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Abstract: The one-pot acid-catalysed conversion of mono/di/polysaccharides (inulin, 
xylan, cellobiose, sucrose, glucose, fructose, xylose) into 2-furfuraldehyde (FUR) or  
5-hydroxymethylfurfural (HMF) in the presence of aluminium-containing mesoporous 
TUD-1 (denoted as Al-TUD-1, Si/Al = 21), at 170 ºC was investigated. Xylose gave 60% 
FUR yield after 6 h reaction; hexose-based mono/disaccharides gave less than 20% HMF 
yield; polysaccharides gave less than 20 wt % FUR or HMF yields after 6 h. For four 
consecutive 6 h batches of the xylose reaction in the presence of Al-TUD-1, the FUR 
yields achieved were similar, without significant changes in Si/Al ratio. 

Keywords: solid acid; mesoporous materials; biomass valorisation; 2-furfuraldehyde; 5-
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1. Introduction 

The conversion of renewable biomass resources into non-petroleum derived fuels and chemicals is 
becoming increasingly attractive as a way to avoid intensification of global warming and diversify 
energy sources [1–4]. Several low-cost kinds of plant biomass may be utilised, such as agricultural and 
forest waste and surpluses, plants grown on arid land, and aquatic plants. The major components of 
plant-derived biomass are carbohydrates, which may be converted into a number of valuable platform 
compounds, such as 2-furfuraldehyde (FUR) and 5-hydroxymethylfurfural (HMF). FUR and HMF 
may be produced via acid-catalysed hydrolysis of di/oligo/polysaccharides into the respective 
monosaccharides, followed by cyclodehydration of the latter. FUR is produced on an industrial scale 
(commonly using H2SO4 as the catalyst) for a plethora of applications [5,6]. To the best of our 
knowledge, HMF has not reached industrial scale production.  

Efforts have been made over the past few years to develop stable, recyclable, solid Brønsted and/or 
Lewis acids based on inorganic oxides for the conversion of saccharides into FUR and HMF [7–15]. 
Of the studied catalysts, microporous zeolites or zeotype materials are quite promising [7–11]. 
However, the transformation of relatively bulky saccharides may be hindered in a microporous 
structure, and hence the use of mesoporous aluminosilicates may be preferable [16]. In 1992 Kresge  
et al. reported the synthesis of ordered mesoporous aluminosilicates using surfactants as templates 
[17]. The so-called M41S materials possess high specific surface areas and pore volumes, and uniform 
but controllable pore sizes in the range of 2–10 nm, which makes them interesting candidates as 
catalysts or catalyst supports. Many other types of mesoporous materials have since been described, 
most of which are prepared using surfactants or polymers as structure-directing agents. Economic 
concerns have motivated the search for low-cost, non-surfactant templating routes to mesoporous 
materials. An important discovery was the straightforward synthesis of the three-dimensional sponge-
like mesoporous (siliceous) oxide TUD-1, using either triethanolamine or tetraethyleneglycol as 
organic templates [18]. The purely siliceous TUD-1 may be furnished with Brønsted and Lewis acidity 
by the incorporation of metals such as Al into the framework via a one-pot procedure based on the sol-
gel technique [19–24]. The high specific surface area, pore volume and width of TUD-1 and related 
materials, coupled with the 3-D channel system, may facilitate diffusion and promote the access of 
bulky reagents to active sites. 

In the present work, aluminium-containing mesoporous TUD-1 (denoted as Al-TUD-1) has been 
investigated for the first time as a solid acid catalyst in the acid-catalysed conversion of saccharides 
into FUR and HMF, at 170 ºC. The substrates used were xylose, fructose and glucose as typical 
monosaccharides, sucrose and cellobiose as examples of disaccharides, and xylan (a polymer 
composed mainly of xylose) and inulin (a polymer of fructose) as polysaccharides. 

2. Results and Discussion 

2.1. Synthesis and characterisation of the catalyst 

Al-TUD-1 was prepared as described previously using aluminium(III) isopropoxide and 
tetraethylorthosilicate as the Al and Si sources, respectively, and triethanolamine as the template [20]. 
After calcination, elemental analysis indicated a Si/Al ratio of 21, which is close to the ratio of 25 used 
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in the synthesis gel. The powder X-ray diffraction (XRD) pattern of Al-TUD-1 shows only one broad 
peak at low angle (ca. 1.4º 2θ) and a very broad peak centred around 24º 2θ (Figure 1), indicating that 
the material is amorphous, but has the characteristics of a mesostructured material [19,21,24,25]. No 
evidence of crystalline alumina or other phases can be detected in the pattern. 

Figure 1. Powder XRD pattern of Al-TUD-1. 

