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Abstract

Background: Over the past decade, antidepressant prescriptions have increased in European countries and the
United States, partly due to an increase in the number of new cases of mental illness. This paper demonstrates an
innovative approach to the classification of population level change in mental health status, using administrative
data for a large sample of the Scottish population. We aimed to identify groups of individuals with similar patterns
of change in pattern of prescribing, validate these groups by comparison with other indicators of mental illness,
and characterise the population most at risk of increasing mental ill health.

Methods: National Health Service (NHS) prescription data were linked to the Scottish Longitudinal Study (SLS), a
5.3% sample of the Scottish population (N = 151,418). Antidepressant prescription status over the previous 6
months was recorded for every month for which data were available (January 2009–December 2014), and sequence
dissimilarity was computed by optimal matching. Hierarchical clustering was used to create groups of participants
who had similar patterns of change, with multi-level logistic regression used to understand group membership.

Results: Five distinct prescription pattern groups were observed, indicating: no prescriptions (76%), occasional
prescriptions (10%), continuation of prior use of prescriptions (8%), a new course of prescriptions started (4%) or
ceased taking prescriptions (3%). Young, white, female participants, of low social grade, residing in socially deprived
neighbourhoods, living alone, being separated/divorced or out of the labour force, were more likely to be in the
group that started a new course of antidepressant prescriptions.

Conclusions: The use of sequence analysis for classifying individual antidepressant trajectories offers a novel
approach for capturing population-level changes in mental health risk. By classifying individuals into groups based
on their anti-depressant medication use we can better identify how over time, mental health is associated with
individual risk factors and contextual factors at the local level and the macro political and economic scale.

Keywords: Public health monitoring, Health service use, Administrative data, Prescriptions, Antidepressants, Mental
health, Sequence analysis
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Background
In recent years there has been a global increase in men-
tal health morbidity [1], an increase in treatment by
antidepressant medicines in high income counties [2]
and a growing awareness of gaps in service delivery and
resources in low and middle income countries [3]. For
example, between 2000 and 2015 antidepressant use
more than doubled in some countries including the
UK, Germany, Sweden, Australia [4]. A similar trend
has been observed in the United States, where between
1999 and 2010 there was a 63% increase in reported
antidepressant medication use [5]. In Scotland, over a
12 month period during 2012/2013, the number of anti-
depressant items recorded was 5.2 million, dispensed to
747,158 patients in Scotland, costing £29.5 million; a
52% increase from 10 years previously [6] . At this time,
9% of the Scottish population reported at least two
depressive symptoms [7] and 12% took an antidepres-
sant every day.
Population-level administrative data linked with

health services information on prescriptions for men-
tal illness offer potential to understand predictors of
mental illness over time Ecological studies have cap-
tured change in mental health using fixed effects
models of suicide rates, self-report and antidepres-
sant use [8–10]. Repeated cross-sectional analysis of
self-reported mental illness (e.g. General Health
Questionnaire) are also common, although measures
were analysed dichotomously [11, 12]. These
methods make it difficult to distinguish trajectories
of mental illness among groups in the population.
Using administrative data linked with individual
prescription use may be a way to address these
limitations. A descriptive analysis of national changes
in aggregated antidepressant use in Scotland has
been conducted for 1995–2007 [10]. Studies using
individual-level data on antidepressant use usually
concentrate on ‘any antidepressant use’ [13] or
‘chronic’ use [14], but not on occasional, increasing
or decreasing use, which are harder to define, but
may be more indicative of change in population
mental health.
We present a novel method for distinguishing

changes in prescription use at the individual level in a
very large population sample. In particular, we demon-
strate the use of sequence analysis of longitudinal data
to define groups of people who have shared a similar
pattern of change. By analysing how antidepressant
trajectories relate to other indicators of mental illness,
we examine the validity of trajectories as a measure of
mental illness. By modelling prescription trajectories in
relation to individual and neighbourhood risk factors
we also show how we can better understand the
inequalities in the experiences of mental illness.

