+au2)(R0 − 1)

β
.

It follows from the expression of f (0) that

R0 > 1 if f (0) > 0
R0 < 1 if f (0) < 0

(20)

Differentiating f (y) in (19) w.r.t. y, we get

f ′(y) = abu22
β(1 + bu2y)2

− A {β + 2αy(d + u1)}{
β y + (d + u1)(1 + αy2)

}2 . (21)

From (17) and (21), we can easily draw a relationship
between F(0) and f ′(y), which gives

F(0) = −
(
Aβ y

x

)
f ′(y). (22)

Thus, from (22), we see the following statements hold:

F(0) > 0 if f ′(y) < 0

F(0) < 0 if f ′(y) > 0 (23)

Here, we take R0 > 1 this implies f (0) > 0 (by (20)).
We have already seen that if R0 > 1, then there is only one
endemic equilibrium E(x∗, y∗). Since, f (0) > 0 hence f (y)
should decrease in some neighborhood of y∗. So, in this case,
we have f ′(y) < 0 and so F(0) > 0.

Now, eigenvalues of the Jacobian matrix are solutions of
the equation F(λ) = 0, i.e.,

λ2 + C1λ + C2 = 0, (24)

where

C2 = F(0) > 0,

C1 = −
[
(d + u1) + 2αβxy2

(1 + αy2 )2

+ (β − abu22) + 2αβu2y + bu22y
2(bβ − aα)

(1 + αy2)(1 + bu2y)2

]
.

It is clear from the expression of C1 that C1 ≤ 0 if β ≥
max

{
abu22,

aα

b

}
.

Therefore, all eigenvalues of Jacobian matrix have nega-
tive real part. So, for R0 > 1, we see that E(x∗, y∗) is locally
asymptotically stable if β ≥ max

{
abu22,

aα

b

}
. ��

Theorem 8 For R0 > 1, endemic equilibrium point is glob-
ally asymptotically stable if u1 > abu22 holds.

Proof To prove global stability of the endemic equilibrium
point E(x∗, y∗), here we use Dulac criterion [28,39]. First,
we write our model system (2) in the following form:
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dx

dt
= A − βxy

1 + αy2
− (d + u1) x ≡ F(x, y)

dy

dt
= βxy

1 + αy2
− (d + μ + δ)y − au2y

1 + bu2y
≡ G(x, y)

(25)

Now, we construct Dulac function as D(x, y) = 1

y
, then we

have

∂

∂x
(DF) + ∂

∂ y
(DG) = − β

1 + αy2
− (d + u1)

− 2αβxy

(1 + αy2)2
+ abu22

(1 + bu2y)2

i.e.,
∂

∂x
(DF) + ∂

∂ y
(DG) < − β

1 + αy2
− (d + u1)

− 2αβxy

(1 + αy2)2
+ abu22

i.e.,
∂

∂x
(DF) + ∂

∂ y
(DG) < − β

1 + αy2
− d − 2αβxy

(1 + αy2)2

− (u1 − abu22) < 0 if u1 > abu22.

Therefore by Dulac criterion for R0 > 1, endemic equi-
librium point E(x∗, y∗) is globally asymptotically stable if
u1 > abu22. ��

In view of epidemiology, above result indicates disease
persists in the population. Therefore for R0 > 1, disease
cannot be eradicated from the population when u1 > abu22.

5 Bifurcation analysis

Bifurcation means qualitative change of the solution of a
model system. In this section, we shall discuss different
kinds of bifurcations of the solutions in the neighborhood
of different equilibrium points. Among them, some are
co-dimension 1 such as transcritical bifurcation, backward
bifurcation, saddle-node bifurcation, Hopf bifurcation and
the co-dimension two bifurcation likely the Bogdanov–
Takens bifurcation of co-dimension 2.

5.1 Transcritical bifurcation

First of all, we discuss the transcritical bifurcation for model

(2). Since for u2 = u02 =

{
βA

a(d + u1)
− d + μ + δ

a

}
, i.e.,

R0 = 1 one eigenvalue of J (E0) is zero, and consequently,
the usual eigenanalysis method fails here. Using Sotomayor
theorem [39,43], we shall now establish the system expe-
riences transcritical bifurcation when the control parameter
(u2) crosses the critical value u2 = u02.

Theorem 9 The model system (2) undergoes a transcriti-
cal bifurcation at disease-free equilibrium point (E0) as the
control parameter u2 passes through the bifurcation value
u2 = u02.

Proof Here, we use Sotomayor’s theorem [39,43] to verify
the transversality conditions for transcritical bifurcation; we
denote f (x, y) = ( f1(x, y), f2(x, y))t where

f1(x, y) = A − βxy

1 + αy2
− (d + u1) x

f2(x, y) = βxy

1 + αy2
− (d + μ + δ)y − au2y

1 + bu2y
(26)

Then,

J (E∗) = Df (x∗, y∗)

=

⎛
⎜⎜⎜⎜⎜⎝

− β y∗

1 + αy∗2 − (d + u1) −
βx∗

(
1 − αy∗2

)
(
1 + αy∗2)2

β y∗

1 + αy∗2
βx∗

(
1 − αy∗2

)
(
1 + αy∗2)2 − (d + μ + δ) − au2

(1 + bu2y∗)2

⎞
⎟⎟⎟⎟⎟⎠ , (27)

and therefore,

J (E0; u02) = Df (E0; u02) =
⎛
⎝−(d + u1) − βA

d + u1
0 0

⎞
⎠

has one negative eigenvalue and other eigenvalue is zero.
Let, V andW be the two eigenvectors corresponding to the

zero eigenvalue of the matrix J (E0) and [J (E0)]T, respec-

tively, where V and W are given by V =
⎛
⎝ 1

− (d + u1)2

βA

⎞
⎠

and W =
(
0
1

)
.

Furthermore, differentiating partially (26) and (27) w.r.t.
u2, we get
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fu2(x, y) =
(

0

− ay

(1 + bu2y)2

)
,

Dfu2(x, y) =
(
0 0

0 − a

(1 + bu2y)3

)
.

Therefore, fu2(E0; u02) =
(
0
0

)
,

Dfu2(E0; u02)V =
(
0 0
0 −a

)⎛⎝ 1

− (d + u1)2

βA

⎞
⎠

=
⎛
⎝ 0

a (d + u1)2

βA

⎞
⎠ .

and D2 f (E0; u02)(V , V )

=

⎛
⎜⎜⎝

∂2 f1
∂x2

V 2
1 + 2

∂2 f1
∂x∂ y

V1V2 + ∂2 f1
∂ y2

V 2
2

∂2 f2
∂x2

V 2
1 + 2

∂2 f2
∂x∂ y

V1V2 + ∂2 f2
∂ y2

V 2
2

⎞
⎟⎟⎠

=
⎛
⎝ 0

4b(d + u1)4

β2A2

(
βA

d + u1
− (d + μ + δ)

)⎞⎠ .