 
 
Al-TUD-1 exhibits a type IV N2 adsorption isotherm with a H2 hysteresis loop (Figure 2), which is 

consistent with the presence of a disordered mesoporous material with an interconnected (worm-like) 
pore network [22,26–28].  

Figure 2. N2 adsorption-desorption isotherms at -196 ºC of Al-TUD-1. 
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The capillary condensation in the mesopores occurs in the relative pressure range of about 0.5 to 
0.7, above which the adsorption branch levels off and no more adsorption takes place in the higher 
relative pressure region (external surface area is negligible). Similar results were reported previously 
for purely siliceous and metal-incorporated TUD-1 samples [19,21,22,29].  

The isotherm for Al-TUD-1 gave a BET specific surface area of 757 m2 g–1, and average pore 
diameters of 4.3 nm (calculated from the adsorption branch, using the BJH method) and 3.9 nm 
(calculated from the desorption branch). SEM analysis of Al-TUD-1 showed particles with an uneven 
shape and size (Figure 3). 

Figure 3. Representative SEM image of Al-TUD-1. 

 
 
The nature of Al in Al-TUD-1 was investigated by using 27Al-NMR spectroscopy (Figure 4). The 

spectrum exhibits a strong resonance at δ = 53 ppm, which can be assigned to tetrahedrally coordinated 
(structural) aluminium species. A high-field signal at δ = 0 ppm is attributed to hexacoordinate Al 
centres. The spectrum is very similar to that described previously for Al-TUD-1 with Si/Al = 30 
prepared using triethanolamine as the template [30]. 

Figure 4. 27Al MAS NMR spectrum of Al-TUD-1. 
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The Brønsted (B) and Lewis (L) acid properties of Al-TUD-1 were quantified by adsorption of 
pyridine followed by FTIR. Pyridine was chosen as the basic probe since its critical dimension of ca. 
0.65 nm [31] is comparable with the size of the xylose molecule. The sample showed both L and B 
sites interacting with pyridine after outgassing at 150 ºC: [B] = 59 μmol g–1, [L] = 138 μmol g–1. 
Although the L sites are probably due to defective framework and/or extra-framework Al species, we 
cannot exclude the possibility that L sites may also arise from tetrahedral aluminium. Indeed, in a 
study of the adsorption of pyridine on mesoporous aluminosilicate SBA-15 molecular sieves, Luan and 
Fournier reported that the tetrahedral aluminium centres contributed only to Lewis acidity [32]. 
Normally, in crystalline zeolite materials, tetrahedral aluminium is expected to form bridging hydroxyl 
groups (Si–OH–Al), contributing to Brønsted acidity. Luan and Fournier reasoned that tetrahedral 
aluminium in mesoporous aluminosilicates with amorphous pore walls could contribute to Lewis 
acidity due to crystallographic disorder at the atomic level. For Al-TUD-1, at 350 ºC pyridine desorbed 
more easily from the B sites than from the L sites. Thus, the ratio moderate + strong to total Brønsted 
sites ([B]350/[B]150) was 0.02, indicating that most of the sites are of a rather weak nature, while the 
Lewis ratio ([L]350/[L]150) was 0.61. Nevertheless, it is worth mentioning that the number of Brønsted 
sites in Al-TUD-1 may be underestimated since pyridine is a weak base (compared with, for example, 
ammonia) and may not be able to deprotonate the weaker sites present in the sample (nevertheless, 
ammonia may lead to an overestimate of the effective number of acid sites because of its smaller 
molecular dimensions in comparison to the saccharide molecules) [33]. 

2.2. Catalysis 

2.2.1. General considerations 

The liquid phase conversion of saccharides under nitrogen in the presence of Al-TUD-1 was 
investigated at 170 ºC using a water-toluene biphasic solvent system. Unless otherwise specified, 
product yields are reported in mol %. FUR and HMF selectivities are improved by using an organic 
extracting solvent since the reaction of the saccharides takes place in the aqueous phase, and the 
product FUR or HMF is partially transferred into the organic phase [34,35]. The acid hydrolysis of 
di/polysaccharides gives monosaccharides; dehydration of pentoses and hexoses gives FUR and HMF, 
respectively, via the elimination of three water molecules per molecule of monosaccharide (Figure 5) 
[5,36,37].  

Catalyst stability tests were carried out for Al-TUD-1 by performing four consecutive 6 h batches of 
the xylose reaction. After each run, the catalyst was separated, washed with methanol, and activated at 
350 ºC for 3 h with a heating rate of 1 ºC min–1. Conversions of xylose (87–96%) and FUR yields  
(56–60%) in recycling runs were quite similar (Figure 6). The Si/Al mole ratio of the recovered solid 
was 22, which is comparable to that of the fresh catalyst (experimental error of the ICP-OES analyses 
for Al and Si is 6.0 and 7.2%, respectively), suggesting that Al-TUD-1 is fairly stable under the 
reaction conditions used. 
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Figure 5. Simplified representation of the acid hydrolysis and dehydration of saccharides 
into FUR and HMF. 