Methods
Study sample
We used data drawn from the Scottish Longitudinal
Study (SLS), a population representative sample
(5.3%) of individuals living in Scotland, drawn from
the population census. The SLS sample are selected
as having one of 20 semi-random birth dates and
enter the study at one of the 1991, 2001 and 2011
censuses or through being a new birth or immigrant.
To add data on NHS service use and prescriptions
for mental health conditions for 2009–2014 to the
SLS sample, SLS staff used the SLS/CHI (Community
Health Index – population index used for healthcare
purposes) number. (This is based on the Community
Health Index; an administrative index used for health-
care purposes). NHS Service use data for linkage were
extracted in secure conditions by staff at the elec-
tronic Data Research & Innovation Service (eDRIS), at
the Information Services Division (ISD) of NHS
National Services Scotland. The SLS and NHS data
extracts were provided anonymized for our analyses,
which were undertaken in a secure and carefully
regulated setting. Results were assessed by SLS staff
prior to publication to protect the anonymity of the
individuals in the data set.

Antidepressant trend groups
Prescription data were originally derived from the
Prescription Information System by NHS Scotland
[15], which collects information on medication
prescribed and dispensed at the community level.
The criteria for mental illness related prescriptions
was defined by the British National Formulary (BNF)
numbers. This provided three classes of drugs:
antidepressants (BNF: 4.3), anxiolytics (BNF: 4.1.2)
and antipsychotics (BNF: 4.2), of which antidepres-
sants were the main focus for the current study.
Antidepressants have been shown to be prescribed
conservatively in Scotland, when there is good
reason to suggest the patient is experiencing depres-
sion [16]. Using information extracted from prior
research using text-mining of dose instructions [17],
we discounted Amitriptyline and Notriptyline at low
doses (≤ 30 mg per day; i.e. three doses of the 10 mg
tablet or one 25 mg tablet) from our antidepressant
dataset, since these medicines are often used at low
dose for non-mental illness related conditions (e.g.
neuropathic pain) [18]. In order to measure prescrip-
tion status over time, for each month, we calculated
whether the participant had been prescribed antide-
pressants in the preceding 6 months from 2009 to
2014. Six months was chosen because it corresponds
to recommended course of initial treatment to treat
clinical depression under NHS guidelines [19]. Using
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the TraMineR package in R [20], we computed
sequence dissimilarity using optimal matching (i.e.
minimising insertion, deletion, substitution costs)
and applied hierarchical clustering to produce five
groupings of individuals by ‘antidepressant prescrip-
tion trend’.

Relationship between antidepressant prescription trend
group and auxiliary indicators of mental illness
In order to understand how auxiliary indicators of
mental illness associated with the antidepressant trends
we used measures of mental illness before and during
the time prescriptions data was recorded. A further link-
age was made to information drawn from NHS General
Inpatient Hospital services administrative data, which
indicated use of other services for mental health condi-
tions (ICD10 classified; F10-F48) (SMR 04; Mental
Health Inpatient & Day Case). Data on inpatient use of
hospital services was used from 2001 to 2008, as a
marker of mental illness before the start of the SLS
member’s prescription record. A final indicator of par-
ticipant mental illness was derived from a question SLS
members were asked in the 2011 census: ‘Do you have
any of the following conditions which have lasted, or are
expected to last, at least 12 months?’, in which they
could answer as part of a multiple choice response:
‘Mental Health condition’. This provides a self-reported
mental health indicator at one time point, mid-way
through the period covered by the prescription data.
Data on anxiolytics and antipsychotics prescriptions
were also used, with participants defined as ‘being pre-
scribed’ if they had been prescribed anxiolytics and anti-
psychotics on at least one occasion from 2009 to 2014.
A series of multilevel logistic regression models were

developed to determine the association between each
antidepressant trajectory (i.e. dependent variables) and
each of the auxiliary measures of mental illness - hos-
pital admissions, self-reported mental illness, any anxio-
lytic prescriptions, and any antipsychotic prescriptions
(i.e. independent variables). Additional covariates in
these models included age, sex, Carstairs deprivation,
employment status, ethnicity, social grade, living alone,
and marital status, which are explained in full in the
next section. Local authority of residence in 2011 was
used as a random effect. These analyses were conducted
in R version 3.4.0, using the ‘lme4’ package. We report
odd ratios (OR) and 95% confidence intervals (CI).