Thus, we have WT fu2(E0; u02) = 0,

WT
(
Dfu2(E0; u02)V

)
= a (d + u1)2

βA
�= 0,

WT
(
D2 f (E0; u02)(V , V )

)
= 4b(d + u1)4

β2A2

(
βA

d + u1
− (d + μ + δ)

)
�= 0

if
βA

d + u1
�= (d + μ + δ).

Thus, all conditions of Sotomayor’s theorem for trans-
critical bifurcation are satisfied; therefore, the model system
(2) experiences transcritical bifurcation at E0 when control
parameter passes through the critical value u2 = u02. Here,
the stable disease-free equilibrium point become unstable
and one stable endemic equilibrium point generates through
transcritical bifurcation. ��

5.2 Backward bifurcation

According to epidemiology, for R0 < 1, disease can be erad-
icated from the system. But due to saturated treatment, the
model system (2) may exhibit backward bifurcation. Epi-
demiologically the backward bifurcation is most important

[28,30] because in this case the system generates another sta-
ble endemic equilibrium point for R0 < 1. In this situation,
eradication of disease not only depends on the value of R0

but it also depends on the initial number of infected popu-
lations. If system undergoes through backward bifurcation,
we cannot conclude about eradication of disease for R0 < 1.
For backward bifurcation, there exists bistability of equilib-
rium points (one stable disease-free equilibrium and stable
endemic equilibrium) for R0 < 1. Therefore, if R0 < 1,
eradication of disease depends on initial infected population.

Theorem 10 The model system (2) experiences a backward
bifurcation at R0 = 1 when (d + μ + δ + au2) < Aabu22.

Proof In Sect. 3, we have already seen that infected compo-
nent y satisfies Eq. (7). Since from the expression of R0, we
have

β = (d + u1)(d + μ + δ + au2)R0

A
,

so the coefficients of the above equation can be expressed as
a function of R0 putting value of β. So, the solution of the
equation is a function of R0. Now, to derive a necessary and
sufficient condition on the parameters such that the system
experiences backwardbifurcationwith respect to R0,wehave

to compute value of
∂ y

∂R0
|R0=1,y=0.

Differentiating partially Eq. (4) w.r.to. R0 and putting
R0 = 1, y = 0, we get

∂ y

∂R0
|R0=1,y=0 = A

(d + μ + δ + au2) − Aabu22
.

Thus, the endemic equilibrium curve bifurcates backward
direction if the slope of the solution curve has negative value

at R0 = 1 which is equivalent to
∂ y

∂R0
|R0=1,y=0 < 0. Thus,

the necessary and sufficient condition for backward bifurca-
tion is (d + μ + δ + au2) < Aabu22 . ��

Fromabove, it is clear that themodel system (2) has backward
bifurcation due to saturated treatment. So, there is a range
R∗
0 < R0 < 1, for which model system (2) has two endemic

equilibria. Now, we concentrate on discussing the stability
of these two endemic equilibria when backward bifurcation
condition is satisfied. So, we have the following theorem:

Theorem 11 If R∗
0 < R0 < 1 and (d + μ + δ + au2) <

Aabu22 hold, then model system (2) has two endemic equilib-
ria. The one with smaller number of infected (E1) is unstable,
while the other with higher number of infected (E2) is locally

asymptotically stable if β ≥ max
{
abu22,

aα

b

}
.
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Proof Since, the equation f (y) = 0 (where f (y) is given
by (19)) has two distinct real roots y∗

1 , y
∗
2 with y∗

1 < y∗
2 ,

then f (y) is increasing in neighborhood of y∗
1 that means

f ′(y∗
1 ) > 0 and consequently f (y) is decreasing in neighbor-

hood of y∗
2 that means f ′(y∗

1 ) < 0. So, we have the following
two cases.

Case-1 For the equilibrium E1(x∗
1 , y

∗
1 ), we have f ′(y∗

1 ) >

0, So F(0) < 0 (by (23)) . Since F(λ) is a quadratic equation,
we have F(λ) → ∞ as λ → ∞ . Hence, there must be a real
positiveλ∗ such that F(λ∗) = 0. So Jacobianmatrix has at least
one positive eigenvalue. Therefore, E1(x∗

1 , y
∗
1 ) is unstable.

Case-2 For the equilibrium E2(x∗
2 , y

∗
2 ), we have f ′(y∗

2 )

< 0, So F(0) > 0 (by Eq. (23)) . In this case, we proceed
same as Theorem 7 and obtain that E2(x∗

2 , y
∗
2 ) is locally

asymptotically stable if β ≥ max
{
abu22,

aα

b

}
.

Thus, we prove the above stated theorem. ��

In the next theorem, we shall establish the condition
of saddle-node bifurcation. This type of bifurcation occurs
when two fixed points create and annihilate depending on the
model parameter.

5.3 Saddle-node bifurcation

Suppose at α = α[SN], Eq. (7) has coincident real positive
root, and the corresponding endemic equilibrium point is
E(x∗, y∗).

Theorem 12 The model system (2) experiences saddle-node
bifurcation at the coincident endemic equilibrium point
E(x∗, y∗) when the system parameter α crosses the critical
value α = α[SN] and

A
(
−2 + 9α[SN]y∗2 − 3α[SN]2y∗4)
+x∗(d + u1)

(
1 − α[SN]y∗2) �= 0.

Proof It can be easily shown that for α = α[SN ], we have
det(J (E))|α=α[SN] = 0 and tr(J (E))|α=α[SN] �= 0 at the
coincident endemic equilibrium point E(x∗, y∗). Hence, one
eigenvalue of the J (E) will be zero at α = α[SN]. If V and
W are eigenvectors corresponding to eigenvalue zero for the
matrices J (E) and J T (E), respectively, then

V =

⎛
⎜⎜⎝

βx∗
(
1 − α[SN]y∗2

)
(
1 + α[SN ]y∗2)

β y∗ + (d + u1)
(
1 + α[SN ]y∗2

)
⎞
⎟⎟⎠ and

W =
⎛
⎝ − (d + u1)

(
1 + α[SN]y∗2

)
β y∗ + (d + u1)

(
1 + α[SN]y∗2

)
⎞
⎠ .

Furthermore, we have

fα(E;α[SN]) =

⎛
⎜⎜⎜⎜⎝

2α[SN]βx∗y∗2(
1 + α[SN]y∗2 )2

− 2α[SN]βx∗y∗2(
1 + α[SN]y∗2 )2

⎞
⎟⎟⎟⎟⎠

and D2 f (E;α[SN])(V , V ) =
2A

x∗ (1 + α[SN]y∗2)2 × [A (2−

9α[SN]y∗2 + 3α[SN]2y∗4)+ x∗(d + u1)(1 − α[SN]y∗2) ] ×(
1

−1

)
. Thus, we have

WT fα(E;α[SN]) = − 2α[SN]β y∗2(
1 + α[SN]y∗2) [A + (d + u1)] �= 0,

and

WT
(
D2 f (E;α[SN])(V , V )

)
= 2A (A + (d + u1)x∗)

x∗2 (1 + α[SN]y∗2)
×
[
A
(
−2 + 9α[SN]y∗2 − 3α[SN]2y∗4)

+x∗(d + u1)
(
1 − α[SN]y∗2)] �= 0.