 

Figure 6. Reaction of xylose in the presence of Al-TUD-1 at 170 ºC (four consecutive 6 h batches). 

 

2.2.2. Pentose-based carbohydrate feedstock 

The reaction of xylose in the presence of Al-TUD-1 gave 56%/60% FUR yield at 4 h/6 h (Figure 
7A). These results compare favourably with those reported for a delaminated zeolite (Si/Al = 29) 
obtained by swelling and ultrasonication of a layered precursor of Nu-6(2) (46% FUR yield [38]),  
H-mordenite zeolite (Si/Al ~ 6, 34% at 4 h [38]), and microporous silicoaluminophosphates (FUR 
yields of 41–48% for SAPO-11 at 6 h [11]), used as solid acid catalysts in the same reaction, under 
similar conditions. 
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Figure 7. Reaction of xylose (A: (●) conversion; (×) FUR yield), and reaction of xylan (B: 
(●) xylose yield; (×) FUR yield), in the presence of Al-TUD-1 at 170 ºC. 

 
 
The conversion of xylose is 91% at 6 h, indicating that by-products amount to 31% yield. During 

the reaction of xylose the initially colourless water/toluene phases turned yellow-orange and the white 
powdered catalyst turned brown, suggesting the presence of organic by-products. However, significant 
amounts of organic by-products were not detected by chromatographic techniques (HPLC of the 
aqueous phase and GC-MS of the toluene phase). Possibly, soluble oligo/polymeric products are 
formed. According to the literature, by-products may be formed via fragmentation and/or condensation 
reactions involving intermediates and FUR [5,39]. The one-pot conversion (hydrolysis and 
dehydration) of xylan in the presence of Al-TUD-1 gave xylose (hydrolysis product) and FUR in 
increasing amounts reaching 27 and 18 wt % yield at 6 h (Figure 7B); the theoretical FUR yield is ca. 
73 wt %. 

2.2.3. Hexose-based carbohydrate feedstock 

Figure 8 shows the catalytic results obtained for the reactions of fructose and glucose in the 
presence of Al-TUD-1, at 170 ºC. For both hexoses, the isomers glucose, fructose and mannose were 
simultaneously present, with the mannose yield always being less than 3%. With fructose as the 
substrate, glucose was formed in less than 3% yield, and with glucose as the substrate, fructose yield 
reached a maximum of ca. 16% at 61% conversion. These results suggest that, under the applied 
reaction conditions, the isomerisation of glucose to fructose is more important than the reverse 
reaction, in agreement with the literature [34,40]. Based on the kinetic profiles, the reactivity of 
fructose is higher than that of glucose, and fructose gives somewhat higher HMF yields, at least until 
ca. 75% conversion. In the case of glucose, HMF may be formed from fructose (the isomerisation 
product), and this pathway may be in competition with major glucose degradation pathways [40–42]. 
Similar to that observed for xylose, for the hexoses, colour build-up was observed for the liquid phases 
and the catalyst, although no significant amounts of by-products were detected. FUR was always 
detected in minor amounts (< 2% yield at 6 h reaction of hexose), and may be formed via consecutive 
tautomerisation and retro-aldol reactions [40,42]. Levulinic acid (a possible product of the hydrolysis 
of HMF) was never detected, possibly because the acid sites of Al-TUD-1 are not strong enough: more 
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acidic conditions are required for converting HMF into levulinic acid than for HMF formation [43]. 
According to the literature, HMF may be involved in the formation of coke deposits on the 
microporous surface of aluminosilicates [44]. Taking into consideration that polymerization reactions 
may be enhanced under relatively weak acidic conditions [43], and that Al-TUD-1 possesses mainly 
Lewis acid sites and weak Brønsted acidity, it is possible that by-products are essentially  
soluble polymers. 

Figure 8. Reaction of glucose (A: (▲) conversion; (●) fructose yield), and reaction of 
fructose (B: (●) conversion; (▲) glucose yield), in the presence of Al-TUD-1 at 170 ºC. 
The HMF (), (−) mannose and FUR (×) yields are also shown. 

 
 
Somewhat in parallel with those observed for Al-TUD-1, the published results for microporous 

zeolites used as solid acids in the conversion of hexoses into HMF seem better for fructose than for 
glucose as substrate. The reaction of glucose in the presence of zeolite H-Y (Si/Al = 6.5) gave less than 
10% HMF yield at ca. 75% conversion, at 160 ºC [44]. In contrast, the reaction of fructose in the 
presence of H-beta, H-ZSM-5, H-mordenite and H-faujasite zeolites with Si/Al ratios in the range of 
10–100 was quite selective towards HMF, with one of the best results being 91% HMF selectivity at 
76% conversion [8,44]. The Si/Al ratio influenced the rate of the reaction of fructose into HMF, most 
likely due to changes in the acid properties and/or the surface polarity of the catalyst.  