Relationship between antidepressant prescription trend
group and individual and neighbourhood risk factors
We used a number of variables describing individual
attributes of sample members that were derived from
the SLS census data. These included demographic char-
acteristics such as sex, age (in 2011) and ethnicity,

indicated in the literature as relevant to risks for mental
illness needing prescription. Females have a 40% higher
risk of antidepressant use [21]. Mental health conditions
treated by antidepressants increase especially as people
reach their 20’s, with people in their middle years (50–
54 years old) most likely to be patients treated with anti-
depressants [22]. Antidepressant use tends to be lower
in black and minority ethnic groups [23]. Ethnicity was
classified as White/non-White/missing to reduce the risk
of disclosure from low numbers in some categories (e.g.
Black). We used two variables on living arrangements
likely to be relevant to risk for depression: marital status
in 2011 (“single”, “married”, “separated”, “divorced”,
“widowed”) and whether the participant was living alone
in 2011 (“Not living alone”, “Living Alone”). Antidepres-
sant use is more likely to occur in recently divorced indi-
viduals [24] and those of working age and living alone
were found to have an 81% higher risk of antidepressant
use over a 7 year period [25]. Socioeconomic indicators
included the employment status.. This was categorized
as: “In employment”; “Unemployed”; “Retired”; “Out of
labour force” (all others who were economically inactive,
including those who were students, looking after home
or family, long-term sick or disabled or other). We also
used an approximation of an individual’s social grade
was based on the socio-economic classification used by
the Market Research and Marketing Industries (I-high to
V-low). Local area deprivation was measured using a
census-based composite indicator of various aspects of
socio-economic deprivation (Carstairs decile). Carstairs
Decile was measured at the level of Census Output
Areas in 2011 (n = 46,351; mean population = 114),
which approximate to the person’s neighbourhood of
residence.. Carstairs index is comprised of the sum of
four z-scored components: male unemployment rate,
lack of car ownership, overcrowding and low social class
(IV and V). Neighbourhood income deprivation is
known to be significantly and independently associated
with antidepressant use in Scotland [26].
As in the first set of models (i.e. auxiliary indicators of

mental illness), membership of each antidepressant
prescription trajectory group was used as the dependent
variable. In these models we have omitted the auxiliary
indicators of mental illness.

Results
Antidepressant prescription trend groups
The percentage of the individuals who had been prescribed
antidepressants at some point from June 2009 (i.e. 09/06) to
December 2014 (i.e. 14/12) is presented in Fig. 1. This shows
that antidepressant prescription use has increased in
Scotland over the time period; between June 2009 and
December 2014 the percentage of the population which had
a prescription in the previous 6 months increased from 10.5
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to 13.4%, with a trough from March–November 2011. The
trough was an artefact from data loss as a consequence of
medicine shortages of one of the most widely prescribed
medicines (citalopram). We classified the individual
sequences into five antidepressant prescription groups; these
groups are visualised as the proportion of participants
prescribed antidepressants for each month in the time period
(Fig. 1). These groups are briefly described below.
Two groups are considered as not treated for

persistent depression: those who were not being
prescribed any antidepressants (N = 114,491; 76%),
and those with occasional low levels of prescriptions
for antidepressants (with a slight increase since March
2013) (N = 15,118; 10%). A third group may comprise
of individuals who were in recovery from depression,
with decreasing levels of prescriptions since April
2010 (N = 3789; 3%). A fourth group could be made
up of those treated for worsening levels of depression,
having increasing trends in prescriptions since April
2010 (N = 5964; 4%). The fifth group are defined as
probably being treated for long-term chronic depres-
sion, receiving prescribed continuously over the time

studied (N = 12,056; 8%). There has been a net
increase in the number of people being prescribed
antidepressants (N = 2175; + 1.4%).

Relationship between antidepressant prescription trend
group and auxiliary indicators of mental illness
Table 1 shows the results of the 20 multivariate
models with auxiliary indicators of mental illness. We
found a gradient in the strength of relationship
between self-reported mental illness in 2011 and anti-
depressant prescription group (Table 1). The relation-
ship was similar with past hospital admission for
mental health care with an exception; previous
hospital admission was not associated with increasing
prescription use (OR 1.13; 95%CI 0.86–1.41). Prescrip-
tion for anxiolytics was linearly associated with occa-
sional (OR 1.91; 95%CI 1.85–1.97), decreasing (OR
2.58; 95%CI 2.48–2.67), increasingly (OR 3.28; 95%CI
3.20–3.35) and mostly on antidepressant prescriptions
(OR 4.91; 95%CI 4.85–4.96). In comparison, antipsy-
chotics were more likely for those whose antidepres-
sant prescription pattern was defined as ‘occasional’

Fig. 1 Antidepressant prescription trend and groups
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(OR 1.21; 95%CI 1.11–1.31), equally more likely for
those with ‘increasing’ (OR 2.12; 95%CI 2.48–2.67) or
‘decreasing’ (OR 2.17; 95%CI 2.05–2.29) antidepres-
sant use, and much more likely for those mostly on
antidepressants (OR 6.16; 95%CI 6.08–6.24).