Thus, the transversality condition for the occurrence of
saddle-node bifurcation at coincident equilibrium E(x∗, y∗)
for α = α[SN] is satisfied for system (2). Hence, by
Sotomayor’s theorem [39,43], we can conclude that system
(2) has saddle-node bifurcation when model parameter α

passes through its critical value α = α[SN]. ��

5.4 Hopf bifurcation

In this section, we consider the case when J (E(x∗, y∗))
has a pair of purely imaginary eigenvalues. Hopf bifurca-
tion occurs when this pair of complex conjugate eigenvalues
around non-trivial equilibrium E(x∗, y∗) cross-imaginary
axis [44]. In this case, endemic equilibria E(x∗, y∗) loses
stability through Hopf bifurcation under some parametric
restriction. Considering A as the bifurcation parameter, sup-
pose at A = A[HB], we have tr(J (E(x∗, y∗)))|A=A[HB] = 0
and det(J (E(x∗, y∗)))|A=A[HB] > 0. The existence of a Hopf
bifurcation around endemic equilibrium E(x∗, y∗) is estab-
lished in the following theorem:

Theorem 13 The model system (2) experiences a Hopf bifur-
cation at any endemic equilibrium point E(x∗, y∗) when the
model parameter A crosses the critical value A = A[HB] .
Moreover,

(i) If ζ < 0, there is a family of stable periodic orbits of
model system (2) as A decreases from A[HB],
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(ii) If ζ > 0, there is a family of unstable periodic orbits
of model system (2) as A increases from A[HB], where ζ

will be defined in the proof of the theorem.

Proof From above discussions, it is clear that tr(J (E)) = 0
and det(J (E)) > 0 at A = A[HB] when endemic equilib-
ria E(x∗, y∗) exists. That means the corresponding Jacobian
matrix J (E) has a pair of purely imaginary eigenvalues if
A = A[HB] .

Now, in order to ensure the changes of stability through
Hopf bifurcation, we have to check the transversality condi-
tion for Hopf bifurcation . The transversality condition is

d

dA
(trJE ) |A=A[HB] �= 0.

Our next target is to find the direction of Hopf bifurca-
tion in the neighborhood of the endemic equilibrium point
E(x∗, y∗) for the critical value A = A[HB]. First, we translate
the endemic equilibrium E(x∗, y∗) to origin using transfor-
mation X = x − x∗, Y = y − y∗, then model system (2)
becomes

dX

dt
= a11X + a12Y + a13XY + a14Y

2

+ a15XY
2 + a16Y

3

dY

dt
= a21X + a22Y + a23XY + a24Y

2

+ a25XY
2 + a26Y

3 (28)

where the coefficients ai j is given in “Appendix-I.”
Let,� denote the origin of the X–Y plane, then det(J (�))

= a11 a22 − a12 a21 > 0 and letΩ =
√
det(J (�)). Then, under

the transformation u = −X and v =
(
a11

X

Ω
+ a12

Y

Ω

)
,

the model system (2) reduces to the normal form:

du

dt
= −Ω v + f (u, v)

dv

dt
= Ω u + g(u, v) (29)

where

f (u, v) =
(
a11 a13
a12

− a211a14
a212

)
u2

+
(

a13
a12

− 2a11 a14
a212

)
Ωuv

+
(

−a14
a212

)
Ω2v2 +

(
2 a11 a15

a212
− 3a211a16

a312

)
Ωu2v

+
(

a15
a212

− 3 a11 a16
a312

)
Ω2uv2

+
(

a211 a15
a212

− a311a16
a312

)
u3

+
(

−a16
a312

)
Ω3 v3,

and

g(u, v) =
(
a211a24
a12

+ a311a14

a212
− a211a13

a12
− a11a23

)
u2

Ω

+
(
2a11a24
a12

+ 2a211a14

a212
− a11a13

a12
− a23

)
uv

+
(
a11a14
a212

+ a24
a12

)
Ωv2 +

(
a11a16
a312

+ a26
a212

)
Ω2v3

+
(
3a311a16

a312
− 2a211a15

a212
− 2a11a25

a12
+ 3a211a26

a212

)
u2v

+
(
3a11a26
a212

− a11a15
a212

+ 3a211a16

a312
− a25

a12

)
Ωuv2

+
(
a311 a26

a212
+ a411a16

a312
− a211a25

a12
− a311a15

a212

)
u3

Ω
.

The discriminating quantity (Γ ) for finding the direction
of Hopf bifurcation is defined below:

Γ = 1

16
[ fuuu + fuvv + guuv + gvvv ]

+ 1

16 Ω
[ fuv( fuu + fvv) − guv( guu + gvv)

− fuu guu + fvv gvv ] = ζ

8 Ω2 a212

where fuv denotes
∂ 2 f

∂u∂v
(0, 0) and

ζ =
[
(a15 + 3a26) − a14(a13 + 2a24)

a12

]
Ω4

+
[{

(a15 + 3 a26) − 2a14(a13 + 2a24)

a12

}
a211

+
{
a213 − 2a12a25 + a13a24 − 2a214

}
a11 + a12a23a24

]
Ω2

+
[
a23 − a11(a13 + 2a24)

a12

]
[
a211(a12a24 − a12a13) + a11(a

2
11a14 − a212a23)

]
.

By [11,45], proof of the theorem is complete. ��

5.5 Bogdanov–Takens bifurcation

As so far, we have studied the bifurcations of co-dimension 1,
i.e., considering only one parameter as the bifurcation param-
eter. The model system (2) experiences the bifurcations of
co-dimension 1 such as transcritical bifurcation, saddle-node
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bifurcation, and Hopf bifurcation. We are now interested to
investigate co-dimension 2 bifurcation such as Bogdanov–
Takens bifurcation of co-dimension 2. Under the condition
tr(J (E)) = 0 and det(J (E)) = 0, the Jacobian matrix of
the coincident endemic equilibrium E(x∗, y∗) has a double
zero eigenvalue. Suppose these two conditions occur for the
parameter values A = A0 andα = α0 when other parameters
are keeping as constant. So the model system (2) may admit
a Bogdanov–Takens (BT) bifurcation in vicinity of the coin-
cident endemic equilibrium point. Now, first we investigate
the conditions for which BT bifurcation will occur.

5.5.1 Condition for existence of Bogdanov–Takens
bifurcation

To ensure the existence of BT bifurcation for the critical
values of the parameters ( i.e., A = A0 and α = α0), we are
using the transformation X = x − x∗, Y = y − y∗ and the
condition tr(J (E)) = 0, det(J (E)) = 0, the model system
(2) reduces to

dX

dt
= a11X + a12Y + a13XY + a14Y

2

+ Q1(X ,Y )

dY

dt
= −a211

a12
X − a11Y + a23XY + a24Y

2

+ Q2(X ,Y ) (30)

where Qi (X ,Y ), i = 1, 2 are smooth functions of (X ,Y )

at least of order three and the coefficients are given in
“Appendix-I” (using maple software [46] ).