The one-pot conversion of the disaccharides sucrose [glucose and fructose linked by a β(1→2) 
glycosidic bond] and cellobiose [two glucose units linked by a β(1→4) glycosidic bond] in the 
presence of Al-TUD-1 gave 100% conversion at 1 h reaction and 98% conversion at 6 h, respectively, 
indicating that sucrose is more reactive than cellobiose (Figure 9). A similar relation of substrate 
reactivity may be established for zeolite H-Y (Si/Al = 15) used as acid catalyst in the same reactions 
(monosaccharide yield >88%) [45,46]; the Si/Al ratio may have an important effect on the hydrolysis 
reaction rate [47]. The reaction of sucrose in the presence of Al-TUD-1 gave glucose and fructose as 
the main products at 30 min reaction (formed in ca. 40% yield each), indicating that relatively fast 
hydrolysis takes place (Figure 9A). After 30 min reaction, the monosaccharide yields decrease, 
especially for fructose (consistent with the fructose reactivity being higher than that for glucose, 
referred to above), and a maximum HMF yield of 17% was reached. In the case of cellobiose, glucose 
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is the main product at 6 h reaction (50% yield), fructose yield is 10%, and HMF yield is 12% (Figure 
9B). For both disaccharides minor amounts of mannose and FUR were formed during the 6 h reaction 
(as observed with fructose and glucose as feedstocks). The undesirable reaction pathways may be 
similar to those occurring for fructose and glucose (give a maximum HMF yield of 20% and 17%, 
respectively).  

Figure 9. Reaction of sucrose (A) and of cellobiose (B), in the presence of Al-TUD-1 at 
170 ºC: (*) disaccharide conversion; (●) fructose yield, (▲) glucose yield; () HMF yield; 
(−) mannose yield; (×) FUR yield. 

 
 
The one-pot conversion of inulin (a fructan, used in 10 wt %) in the presence of Al-TUD-1 gave 

mainly fructose at 30 min reaction (67 wt % yield), Figure 10.  

Figure 10. Reaction of inulin in the presence of Al-TUD-1 at 170 ºC: (●) fructose yield; 
(▲) glucose yield; (−) mannose yield; () HMF yield. 

 
 

A fast drop in fructose yield with time was accompanied by the formation of HMF, reaching  
20 wt % yield at 6 h (the theoretical yield is approximately 78 wt %). Glucose and mannose were 
minor products formed via reversible isomerisation (< 5 wt % yield). The selective hydrolysis of inulin 
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(avoiding HMF formation) has been successfully carried out using H-Y zeolite at lower reaction 
temperatures (ca. 92% fructose yield, at 90 ºC) [46]. 

3. Experimental  

3.1. General 

All reagents, substrates, solvents and standards were obtained from commercial sources and used as 
received: aluminum(III) isopropoxide (≥99%), D-(+)-cellobiose (≥99%), inulin, D-(+)-sucrose (≥99%) 
and phenol (≥99.5%) from Fluka; isopropanol (99%), ethanol (99%), triethanolamine (99.9%), 
tetraethylammonium hydroxide (99.9%), D-(-)-fructose (>99%) and D-(-)-ribose (98%) from Aldrich; 
tetraethylorthosilicate (99.9%) and 4-O-methyl-D-glucurono-D-xylan from Sigma; D-(+)-glucose 
(>99%), D-xylose (99%) and toluene (≥99.9%) from Sigma-Aldrich; D-(-)-mannitol (>99%) from 
Riedel-de Haën. 

ICP-AES measurements for Si and Al were carried out at the Central Laboratory for Analysis, 
University of Aveiro (by E. Soares and co-workers). The 27Al magic-angle spinning (MAS) NMR 
spectrum was measured at 104.26 MHz with a Bruker Avance 400 (9.4 T) spectrometer, using a 
contact time of 0.6 μs, a recycle delay of 0.8 s, and a spinning rate of 15 kHz. Chemical shifts are 
quoted in ppm from Al(H2O)6