Relationship between antidepressant prescription trend
group and individual and neighbourhood risk factors
Table 2 shows the results of the five multivariate
multi-level logistic regression models with individual
and neighbourhood risk factors. Being female was
associated with higher likelihood of being in the
prescription groups, especially being prescribed most
of the time (OR 2.19; 95% CI 2.15–2.24) (Table 2).
Age in 2011 had a varied relationship with the pre-
scription groups, generally being between 26 and 45
years old was associated with increasing prescriptions.
‘White’ ethnicity was associated with a higher likeli-
hood of being prescribed; ‘non-white’ ethnicity was
inversely associated with increasing prescriptions in
particular (OR 0.47; 0.16–0.79). Being separated or
divorced was associated with having been prescribed
antidepressants; being separated had a stronger rela-
tionship with decreasing prescriptions (OR 1.72; 95%
CI 1.58–1.87), whilst receiving occasional prescrip-
tions was more strongly associated with being
divorced (OR 1.31; 95% CI 1.24–1.37). Living alone
was associated with higher likelihood of being pre-
scribed, especially being prescribed most of the time
(OR 1.28; 1.22–1.34), but not for those with occa-
sional prescriptions (OR 0.99; 0.94–1.11). Being out of
the labour force was the strongest predictor tested,
with a 4-fold higher likelihood of being prescribed
most of the time (OR 4.05; 4.01–4.11), being
unemployed was associated with higher likelihood of
decreasing prescriptions (OR 2.09; 1.93–2.24). Gener-
ally, lower social grade and higher Carstairs neigh-
bourhood deprivation were associated with a higher
likelihood of being prescribed, with the strongest rela-
tionships with being prescribed most of the time.

Discussion
Main findings
We have demonstrated an approach to monitoring
change in population mental health indicated by anti-
depressant prescriptions. We found the strength of the
association between demographic, living arrangement,
socioeconomic factors and antidepressant use varies by
the pattern of prescription use over a six-year period.
Compared with those receiving ‘no prescriptions’ other
groups showed similar relative risks in association with
variables such as sex, social grade and neighbourhood
deprivation. However, the relative risk of ‘increasing’
prescription use showed more distinct associations with
variables describing age, living alone, ethnicity, marital
status and employment status. Young, white, female par-
ticipants, of low social grade, living in deprived neigh-
bourhoods, living alone, being separated/divorced or out
of the labour force, were more likely to have started
using antidepressants during the study period. This may
be because of the social and economic climate at this
time, which included a range of austerity-related mea-
sures that had a disproportionate impact on these
women. Research has estimated that 85% of tax and
benefit changes have impacted on women’s incomes –
particularly on low-income women living in deprived
areas [27]. Furthermore, public sector service cuts (such
as to libraries, children’s centres, community centres,
advice services etc.) have adversely affected women –
because women are higher users of these local resources
and are more likely to be employed in the public and
voluntary sector than men are (ibid.). They are also
more likely to be engaged in low-wage work, and have
more sustained engagement with the benefit system.
This has led to discussions about how women have
experienced a ‘triple jeopardy’ of public sector service
reductions, job losses and welfare reform [28].

Strengths
The use of 6 years of monthly prescription data in a
large representative sample of the Scottish population is

Table 1 Association between indicators of mental illness and antidepressant prescription group

Antidepressant Prescription Group

Variable Reference No
prescriptions
OR (95% CI)

Occasional
OR (95% CI)

Decreasing
OR (95% CI)

Increasing
OR (95% CI)

Mostly
OR (95% CI)

Self-reported mental illness in 2011 No self-reported mental illness
in 2011

0.09 (0.02,
0.15)

0.84 (0.76,
0.92)

3.83 (3.74,
3.93)

1.84 (1.75,
1.93)

12.97 (12.92,
13.03)

Hospital Admission for mental health
care from 2001 to 2008

No Hospital Psychiatric
Admission 2001–2008

0.20 (0.03,
0.36)

0.72 (0.48,
0.96)

1.79 (1.52,
1.41)

1.13 (0.86,
1.41)

6.04 (5.89,
6.20)