We set x = X , y = a11X + a12Y , then system (30)
transforms to

dx

dt
= y + c1 x

2 + c2 x y + c3 y2 + R1(x, y)

dy

dt
= c4 x

2 + c5 x y + c6 y2 + R2(x, y) (31)

where Ri (x, y), i = 1, 2 is a smooth function in (x, y) at
least of order three and

c1 = a11(a11a14 − a12a13)

a212
, c2 = a12a13 − 2a11a14

a212
,

c3 = d f raca14a
2
12, c6 = d f raca11a14 + a12a24a

2
12,

c4 = a211(a11a14 − a12a13) + a11a12(a11a24 − a12a23)

a212
,

c5 = a12(a12a23 + a11a13) − 2a11(a12a24 + a11a14)

a212
.

Next, letting x = x, s = y + c3y2 and neglecting higher
terms of order greater than 2 the system (31) becomes,

dx

dt
= s + c1x

2 + c2xs + R3(x, s)

ds

dt
= c4x

2 + c5xs + c6s
2 + R4(x, s) (32)

where Ri (x, s), i = 3, 4 is a smooth function in (x, s) at
least of order three. One more time, we set the variables
x = x, z = s − c6xs, system (32) becomes

dx

dt
= z + c1 x

2 + (c2 + c6) x z + R5(x, z)

dz

dt
= c4 x

2 + c5xz + R6(x, z) (33)

where Ri (x, z), i = 5, 6 is a smooth function in (x, z) at
least of order three. Finally, to obtain the normal form of
Bogdanov–Takens bifurcation [47,48], we perform the trans-

formation u = x − c2 + c6
2

x2, v = z + c1x2, then system

(33) transforms to

du

dt
= v + P1(u, v)

dv

dt
= c4u

2 + (c5 + 2c1 )uv + P2(x, z) (34)

where Pi (u, v), i = 1, 2 is a smooth function in (u, v) at least
of order three. From above, it is clear that c4 �= 0 and c5 +
2 c1 �= 0 which implies model system (2) admits Bogdanov–
Takens bifurcation.

Thus, we obtain the following theorem:

Theorem 14 Suppose that E(x∗, y∗) is an endemic equilib-
rium of model system (2) such that tr(JE ) = 0 and det(JE ) =
0with c4 �= 0, c5+2 c1 �= 0 . Then, E(x∗, y∗) is a Bogdanov–
Takens singularity of co-dimension 2 .

5.5.2 Bogdanov–Takens bifurcation of co-dimension 2

Now, we find analytical expressions for saddle-node bifur-
cation curve, Hopf bifurcation curve and homoclinic bifur-
cation curve in a small neighborhood of BT point, by
determining the versal unfolding of the model system (2)
as discussed in [49–51]. First, we give a small perturbation
to bifurcation parameters A and α by A = (A0 + λ1) and
α = (α0 + λ2) where |λi | << 1, i = 1, 2 around their criti-
cal values then the model system (2) becomes:

dx

dt
= (A0 + λ1) − βxy

1 + (α0 + λ2) y2
− (d + u1) x

dy

dt
= βxy

1 + (α0 + λ2) y2
− (d + μ + δ)y − au2y

1 + bu2y
(35)
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Now translating endemic equilibrium point E(x∗, y∗) to ori-
gin using the transformation X = x − x∗, Y = y − y∗, then
system (35) becomes

dX

dt
=
(

(A0 + λ1) − βx∗y∗
1 + (α0 + λ2) y∗2 − (d + u1) x

∗
)

+ b1X + b2Y + b3XY + b4Y
2 + φ1(X , Y , λ1, λ2)

dY

dt
=
(

βx∗y∗
1 + (α0 + λ2) y∗2 − (d + μ + δ)y∗ − au2y

∗
1 + bu2y∗

)

+ b5X + b6Y − b3XY + b7Y
2 + φ2(X , Y , λ1, λ2) (36)

where φi (X ,Y ), i = 1, 2 is a smooth function in (X ,Y ) at
least of order 3 and the coefficients bi are given in “Appendix-
II” (using maple software [46] ).

Letting u = Y ,

v =
(

βx∗y∗

1 + (α0 + λ2) y∗2 − (d + μ + δ)y∗ − au2y∗

1 + bu2y∗

)
+b5X + b6Y − b3XY + b7Y

2 + φ2(X ,Y , λ1, λ2),

we get

du

dt
= v

dv

dt
= d0 + d1u + d2v + d3u

2 + d4uv + d5v
2

+φ3(u, v, λ1, λ2) (37)

where φ3(u, v, λ1, λ2) is a smooth function in (u, v) at least
of order 3 and the coefficients d j ’s are given in “Appendix-
III.”

Next, we introduce a new time variable τ by dt = (1 −
d5u) dτ , and rewriting τ as t , we get from (37)

du

dt
= (1 − d5u)v

dv

dt
= (1 − d5u)(d0 + d1u + d2v + d3u

2

+ d4uv + d5v
2 + φ3(u, v, λ1, λ2)) (38)

Let X = u,Y = (1 − d5u)v, then system (38) reformats as,

dX

dt
= Y

dY

dt
= d0 + e1X + d2Y + e2X

2 + e3XY + φ4(X , Y , λ1, λ2) (39)

whereφ4(X ,Y , λ1, λ2) is a smooth function in (X ,Y ) at least
of order 3 and e1 = ( d1−2 d0 d5 ), e2 = ( d3−2 d1 d5 +d0 d25 ),

e3 = ( d4 − d2 d5 ). Now, we set x =
(
X + d2

e3

)
, y = Y ,

then the system (44) takes the form :

dx

dt
= y

dy

dt
= f1 + f2x + e2x

2 + e3xy + φ4(x, y, λ1, λ2) (40)

where φ4(x, y, λ1, λ2) is a smooth function in (x, y) at least

of order 3 and f1 = d0 − e1 d2
e3

+ e2 d22
e23

, f2 = e1 − 2 d2 e2
e3

.

Finally, we change variables using X =
e23
e2

x, Y =
e33
e22

y,

τ =
e2
e3

t and denoting τ by t, system (40) becomes

dX

dt
= Y

dY

dt
= ψ1(λ1, λ2) + ψ2(λ1, λ2) + X2 + XY

+φ5(X ,Y , λ1, λ2) (41)

where φ5(X ,Y , λ1, λ2) is a smooth function in (X , Y ) at

least of order 3 and ψ1(λ1, λ2) =
f1 e43
e32

,

ψ2(λ1, λ2) =
f2 e23
e22

. If the transversality condition

∣∣∣∣∣∣∣
∂ψ1(λ1, λ2)

∂λ1

∂ψ1(λ1, λ2)

∂λ2
∂ψ2(λ1, λ2)

∂λ1

∂ψ2(λ1, λ2)

∂λ2

∣∣∣∣∣∣∣ �= 0 (42)

holds, then the system (35) undergoes through Bogdanov–
Takens bifurcation when (λ1, λ2) is in the small neighbor-
hood of (0, 0). The local representation of the bifurcation
curves are given below:

(1) The saddle-node bifurcation curve is given by SN =
{(λ1, λ2): ψ1(λ1, λ2) = 0, ψ2(λ1, λ2) �= 0}.