3+. Powder X-ray diffraction (XRD) data were collected at room 
temperature on a Philips X’Pert MPD diffractometer, equipped with an X’Celerator detector, a 
graphite monochromator (Cu-Kα X-radiation, λ = 1.54060 Å) and a flat-plate sample holder, in a 
Bragg-Brentano para-focusing optics configuration (40 kV, 50 mA). Samples were step-scanned in 
0.04º 2θ steps with a counting time of 6 s per step. SEM was carried out on a Hitachi SU-70 UHR 
Schottky instrument. The BET specific surface area was estimated from N2 adsorption isotherm 
measured at -196 ºC using a Micromeritics ASAP 2010 instrument: the sample was outgassed at  
350 ºC under vacuum. The acid properties were measured using a Nexus-Thermo Nicolet FTIR 
instrument (64 scans and resolution of 4 cm–1) equipped with a specially designed cell, using self-
supported discs (5–10 mg cm–2) and pyridine as the basic probe molecule. After in situ outgassing at 
450 ºC for 3 h (10–6 mbar), pyridine (99.99%) was contacted with the sample at 150 ºC for 10 min and 
then evacuated at 150 and 350 ºC (30 min) under vacuum (10–6 mbar). The IR bands at ca. 1540 and 
1455 cm–1 are related to pyridine adsorbed on Brønsted (B) and Lewis (L) acid sites, respectively [33]. 
Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were carried out 
under air using Shimadzu TGA-50 and DSC-50 systems. 

3.2. Synthesis of Al-TUD-1 

Al-TUD-1 was prepared as described previously [20]. Briefly, tetraethylorthosilicate (17.3 g,  
83.0 mmol) was added to aluminium(III) isopropoxide (0.68 g, 3.33 mmol) dissolved in a mixture of 
isopropanol (6.5 mL) and ethanol (6.5 mL). After stirring for a few minutes, a mixture of 
triethanolamine (12.51 g, 83.9 mmol) and water (9.4 g) was added, followed by addition of 
tetraethylammonium hydroxide (35 wt % in water, 11.12 mL, 27.0 mmol) under vigorous stirring. The 
clear gel obtained was stirred at room temperature for 24 h and dried at 98 ºC for 24 h, followed by 
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hydrothermal treatment in a Teflon-lined stainless steel autoclave at 180 ºC for 8 h. Finally, the solid 
was calcined at 600 ºC in static air for 10 h with a temperature ramp of 1 ºC min–1. 

3.3. Catalytic experiments 

Batch catalytic experiments were performed under nitrogen in a tubular glass micro-reactor 
equipped with a valve for gas purging. In a typical procedure, mono/disaccharide (30 mg) or 
polysaccharide (10 mg), powdered catalyst (20 mg), H2O (0.3 mL) and toluene (0.7 mL) were poured 
into the reactor. The reaction mixtures were stirred magnetically at 700 rpm and heated with a 
thermostatically controlled oil bath. Zero time was taken to be the instant the micro-reactor was 
immersed in the oil bath: individual experiments were performed for a given reaction time. The 
products present in the aqueous phase were analysed using a Knauer K-1001 HPLC pump, coupled to 
a Knauer 2300 differential refractive index detector (for sugars) and a Knauer 2600 UV detector  
(280 nm, for FUR and HMF). For pentose-based feedstocks a PL Hi-Plex H 300 mm × 7.7 mm (i.d.) 
ion exchange column (Polymer Laboratories Ltd., UK) was used: the mobile phase was 0.01 M H2SO4; 
flow rate 0.6 mL min–1; column temperature 65 ºC. In the case of hexose-based feedstocks, a PL Hi-
Plex Ca 300 mm × 7.7 mm (i.d.) ion exchange column (Polymer Laboratories Ltd., UK) was used: the 
mobile phase was freshly prepared distilled and deionized water; flow rate 0.5 mL min–1; column 
temperature 80 ºC. The products present in the organic phase were quantified using a Gilson 306 
HPLC pump and a Spherisorb ODS S10 C18 column, coupled to a Gilson 118 UV-vis detector  
(280 nm). The mobile phase consisted of 30% (v/v) methanol in an aqueous solution with 10% 
methanol (flow rate 0.7 mL min–1). Authentic samples of reagents and products were used as standards 
for measuring calibration curves. Conversion (%) was calculated as 100×(moles of substrate 
consumed)/(initial moles of substrate). For monosaccharides, FUR or HMF yields (mol %) were 
calculated as 100×(moles FUR or HMF formed)/(initial moles of monosaccharide). For disaccharides, 
HMF or monosaccharide yields (mol %) were calculated as 100×(moles of product formed)/(2×(initial 
moles of disaccharide)). In the case of the polysaccharides, the FUR or HMF yields (wt %) were 
calculated as 100×(mass of product formed)/(initial mass of polysaccharide). In order to check the 
data, the experiments were carried out in duplicate and the mean values were calculated. 