Anxiolytic Prescription No anxiolytics prescription
(2009–2014)

0.13 (0.08,
0.19)

1.91 (1.85,
1.97)

2.58 (2.48,
2.67)

3.28 (3.20,
3.35)

4.91 (4.85,
4.96)

Antipsychotics Prescription No antipsychotic prescription
(2009–2014)

0.15 (0.07,
0.23)

1.21 (1.11,
1.31)

2.12 (1.98,
2.26)

2.17 (2.05,
2.29)

6.16 (6.08,
6.24)

Adjusted for age, sex, Carstairs deprivation, employment status, ethnicity, social grade, living alone, and marital status; source: SLS
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Table 2 Demographic, living arrangement and socioeconomic predictors of antidepressant prescription group membership

Antidepressant Prescription Group

Variable Reference No prescriptions Occasional Decreasing Increasing Mostly

OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Sex (Female) Male 0.49 1.53 1.76 1.80 2.19

(0.46, 0.52) (1.49, 1.57) (1.69, 1.83) (1.75, 1.86) (2.15, 2.24)

Age (36:45) 26:35 (in 2011) 0.92 0.82 1.08 0.99 1.86

(0.88, 0.97) (0.76, 0.88) (0.96, 1.19) (0.90, 1.07) (1.78, 1.95)

Age (46:55) 0.91 0.79 0.92 0.85 2.32

(0.86, 0.95) (0.73, 0.85) (0.80, 1.04) (0.76, 0.94) (2.24, 2.40)

Age (56:65) 1.2 0.61 0.87 0.61 1.97

(1.15, 1.25) (0.54, 0.68) (0.73, 1.00) (0.50, 0.72) (1.88, 2.06)

Age (66:75) 1.53 0.58 0.72 0.55 1.36

(1.47, 1.60) (0.49, 0.67) (0.54, 0.90) (0.40, 0.70) (1.25, 1.47)

Age (76:85) 1.47 0.75 0.74 0.62 1.04

(1.40, 1.55) (0.65, 0.86) (0.54, 0.94) (0.45, 0.79) (0.91, 1.16)

Age (86+) 1.57 0.80 0.94 0.66 0.67

(1.47, 1.68) (0.66, 0.95) (0.68, 1.19) (0.43, 0.89) (0.48, 0.86)

Ethnicity (Non-White) White 1.72 0.86 0.75 0.47 0.49

(1.60, 1.85) (0.70, 1.02) (0.42, 1.08) (0.16, 0.79) (0.26, 0.71)

Ethnicity (Missing) 0.93 1.12 1.07 1.07 0.97

(0.86, 1.00) (1.02, 1.22) (0.89, 1.26) (0.92, 1.22) (0.85, 1.08)

Marital Status (married) Single 1.01 1.01 0.90 1.02 0.96

(0.97, 1.05) (0.95, 1.06) (0.80, 1.01) (0.94, 1.10) (0.90, 1.03)

Marital Status (separated) 0.56 1.5 1.72 1.43 1.39

(0.50, 0.63) (1.42, 1.59) (1.58, 1.87) (1.30, 1.55) (1.30, 1.49)

Marital Status (divorced) 0.71 1.31 1.28 1.22 1.23

(0.67, 0.76) (1.24, 1.37) (1.16, 1.40) (1.12, 1.32) (1.15, 1.30)

Marital Status (widowed) 0.98 1.03 1.07 0.98 0.99

(0.92, 1.04) (0.95, 1.11) (0.92, 1.21) (0.85, 1.10) (0.90, 1.07)

Living Alone Not living alone 0.87 0.99 1.18 1.10 1.28

(0.83, 0.91) (0.94, 1.04) (1.09, 1.28) (1.02, 1.18) (1.22, 1.34)

Social Grade (II) Grade I 0.78 1.24 1.14 1.22 1.26

(Professional) (0.74, 0.82) (1.19, 1.30) (1.03, 1.25) (1.13, 1.30) (1.19, 1.33)

Social Grade (III) 0.75 1.33 1.16 1.17 1.32

(0.71, 0.79) (1.27, 1.39) (1.04, 1.28) (1.08, 1.26) (1.25, 1.40)

Social Grade (IV) 0.66 1.41 1.26 1.37 1.48

(0.61, 0.70) (1.35, 1.47) (1.15, 1.38) (1.27, 1.46) (1.41, 1.55)