(2) The Hopf bifurcation curve is given by H = {(λ1, λ2):
ψ1(λ1, λ2) = − ψ2

2 (λ1, λ2), ψ2(λ1, λ2) > 0}.
(3) The Homoclinic bifurcation curve is given by HL =

{(λ1, λ2) : ψ1(λ1, λ2)=−49

25
ψ2
2 (λ1, λ2) + o(ψ

5
2
2 ),

ψ2(λ1, λ2) > 0}.

6 Numerical simulation

In this section, we shall justify the theoretical findings of our
proposed model using some numerical approaches. For this
purpose, first, we draw one parameter bifurcation diagram
w.r.t. R0 to justify the Backward bifurcation (see Fig. 2).

From Fig. 2, it is clear that disease-free equilibrium point
is stable if R0 < 1, and it is unstable for R0 > 1. Further,
for R0 < 1, there exists a range R∗

0 < R0 < 1 where two
endemic equilibrium points exist. For R0 < 1, the endemic
equilibrium point with lower infected density is unstable and
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Table 2 Model parameters and their respective values

4Parameter β d δ μ u1 u2 b a

Value 0.35 0.1 0.2 0.6 0.25 0.37 5.0 6.5

Fig. 2 Backward bifurcation diagram with respect to R0 and other
parameters are given in Table 2 with A = 3.24, α = 0.35, the blue line
corresponds to stable branch and red line is unstable

the endemic equilibrium point with higher infected density
is stable. Therefore for R0 < 1, there exists bistability of
equilibrium points (one stable disease-free equilibrium point
and one stable endemic equilibrium point). At R0 = 1,
disease-free equilibrium changes its stability from stable to
unstable with creation of one stable endemic equilibrium
point; therefore, model system (2) undergoes through trans-
critical bifurcation at disease-free equilibrium for R0 = 1.

Next,wedrawschematic bifurcationdiagram forBogdanov–
Takens bifurcation (using [52]) as given in Fig. 3 for model
system (2)which divides first quadrant of A–α plane (consid-
ering other parameters values in Table 2) in six sub-regions,
namely R1, R2, R3, R4, R5, R6. In Fig. 3, the red line is
saddle-node bifurcation (SN) line, black line represents Hopf
bifurcation (H) line, cyan line indicates homoclinic bifur-
cation (HL) line, and magenta line denotes transcritical
bifurcation line. Now, we draw the phase portraits for each
of the sub-region of A–α plane considering different param-
eter values for interpreting number of equilibrium points and
their behavior.

In region R1, there is one disease-free equilibrium (E0)

point which is stable node (see the Fig. 4a). From epidemio-
logical point of view, this region is most important because
disease is not persisting here.

Next, we consider the parameter values on saddle-node
line (the red line). For parametric values on theSN-line, along
with the stable disease-free equilibrium point, one coinci-
dent endemic equilibrium point arises here which is unstable
(saddle point) in nature (see Fig. 4b). Since in this case,

disease-free equilibrium is stable, disease eradicates from
the population, and also endemic equilibrium is unstable;
therefore, disease does not persist in the community.

Now, crossing SN-line, we enter in region R2 from region
R1. In the region R2, there exists two endemic equilibrium
points and the stable disease-free equilibrium point (E0).
Among endemic equilibrium points, one is stable spiral and
another is saddle (see the phase portrait in Fig. 4c). Therefore,
in R2 region, there exist bi-stability behavior of equilib-
rium points, one is disease-free equilibrium and other stable
point is endemic equilibrium point. Stable manifold of sad-
dle endemic equilibrium point (the green line in Fig. 4c)
divides the whole R2 region into two sub-region. We see, if
we take initial point inside the basin of attractor then solu-
tion of curve approaches to stable endemic equilibrium point,
and if we take the initial point outside, the basin of attrac-
tor then solutions are converging to disease-free equilibrium
point. Thus, we can conclude that for lower or much higher
number of infected population at an initial stage in a sys-
tem, disease will be eliminated and for a moderate number
of infected population at an initial stage disease will persist
in the system.

Next, we enter region R3 by crossingHopf bifurcation line
(black line) from region R2. Here, we see that the number
of equilibrium points is same as in region R2 . But stable
endemic equilibrium point becomes unstable and there arises
a stable limit cycle. Here, also bistability arises: one is the
stable disease free equilibrium and other is stable limit cycle
around the endemic equilibrium point (see the phase portrait
in Fig. 4d). Stablemanifold divides basin of attractor into two
region, outside basin of attractor disease will eradicate and
inside basin of attractor number of infected oscillates which
means it is difficult to control the disease. That means for
elimination of disease our aim is to minimize the density of
infected individuals such that at any time it falls outside the
basin of attraction.

Now,we consider parameter values on the homoclinic line
(cyan line). For these values of the parameters, the stable limit
cycle connect the saddle endemic point, therefore a homo-
clinic loop appears (See the phase portrait in Fig. 5a). Nature
of other equilibrium points remain same. Thus, if initial den-
sity of populations are inside homoclinic loop, disease will
persist in the system with oscillatory behavior and for lying
outside homoclinic loop disease will eliminate from the sys-
tem.

Next, we enter in region R4 by crossing homoclinic bifur-
cation line from region R3. In region R4, stable limit cycle
vanishes through homoclinic bifurcation, and it becomes
unstable spiral. Only disease-free equilibrium is stable here.
If we take initial point anywhere in region R4, solution of
the system (2) converges to disease-free equilibrium, i.e.,
disease-free equilibrium is globally stable here (see the phase
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Fig. 3 Schematic bifurcation diagram in A–α plane fixing other variables as given in Table 2

Fig. 4 Phase portrait for the parameter values a In region R1 (A = 3.22, α = 0.5) b On Saddle-node line(A = 3.22, α = 0.3344) c In region R2
(A = 3.25, α = 0.35) d In region R3 (A = 3.25, α = 0.12) and other parameters are given in Table 2

portrait in Fig. 5b). That means disease will eliminate in the
system if we choose the parameters in this region.

Now, crossing transcritical bifurcation line (magenta line),
we enter in region R5 from region R2. Here saddle endemic
equilibriumdisappears, other endemic equilibriumpoint stay
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Fig. 5 Phase portrait for the parameter value a On Homoclinic line (A = 3.25, α = 0.054) b In region R4 (A = 3.22, α = 0.1) c In region R5
(A = 3.31, α = 0.4) d In region R6 (A = 3.306, α = 0.003) and other parameters are given in Table 2

stable and the disease-free equilibrium becomes unstable
(saddle point). As there is no any other stable equilibrium,
the endemic equilibrium point is globally stable here (see the
phase portrait in Fig. 5c). From biological point of view, this
region is dangerous because disease permanently stay in the
system.