4. Conclusions 

The reaction of pentoses (xylose) and hexoses (glucose and fructose) in the presence of Al-TUD-1, 
at 170 ºC, gave FUR and HMF, respectively; the reactions of hexoses gave 17–20% HMF yields at 6 h, 
and the reaction of xylose gave 60% FUR yield. Possibly, the acid properties of Al-TUD-1 (mainly 
Lewis acid sites and weak Brønsted acidity) are more favourable for converting xylose into FUR than 
hexoses into HMF. The one-pot hydrolysis/dehydration of sucrose and cellobiose in the presence of 
Al-TUD-1 gave the monosaccharides via the hydrolysis of the glycosidic bonds, which are 
subsequently dehydrated into HMF, obtained in 17% and 12% yield from sucrose and cellobiose, 
respectively. In the case of the polysaccharides, xylan and inulin, FUR and HMF were formed in 18 
and 20 wt % yield at 6 h, respectively. Based on the colour build-up of the solvents (colourless-yellow-
orange) and of the catalyst (white-brown-black) during the course of the reactions, and the fact that no 
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significant amounts of by-products were detected, it is postulated that the formation of soluble 
polymers and coke deposits may be important competitive reactions, affecting FUR and HMF yields. 

Based on the catalytic results for four consecutive 6 h batches carried out for the reaction of xylose, 
Al-TUD-1 seems to be a fairly stable catalyst. FUR yields at 6 h were in the range 56-60%. The 
catalytic performance of Al-TUD-1 may be improved by fine-tuning the acid properties (varying the 
Si/Al ratio [49]) and optimising the reaction conditions. 

Acknowledgements 

This work was partly funded by the Portuguese Science Foundation (FCT), POCTI and FEDER 
(project POCTI/QUI/56112/2004 and PTDC/QUI/71198/2006). The authors thank C.P. Neto for 
helpful discussions and F. Domingues for access to HPLC equipment. S.L. and M.M.A. are grateful to 
the FCT for grants. 

References and Notes 

1. Román-Leshkov, Y.; Chheda, J.N.; Dumesic, J.A. Phase Modifiers Promote Efficient Production 
of Hydroxymethylfurfural from Fructose. Science 2006, 312, 1933–1937. 

2. Chheda, J.N.; Román-Leshkov, Y.; Dumesic, J.A. Production of 5-hydroxymethylfurfural and 
furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem. 2007, 9, 
342–350. 

3. Briens, C.; Piskorz, J.; Berruti, F. Biomass Valorization for Fuel and Chemicals Production - A 
Review. Int. J. Chem. Reactor Eng. 2008, 6, 1–49. 

4. Huber, G.W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: Chemistry, 
Catalysts, and Engineering. Chem. Rev. 2006, 106, 4044–4098. 

5. Zeitsch, K.J. The chemistry and technology of furfural and its many by-products. In Sugar Series, 
1st ed.; Elsevier: Amsterdam, The Netherlands, 2000; Volume 13. 

6. Mamman, A.S.; Lee, J.-M.; Kim, Y.-C.; Hwang, I.T.; Park, N.-J.; Hwang, Y.K.; Chang, J.-S.; 
Hwang, J.-S. Furfural: Hemicellulose/xylose-derived biochemical. Biofuels, Bioprod. Bioref. 
2008, 2, 438–454. 

7. Lourvanij, K.; Rorrer, G.L. Reactions of aqueous glucose solutions over solid-acid Y-zeolite 
catalyst at 110–160 ºC. Ind. Eng. Chem. Res. 1993, 32, 11–19. 

8. Moreau, C.; Durand, R.; Pourcheron, C.; Razigade, S. Preparation of 5-hydroxymethylfurfural 
from fructose and precursors over H-form zeolites. Ind. Crops Prod. 1994, 3, 85–90. 

9. Moreau, C. Zeolites and related materials for the food and non food transformation of 
carbohydrates. Agro-Food Ind. Hi-Tech. 2002, 13, 17–26. 

10. Dias, A.S.; Lima, S.; Brandão, P.; Pillinger, M.; Rocha, J.; Valente, A.A. Liquid-phase 
dehydration of D-xylose over microporous and mesoporous niobium silicates. Catal. Lett. 2006, 
108, 179–186. 

11. Lima, S.; Fernandes, A.; Antunes, M.M.; Pillinger, M.; Ribeiro, F.; Valente, A.A. Dehydration of 
xylose into furfural in the presence of crystalline microporous silicoaluminophosphates. Catal. 
Lett. 2010, 135, 41–47. 



Molecules 2010, 15                            
 

 

3875

12. Carlini, C.; Patrono, P.; Galletti, A.M.R.; Sbrana, G. Heterogeneous catalysts based on vanadyl 
phosphate for fructose dehydration to 5-hydroxymethyl-2-furaldehyde. Appl. Catal. A: General 
2004, 275, 111–118. 