Social Grade (V) 0.59 1.31 1.35 1.36 1.69

(0.52, 0.66) (1.22, 1.41) (1.19, 1.51) (1.23, 1.50) (1.59, 1.78)

Employment (Retired) Employed 0.65 1.1 1.51 1.23 1.96

(0.60, 0.70) (1.02, 1.17) (1.38, 1.64) (1.12, 1.35) (1.89, 2.03)

Employment (Out of labour force) 0.34 (0.31, 0.38) 1.25 (1.19, 1.30) 2.23 (2.14, 2.32) 1.75 (1.67, 1.82) 4.06 (4.01, 4.11)

Employment (Unemployed) 0.53 1.73 2.09 1.54 1.42

(0.46, 0.60) (1.64, 1.82) (1.93, 2.24) (1.40, 1.67) (1.30, 1.54)
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a major strength of the study. The declining stigma sur-
rounding treatment and increasing awareness of mental
health may strengthen this indicator of mental illness in
the future [29]. The auxiliary measures of mental illness
history (admissions) and subjective mental illness status
are also major strengths. This is one of the few large
studies that has linked multiple indicators of mental ill-
ness, which is key to understanding a complete picture
of population mental health [30]. Administrative data
does not suffer from loss to follow up to the same extent
as cohort studies that rely on non-routine methods of
follow up, although there is some attrition due to death
and migration. We have applied a novel technique to
classify six-month prescription status. Previously this
method has had limited application in health studies,
with patterns of health care access a recent exception
[31]. This technique has the advantage of uncovering the
complexity of being prescribed medication and the
pattern of relapse or remission that corresponds to
disease progression, which is obscured by more com-
monly applied dichotomous measures.

Weaknesses
The prescriptions data were not available before 2009,
so we were unable to compare with usage during this

time, which might have meant that some of the par-
ticipants classified as having ‘increasing’ prescription
use had been prescribed previously. Information on
daily defined dose was not available. There were
changes to the cost of treatment during the study
period, whereby prescription charges were abolished
in from the 1st of April 2011, which might have had
an impact on poorer individuals seeking help. We did
not have the medical diagnosis so a small number of
the prescriptions may have been used to treat condi-
tions other than depression. We did not consider co-
morbidities, as this was out of the scope of the study.
We also assumed that treatment dispensing was
synonymous with antidepressant use, but we did not
have information on actual consumption to verify
this. Whilst we have named antidepressant groups
based on trajectory at a population level there is
likely to be significant heterogeneity in individual cir-
cumstances, whereby individuals are not experiencing
the group level dynamic, e.g. co-morbidities and inter-
actions with anxiolytic and anti-psychotic treatments
might be driving antidepressant trend rather than the
disease worsening. Covariate information was limited
to measures collected in the census, therefore we
were unable to understand effect of other lifetime

Table 2 Demographic, living arrangement and socioeconomic predictors of antidepressant prescription group membership
(Continued)

Antidepressant Prescription Group

Variable Reference No prescriptions Occasional Decreasing Increasing Mostly

OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

Carstairs (decile 2) Decile 1 0.93 1.06 1.08 1.02 1.09

(Affluent) (0.87, 0.99) (0.98, 1.14) (0.92, 1.24) (0.90, 1.15) (0.99, 1.18)

Carstairs (decile 3) 0.90 1.06 1.00 1.10 1.19

(0.84, 0.96) (0.98, 1.14) (0.84, 1.16) (0.97, 1.22) (1.09, 1.28)

Carstairs (decile 4) 0.80 1.16 1.32 1.13 1.27

(0.74, 0.86) (1.08, 1.24) (1.17, 1.48) (1.01, 1.25) (1.18, 1.37)

Carstairs (decile 5) 0.80 1.15 1.26 1.22 1.27

(0.74, 0.86) (1.07, 1.23) (1.11, 1.42) (1.09, 1.34) (1.17, 1.36)

Carstairs (decile 6) 0.74 1.27 1.31 1.1 1.44

(0.68, 0.79) (1.19, 1.35) (1.16, 1.47) (0.97, 1.23) (1.34, 1.53)

Carstairs (decile 7) 0.70 1.25 1.34 1.34 1.50

(0.64, 0.75) (1.17, 1.33) (1.18, 1.49) (1.22, 1.47) (1.41, 1.60)

Carstairs (decile 8) 0.64 1.37 1.44 1.30 1.59

(0.59, 0.70) (1.29, 1.45) (1.29, 1.59) (1.18, 1.42) (1.50, 1.68)