At last, we enter in region R6 from region R5 by crossing
Hopf bifurcation line (black line). Here, disease-free equi-
librium is unstable (saddle point) and endemic equilibrium
is unstable spiral. A stable limit cycle arises around endemic
equilibrium (see the phase portrait in Fig. 5d). Therefore,
disease will persist here like the region R5 but the density of
the infected population will oscillate in this case.

7 Sensitivity analysis

By sensitivity analysis, we can identify the influential model
parameters which have more impact on the basic reproduc-
tion number R0 of the proposed model. The model param-
eters having higher sensitive index have more significant

role in disease spreading dynamics among the population.
By controlling such more sensitive parameters, the impact
of the infection can be diminished or controlled. In order to
identify such sensitivemodel parameters,we need to estimate
the variation of basic reproduction number R0 with respect to
different model parameters. For calculating sensitivity index,
weuse normalized forward sensitivity indexmethod [53–55].
According to normalized forward sensitivity index theory,
sensitivity index of the basic reproduction number R0 with

respect to model parameter φ is defined by Γ
φ
R0

= ∂R0

∂φ
.
φ

R0
.

Positive sign of the sensitive index of the model parameters
indicates basic reproduction number increases with model
parameter increases and negative sign indicates basic repro-
ductionnumber decreaseswithmodel parameter increases. In
our proposedmodelmost sensitivemodel parameters are sus-
ceptible recruitment rate(A), disease transmission rate (β),
treatment control parameter (u2), vaccinated control param-
eter (u1), and cure rate (a). We enlist sensitivity indexes of
all model parameters in Table 3.

To perform sensitivity analysis numerically, we have used
partial rank correlation coefficient (PRCC)method [56]. This
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Table 3 Sensitivity indexes of
the model parameters

Parameter Sensitivity index

A 0.9999999999

β 1.0000000000

d − 0.3159714719

u1 − 0.7142857144

μ − 0.1815431165

δ − 0.06051437216

a − 0.7276853253

u2 − 0.7276853253

Fig. 6 Diagram of sensitivity index of each model parameter on R0
using PRCC

method correlates between output and input. Here, basic pro-
duction number (R0) is treated as output, and all model
parameters are treated as inputs. PRCC measures robust-
ness of sensitivity to determine the monotonic and nonlinear
relationship between output and input; therefore, it plays a
crucial role in sensitivity analysis. To carry out PRCC, we
have taken sample size 100 and the corresponding PRCCdia-
gram is placed in Fig. 6. From Fig. 6, it is clear that PRCC
values lie from −1 to +1, which indicates that correspond-
ing model parameters induce positive or negative impact on
output R0. The PRCC values of model parameters imply
how much model parameters are sensitive to R0 and the sign
assigns a relation between model parameters (input) and R0

(output). Positive sign implies relation between input and
output is proportional and negative sign implies relation is
disproportional. It is obvious from Fig. 6 that model parame-
ters A, β have positive influence on R0 andmodel parameters
d, u1, μ, δ, a, u2 have negative influence on R0.

8 Application of optimal control technique

Our intention is to prevent spread of infection and eradi-
cate disease from the population. For this purpose, we need
to adopt suitable treatment policy and perfect vaccination
campaign. In this paper, we consider two controls namely
vaccination (u1) and treatment (u2). Now, our target is to
identify best control among vaccination and treatment, i.e.,
we try tofindout anoptimal values of applied controls. There-
fore, we have to use optimal control theory to get optimal
system. To verify the existence of optimal control problem,
we use Pontryagin’s maximum principle. The main motive
for applying optimal control is to decrease infected popu-
lation, at the same time reduce applied control cost [32].
For analyzing purpose, we consider controls as constant but
implemented cost may be high for constant controls; there-
fore, we have to use control functions as function of time t .
In theory of optimal control, we consider time-dependent
control functions. Now, we formulate an optimal control
problem.

8.1 Formulation of optimal control problem

In this section, we formulate an optimal control problem of
the proposed model. First, we consider an cost functional
which will be minimum in the considered interval. Here, we
construct integral of the cost functional as L(w, u) = A1x +
A2y + 1

2
B1u21 + 1

2
B2u22, where L(w, u) is Lagrangian of

optimal control problem. Therefore, optimal control problem
is given by:

Min J (x, u) =
∫ T

0
L(t, w(t), u(t))dt

subject to

w
′
(t) = f (w(t)) + g(w(t))u(t),∀t ∈ [0, T ]

u(t) ∈ U (t),∀t ∈ [0, T ]
w(0) = w0 (43)

where

w(0) = (x(0), y(0), z(0)) ≥ 0, w(t) =
⎛
⎝ x(t)

y(t)
z(t)

⎞
⎠ ,

u(t) =
(
u1(t)
u2(t)

)
, g(w) =

⎛
⎜⎜⎜⎝

−x 0

0 − ay

1 + bu2y
x

ay

1 + bu2y

⎞
⎟⎟⎟⎠ ,
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f (w) =

⎛
⎜⎜⎜⎝

A − βxy

1 + αy2
− dx

βxy

1 + αy2
− (d + μ + δ)y

μy − dz

⎞
⎟⎟⎟⎠ .

In L(t, w(t), u(t)), A1(> 0), A2(> 0) are loss due to
susceptible and infected populations, respectively, whereas
B1, B2 are weight costs for control functions u1(t), u2(t),
respectively. Here, we consider quadratic term in control to
present severity of side effect of vaccination and treatment
[57]. The control functions are Lebesgue measurable which
are given by,

U = {(u1, u2) : 0 ≤ ui ≤ 1, i = 1, 2 and t ∈ [0, T ]} (44)

8.2 Existence and uniqueness of optimal control
problem

Theorem 15 For given an optimal control problem (43) sub-
ject to (1) admits an optimal pair u∗

1(t) and u∗
2(t) such that

J (u∗
1(t), u

∗
2(t)) = min {J (u1(t), u2(t)) : (u1, u2) ∈ U }

where U is given by (44).

Proof The state and control variables are non-empty and also
nonnegative. Control constraint U is also convex.

Adding three equations of model (1), we have

dN

dt
= A − δy − dN , where N = x + y + z

i.e.,
dN

dt
≤ A − dN

Therefore, N (t) ≤ A

d
+
(
N0 − A

d

)
e−dt , i.e., N (t) −→

A

d
as t −→ ∞, i.e., all state variables are bounded. Also

integrand of objective functional J (u1(t), u2(t)) is convex
w.r.t. u1 and u2.