13. Dias, A.S.; Lima, S.; Carriazo, D.; Rives, V.; Pillinger, M.; Valente, A.A. Exfoliated titanate, 
niobate and titanoniobate nanosheets as solid acid catalysts for the liquid-phase dehydration of D-
xylose into furfural. J. Catal. 2006, 244, 230–237. 

14. Rinaldi, R.; Schüth, F. Design of solid catalysts for the conversion of biomass. Energy Environ. 
Sci. 2009, 2, 610–626. 

15. Dias, A.S.; Lima, S.; Pillinger, M.; Valente, A.A. Furfural and Furfural-Based Industrial-
Chemicals. In Ideas in Chemistry and Molecular Sciences: Advances in Synthetic Chemistry; 
Pignataro, B., Ed.; Wiley-VCH: Weinheim, Germany, 2010; pp. 167–186. 

16. Netrabukkana, R.; Lourvanij, K.; Rorrer, G.L. Diffusion of glucose and glucitol in microporous 
and mesoporous silicate aluminosilicate catalysts. Ind. Eng. Chem. Res. 1996, 35, 458–464. 

17. Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous 
molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712. 

18. Telalović, S.; Ramanathan, A.; Mul, G.; Hanefeld, U. TUD-1: synthesis and application of a 
versatile catalyst, carrier, material. J. Mater. Chem. 2010, 20, 642–658, and references cited 
therein. 

19.  Shan, Z.; Jansen, J.C.; Zhou, W.; Maschmeyer, Th. Al-TUD-1, stable mesoporous aluminas with 
high surface areas. Appl. Catal. A: General 2003, 254, 339–343. 

20. Simons, C.; Hanefeld, U.; Arends, I.W.C.E.; Sheldon, R.A.; Maschmeyer, T. Noncovalent 
anchoring of asymmetric hydrogenation catalysts on a new mesoporous aluminosilicate: 
application and solvent effects. Chem. Eur. J. 2004, 10, 5829–5835. 

21. Anand, R.; Maheswari, R.; Hanefeld, U. Catalytic properties of the novel mesoporous 
aluminosilicate AlTUD-1. J. Catal. 2006, 242, 82–91. 

22. Zhang, Z.-X.; Bai, P.; Xu, B.; Yan, Z.F. Synthesis of mesoporous alumina TUD-1 with high 
thermostability. J. Porous Mater. 2006, 13, 245–250. 

23.  Telalović, S.; Ng, J.F.; Maheswari, R.; Ramanathan, A.; Chuah, G.K.; Hanefeld, U. Synergy 
between Brønsted acid sites and Lewis acid sites. Chem. Commun. 2008, 4631–4633. 

24.  Telalović, S.; Hanefeld, U. Noncovalent immobilization of chiral cyclopropanation catalysts on 
mesoporous TUD-1: Comparison of liquid-phase and gas-phase ion-exchange. Appl. Catal. A: 
Chem. 2010, 372, 217–223. 

25.  Jansen, J.C.; Shan, Z.; Marchese, L.; Zhou, W.; Puil, N.v.d.; Maschmeyer, Th. A new templating 
method for three-dimensional mesopore networks. Chem. Commun. 2001, 713–714. 

26.  Sing, K.S.W. Characterization of adsorbents. In Adsorption, Science and Technology; Rodrigues, 
A.E., LeVan, M.D., Tondeur, D., Eds.; Kluwer Academic Publishers: Dordrecht, The 
Netherlands, 1989; pp. 3–14. 

27.  Sangwichien, C.; Aranovich, G.L.; Donohue, M.D. Density functional theory predictions of 
adsorption isotherms with hysteresis loops. Colloids Surf., A 2002, 206, 313–320. 

28.  Blin, J.L.; Léonard, A.; Su, B.L. Well-ordered spherical mesoporous materials CMI-1 synthesized 
via an assembly of decaoxyethylene cetyl ether and TMOS. Chem. Mater. 2001, 13, 3542–3553. 



Molecules 2010, 15                            
 

 

3876

29. Shan, Z.; Jansen, J.C.; Marchese, L.; Maschmeyer, Th. Synthesis, characterization and catalytic 
testing of a 3-D mesoporous titanosilica, Ti–TUD-1. Microporous Mesoporous Mater. 2001, 48, 
181–187. 

30.  Zhou, J.; Hua, Z.; Shi, J.; He, Q.; Guo, L.; Ruan, M. Synthesis of a hierarchical micro/mesoporous 
structure by steam-assisted post-crystallization. Chem. Eur. J. 2009, 15, 12949–12954. 

31. Webster, C.E.; Drago, R.S.; Zerner, M.C. Molecular dimensions for adsorptives. J. Am. Chem. 
Soc. 1998, 120, 5509–5516. 

32. Luan, Z.; Fournier, J.A. In situ FTIR spectroscopic investigation of active sites and adsorbate 
interactions in mesoporous aluminosilicate SBA-15 molecular sieves. Microporous Mesoporous 
Mater. 2005, 79, 235–240. 

33. Gallo, J.M.R.; Bisio, C.; Gatti, G.; Marchese, L.; Pastore, H.O. Physicochemical characterization 
and surface acid properties of mesoporous [Al]-SBA-15 obtained by direct synthesis. Langmuir 
2010, 26, 5791–5800. 

34. Van-Bekkum, H.E.; Kieboom, A.P.G.; Van-Bekkum, H. The conversion of fructose and glucose 
in acid media. Formation of hydroxymethylfurfural. Starch/Stärke 1986, 95–101, and references 
therein. 

35. Moreau, C.; Durand, R.; Peyron, D.; Duhamet, J.; Rivalier, P. Selective preparation of furfural 
from xylose over microporous solid acid catalysts. Ind. Crops Prod. 1998, 7, 95–99. 

36. Lichenthaler, F.W. The key sugars of biomass: Availability, non-food uses and future 
development lines. In Biorefineries - Industrial Processes and Products: Status Quo and Future 
Directions; Kamm, B., Grober, P.R., Kamm, M., Eds.; Wiley-VCH: New York, NY, USA, 2006; 
Volume 2, pp. 3–59. 

37. Moreau, C.; Belgacem, M.N.; Gandini, A. Recent catalytic advances in the chemistry of 
substituted furans from carbohydrates and in the ensuing polymers. Top. Catal. 2004, 27,  
11–30.  

38.  Lima, S.; Pillinger, M.; Valente, A.A. Dehydration of D-xylose into furfural catalysed by solid 
acids derived from the layered zeolite Nu-6(1). Catal. Commun. 2008, 9, 2144–2148. 

39. Antal, M.J.; Leesomboon, T.; Mok, W.S.; Richards, G.N. Mechanism of formation of 2-
furaldehyde from D-xylose. Carbohydr. Res. 1991, 217, 71–85. 

40.  Asghari, F.S.; Yoshida, H. Acid-Catalyzed Production of 5-hydroxymethylfurfural from D-
fructose in subcritical water. Ind. Eng. Chem. Res. 2006, 45, 2163–2173. 

41.  Antal, M.J.; Mok, W.S.L. Kinetic studies of the reactions of ketoses and aldoses in water at high 
temperature. 1. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose 
and sucrose. Carbohydr. Res. 1990, 199, 91–109. 

42.  Aida, T.M.; Sato, Y.; Watanabe, M.; Tajima, K.; Nonaka, T.; Hattori, H.; Arai, K. Dehydration of 
D-glucose in high temperature water at pressures up to 80 MPa. J. Supercrit. Fluids 1997, 40, 
381–388. 

43.  Kuster, F.M.; Temmink, H.M.G. The influence of pH and weak acid anions on the dehydration of 
D-fructose. Carbohydr. Res. 1977, 54, 185–191. 

44.  Moreau, C.; Durand, R.; Razigade, S.; Duhamet, J.; Faugeras, P.;  Rivalier, P.; Ross, P.; Avignon, 
G. Dehydration of fructose to 5-hydroxymethylfurfural over H-Mordenites. Appl. Catal. A: 
General 1996, 145, 211–224. 



Molecules 2010, 15                            
 

 

3877

45.  Moreau, C.; Durand, R.; Duhamet, J.; Rivalier, P. Hydrolysis of fructose and glucose precursors 
in the presence of H-form zeolites. J. Carbohydr. Chem. 1997, 16, 709–714. 

46.  Moreau, C.; Durand, R.; Aliès F.; Cotillon, M.; Frutz, T.; Théoleyre, M.-A. Hydrolysis of sucrose 
in the presence of H-form zeolites. Ind. Crops Prod. 2000, 11, 237–242. 

47.  Buttersack, C.; Laketic, D. Hydrolysis of sucrose by dealuminated Y-zeolites. J. Mol. Catal. 1994, 
94, L283–L290. 

48. Campelo, J.M.; Lafont, F.; Marinas, J.M. Pt/SAPO-5 and Pt/SAPO-11 as Catalysts for the 
Hydroisomerization and Hydrocracking of n-Octane. J. Chem. Soc. Faraday Trans. 1995, 91, 
1551–1555. 

49. Anand, R.; Maheswari, R.; Hanefeld, U. Catalytic properties of the novel mesoporous 
aluminosilicate AlTUD-1. J. Catal. 2006, 242, 82–91. 

 
Sample Availability: Small quantities of the catalyst Al-TUD-1 are available from the authors on 
request. 

© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 

 