Now, we rewrite system (1) as:

φt (t) = Eφ + F(φ) where φ(t) =
⎛
⎝ x(t)

y(t)
z(t)

⎞
⎠ , φt (t) =

⎛
⎜⎝ x

′
(t)

y
′
(t)

z
′
(t)

⎞
⎟⎠ , F(φ) =

⎛
⎜⎜⎜⎝

− βxy

1 + αy2
βxy

1 + αy2
0

⎞
⎟⎟⎟⎠ ,

E =

⎛
⎜⎜⎜⎝

−(μ + u1) 0 0

0 −(d + μ + δ) − au2
1 + bu2y

0

u1
au2

1 + bu2y
+ μ −d

⎞
⎟⎟⎟⎠. There-

fore,

||F(φ1) − F(φ2)||

=
∣∣∣∣∣ βx2y2
1 + αy22

− βx1y1
1 + αy21

∣∣∣∣∣+
∣∣∣∣∣ βx1y1
1 + αy21

− βx2y2
1 + αy22

∣∣∣∣∣
≤ |βx2y2 − βx1y1| + |βx1y1 − βx2y2|
≤ 2β|x1y1 − x2y2| ≤ 2β|y1||x1 − x2| + 2β|x2||y1 − y1|,

i.e., ||F(φ1) − F(φ2)|| < C ||φ1 − φ2|| where C = 2β.
Now, if G(φ) = Eφ + F(φ), then ||G(φ1) − G(φ2)|| ≤

||E ||||φ1 − φ2|| + C ||φ1 − φ2|| ≤ B||φ1 − φ2||, where
(||E || + C) ≤ B < ∞. Thus, Lipschitz condition is satisfied
for all state variables. Hence, there exists optimal control pair
u∗
1(t) and u∗

2(t) such that

J (u∗
1(t), u

∗
2(t)) = min {J (u1(t), u2(t)) : (u1, u2) ∈ U } .

This completes proof of the theorem. ��

8.3 Characterization of optimal control problem

Theorem 16 Optimal control pair u∗
1(t), u

∗
2(t) which mini-

mizes J (u1(t), u2(t)) over U is given by

u∗
1(t) = min

(
max

(
0,

(ρ1 − ρ3)x

B1

)
, 1

)
,

u∗
2(t) = min (max (0, u2) , 1) ,

where u2 is the nonnegative root of B2u2(1 + bu2y)2 =
ay(ρ2 − ρ3).

Proof For characterization of optimal control problem, we
apply Pontryagin’s maximum principle [13,58]. First, we
define Hamiltonian H as

H(x, y, z, u1, u2, ρ1, ρ2, ρ3) = A1x + A2y

+ 1

2
B1u

2
1 + 1

2
B2u

2
2 + ρ1

{
A − βxy

1 + αy2
− (d + u1) x

}

+ ρ2

{
βxy

1 + αy2
− (d + μ + δ)y − au2y

1 + bu2y

}

+ ρ3

{
au2y

1 + bu2y
+ μy + u1x − dz

}

satisfying

dρ1(t)

dt
= −∂H

∂x
,
dρ2(t)

dt
= −∂H

∂ y
,
dρ3(t)

dt
= −∂H

∂z
(45)

with ρi (T ) = 0, i = 1, 2, 3.
Solving (45), we observe adjoint variables ρ1, ρ2, ρ3 sat-

isfy

dρ1
dt

= −A1 + (ρ1 − ρ2)
β y

(1 + αy)2
+ (ρ1 − ρ3)u1 + ρ1d

dρ2
dt

= −A2 + (ρ1 − ρ2)βx
1 − αy2

(1 + αy2)2
+ ρ2(d + δ)
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+(ρ2 − ρ3)
au2

(1 + bu2y)2
+ (ρ2 − ρ3)μ

dρ3
dt

= ρ3d (46)

with

ρ1(T ) = 0, ρ2(T ) = 0, ρ3(T ) = 0. (47)

At (u∗
1, u

∗
2), we have

∂H

∂u1
= 0,

∂H

∂u2
= 0. Thus, we

get u∗
1(t) = min

(
max

(
0,

(ρ1 − ρ3)x

B1

)
, 1

)
, u∗

2(t) =
min (max (0, u2) , 1), where u2 is the nonnegative root of
B2u2(1 + bu2y)2 = ay(ρ2 − ρ3).

Now,
∂2H

∂u21
> 0,

∂2H

∂u22
> 0 and

∂2H

∂u21
.

∂2H

∂u22
>

(
∂2H

∂u1∂u2

)2

at (u∗
1, u

∗
2).

Hence, optimality condition is satisfied at u∗(t) =
(u1∗(t), u2∗(t)). ��

For numerical simulation of optimal control problem,
here we use forward–backward sweep method where in
thismethod forward application of fourth-order Runge–kutta
method of system (1) is combined with backward applica-
tion of fourth-order Runge–kutta method of system (46) with
transversality condition (47). We take time interval as [0,

20], i.e., after 20 units time all controls will be stopped. To
draw numerically, we use parameter values as in Table 2 with
A = 100, α = 0.5 and A1 = 0.05, A2 = 0.05, B1 = 0.6
and B2 = 0.8 with initial conditions x(0) = 100, y(0) = 10,
and z(t) = 0. In Fig. 7a–c, solution curves of susceptible,
infected and recovered populations, respectively, are given
with andwithout controls and time series of control u1, u2 are
shown in Fig. 7d and e. Our proposed model can be used for
describing disease dynamics such as SARS, MERS, Dengue
disease spreading. Since these types of disease spread rapidly
in community at first, but after someday, the disease transmis-
sion starts to decrease; therefore, the consideration of such
model is appropriate for such diseases.

9 Efficiency analysis

Efficiency analysis is performed to find out best effective
strategy when more than one control is applied. In this paper,
we consider two controls namely vaccination for suscepti-
bles (u1) and treatment for infectives (u2). Now, we have
to know the effective strategy among applied controls to
reduce the density of infectives and minimize the imple-
mented control cost. So now, we perform efficiency analysis.
Since two controls are used, therefore three cases may arise:
(i) u1 �= 0, u2 �= 0 (ii) u1 �= 0, u2 = 0 (iii) u1 = 0, u2 �= 0.
We call this cases as Strategy 1, Strategy 2 and Strategy 3,

Fig. 7 Time series of the population with control (blue line), without control (red line) and control variables; a Susceptible population b Infected
population c Recovered population d Controlu1 e Controlu2. (Color figure online)
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Table 4 Values of efficiency indexes

Strategy Applied controls Ac E.I.

Strategy 1 u1 �= 0, u2 �= 0 146.6684 0.7037

Strategy 2 u1 �= 0, u2 = 0 295.0079 0.4040

Strategy 3 u1 = 0, u2 �= 0 168.7416 0.6591

respectively. Calculating efficiency index, we compare the
applied strategies. The strategy with higher index is the best

strategy [59]. Efficiency index (E. I.) is

(
1 − Ac

A0

)
× 100

where A0 and Ac denote cumulative density of infected pop-
ulation without and with controls, respectively. We calculate

value of A0 and Ac using Simpson’s
1

3
rule. The value of A0

is determined by A0 = ∫ 20
0 y(t)dt . We get A0 = 495.0097

and values of Ac and E .I . are given in Table 4.
From our analysis, Strategy 1 is the best strategy among

three strategies that if we give both vaccine and treatment
to population then disease will easily die out. But between
vaccination and treatment, treatment is the more effective
strategy, i.e., biologically if we use treatment to infected pop-
ulation, then density of infectives is more reduced.

10 Conclusion

In this paper, we have considered a deterministic epidemic
model with constant birth rate and a non-monotone inci-
dence rate affected by inhibitory factors, crowding effects,
etc. Saturated type of treatment rate is taken into consider-
ation for limited hospital resources. To discuss the complex
dynamical behavior of the model system, we compute basis
reproduction number R0, which has crucial role for eradi-
cating the disease infection. We have established that when
basic reproduction number is less than unity, then the dis-
ease will eradicate from the system for any initial population
size, i.e., disease-free equilibrium is globally asymptotically
stable under certain parametric restriction. Further we have
seen that for R0 > 1, endemic equilibrium point is globally
asymptotically stable under some restrictions, i.e., disease
will persist in the system.We use center manifold theorem to
study the dynamical behavior of the disease-free equilibrium
point at R0 = 1. In our study, we observe that disease-free
equilibrium point may be a saddle-node of co-dimension 1
or may be a semi-hyperbolic attracting node of co-dimension
2.

For discussing complex dynamical phenomenon, we
examine the transcritical bifurcation, backward bifurcation,

saddle-node bifurcation, Hopf bifurcation and Bogdanov–
Takens bifurcation of co-dimension 2. When backward
bifurcation occurs, then the system shows bistability, one
is stable disease-free equilibrium point and other is the sta-
ble endemic equilibrium point. By Hopf bifurcation, a stable
limit cycle arises around the endemic equilibrium point.
There exists a basin of attractor inside which all solution
curves trend to that limit cycle and outside which all solu-
tion curves trend to disease-free equilibrium point which
indicates disease oscillates inside the basin of attractor and
outside of the basin of attractor disease eradicates from the
community. Depending on the parameter value, the system
experiences the homoclinic bifurcation, i.e., the stable limit
cycle connecting the saddle point disappear through homo-
clinic bifurcation. Finally, numerical simulations are used to
justify the theoretical findings. The numerical simulations
show that there is a threshold range of the initial density
of the infected population outside of which the disease will
eradicate from the population.

Finally sensitivity analysis is performed to find out the
influential model parameters which have most impact on
the basic reproduction number R0. In order to identify most
significant model parameters, we estimate variation of the
basic reproduction number R0 with respect to differentmodel
parameters. To control or eradicate the influence of the
emerging disease, we need to take proper preventive mea-
sures to control the most sensitive model parameters. In our
study, we observe that disease can be controlled or eradicated
in some regions. Also there is some regionwhere disease per-
sists in the population. Optimal control is studied to reduce
the density of infected population and minimize control cost.
Using efficiency analysis, we identifymost effective strategy.
In our study, the most effective strategy is treatment strategy.
Therefore, if we use treatment to infected population, then
density of infected population is more reduced. In our view,
study of controls may give some light in the layout.

Acknowledgements We would like to thank all of the reviewers for
their valuable comments and suggestions to improve the quality of the
manuscript significantly. Pritam Saha would want to thank University
Grants Commission (UGC) for financial assistance (UGC Ref. No.:
1222/(CSIR-UGC NET JUNE 2019)) toward this research work.

Author contributions Authors have contributed equally in simulation,
preparation of the article.

Funding UGC, Govt. of India fellowship through UGCJRF scheme.

Availability of data andmaterial No specific data or unique material is
used for this work.

code availability Not applicable.

123



P. Saha, U. Ghosh

Declarations

Conflict of interest The authors of this paper declare no conflict of
interest.

Appendices

Appendix-I: Expressions of aij

a11 = −
(
A0

x∗

)
, a12 = −

βx∗
(
1 − αy∗2

)
(
1 + αy∗2)2 ,

a13 = −
β
(
1 − αy∗2

)
(
1 + αy∗2)2 , a14 =

αβx∗y∗
(
3 − αy∗2

)
(
1 + αy∗2)3 ,

a15 =
αβ y∗

(
3 − αy∗2

)
(
1 + αy∗2)3 , a16 =

αβx∗
(
1 − 7αy∗2

)
(
1 + αy∗2)3 ,

a21 = β y∗

1 + αy∗2 , a22 = abu22y
∗

(1 + bu2y∗ )2
− 2αβx∗y∗2

1 + αy∗2 ,

a23 =
β
(
1 − αy∗2

)
(
1 + αy∗2 )2 , a25 = −

αβ y∗
(
3 − αy∗2

)
(
1 + αy∗2 )3 ,

a24 = abu22
(1 + bu2y∗ )3

−
αβx∗y∗

(
3 − αy∗2

)
(
1 + αy∗2 )3 ,

a26 = − ab2u32
(1 + bu2y∗ )4

−
αβx∗

(
1 − 7αy∗2

)
(
1 + αy∗2 )3 .

Appendix-II: Expressions of bi

b1 = − β y∗

1 + (α0 + λ2) (y∗)2
− (d + u1) ,

b2 =
β x∗

{
1 − (α0 + λ2) y∗2

}
{
1 + (α0 + λ2) y∗2}2 ,

b3 = − β

1 + (α0 + λ2) y∗2

+
2 (α0 + λ2) β y∗2

{
1 + (α0 + λ2) y∗2

}
{
1 + (α0 + λ2) y∗2}3 ,

b4 = (α0 + λ2) βx∗y∗{
1 + (α0 + λ2) y∗2}2
+
2 (α0 + λ2) βx∗y∗

{
1 − (α0 + λ2) y∗2

}
{
1 + (α0 + λ2) y∗2}3 ,

b5 = x∗y∗

1 + (α0 + λ2) y∗2 ,

b6 =
β x∗

{
1 − (α0 + λ2) y∗2

}
{
1 + (α0 + λ2) y∗2}2 − (d + μ + δ)

− abu22y
∗

(1 + bu2y∗)2
,

b7 = − (α0 + λ2) β x∗y∗{
1 + (α0 + λ2) y∗2}2

−
2 (α0 + λ2) β x∗y∗

{
1 − (α0 + λ2) y∗2

}
{
1 + (α0 + λ2) y∗2}3

+ abu22
(1 + bu2y∗)3

.

Appendix-III: Expressions of di

d0 =
(

P − b1
b5

Q

)
b5, d1 = (b2b5 − b1b6 − Pb3 − Qb3),

d2 =
(
b1 + b6 + b3

b5
Q

)
, d3 = (b4b5 − b3b6 − b1b7 − b2b3),

d4 = ( b3 + 2 b7) +
(

Q b23 + b3 b5 b6
b25

)
,

d5 =
(

− b3
b5

)
, P = (A0 + λ1) − βx∗y∗

1 + (α0 + λ2) y∗2 −
(d + u1) x

∗,

Q = βx∗y∗

1 + (α0 + λ2) y∗2 − (d + μ + δ)y∗ − au2y∗

1 + bu2y∗ .
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