Carstairs (decile 9) 0.61 1.40 1.37 1.35 1.72

(0.55, 0.67) (1.32, 1.48) (1.21, 1.52) (1.22, 1.47) (1.62, 1.81)

Carstairs (decile 10) 0.54 1.54 1.54 1.52 1.74

(0.48, 0.60) (1.46, 1.63) (1.38, 1.70) (1.40, 1.65) (1.64, 1.83)

Source: SLS
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factors [32] shown to be important for predicting
antidepressant prescriptions (e.g. tobacco consump-
tion). Although mental health service use stigma may
be declining, it still may inhibit use of mental health
care by some of those in need The current results are
limited in that they underestimate certain populations
at risk (e.g. young males) [33]. Therefore, some of the
relationships observed between covariates and anti-
depressant trends may reflect differences in barriers
to seeking medical help [34]. We acknowledge that
low multicollinearity among our covariates will have
slightly decreased precision in our estimates, but not
biased our results.

Comparison with existing literature
Similar methods have been used in previous studies to
classify trajectories of annual antidepressant dose over
time [35]. The authors of that study use latent class
model, which is shown provide similar groupings to the
sequence analysis used in the current study [36]. The
sample used in their study was very specific – patients
before and after being granted disability pension due to
common mental disorders [35]. These individuals would
have formed part of our ‘out of labour force’ group,
which had the strongest relationship (OR 4.06; 95% CI
4.01 to 4.11) with having been prescribed most of the
time and might explain why they found homogeneity in
the pattern of the Daily Defined Dose (DDD) (i.e. 89% of
the sample varied very little). We have shown how the
current method could provide a scalable international
comparable way to monitor medication use in the
general population.
The relationship between socioeconomic variables and

antidepressant pattern indicates that the greatest nequality
exists for long-term prescription use. Previously it was
found that there was little socioeconomic patterning in
antidepressant review consultations in Scotland [37],
which suggests that rather than differences in healthcare
provision, the difference is due to disease severity. We
found that unemployment was associated with decreasing
use of antidepressants similar to other studies, which have
found that unemployment status correlates with decreas-
ing antidepressant use [38]. This effect is thought to be
driven by health selection, whereby mental health status
deteriorates before unemployment, and then improves
during unemployment [39, 40], perhaps due to relief of
work related stressors. Living alone had stronger associa-
tions with antidepressants in another study (OR 1.81;
95%CI 1.46–2.23) [25] than in the current study (OR
ranged from 1.10 to 1.28 for ‘decreasing’, ‘increasing’ and
‘most of the time’ groups), which may be explained by the
differences in sample. The association between living
alone and common mental illness is found in other
research to be mostly (84%) due to a great sense of

loneliness [41]. Previous work estimated that psychotropic
medication peaks 6–9months before divorce and declined
for 18months thereafter [42], however we found that
separation (which often precedes divorce) had a stronger
relationship with a reduction in antidepressants, indicating
that separation may provide a buffer to mental health
distress between marriage and divorce.
The pattern of antidepressant prescriptions gives a good

indication of mental illness; being on prescriptions most of
the time is strongly and positively associated with self-
reported mental illness and previous hospital admissions; the
inverse is true for ‘no prescriptions’ or ‘occasional’ prescrip-
tions. ‘Increasing’ prescriptions had a weaker relationship
with self-reported mental illness than decreasing prescrip-
tions, which shows that there might be a lag between starting
medication and identifying oneself as having a mental illness.
No association exists between previous psychiatric hospital
admissions and the ‘increasing’ prescriptions group, which
may indicate that these patients have had a new episode of
depression following the Recession. The negative relationship
between self-reporting mental illness and previous hospital
admissions, and the ‘occasional’ prescription group con-
firmed that this group is unlikely to be suffering from persist-
ent depression. Significant polypharmacy existed with
antidepressant, anxiolytics and antipsychotics prescription; a
possible sign of comorbid mental disorders. Antidepressants
combined with anxiolytics were prescribed together particu-
larly for those who had increased their antidepressant pre-
scriptions. Antidepressants combined with antipsychotics
were prescribed especially for those that have been pre-
scribed antidepressants continuously over the study period.
Polypharmacy has been advocated as a way to treat severe
and treatment-resistant depression [43], however concerns
have been raised especially for antidepressant-antipsychotic
combinations with benefits outweighed by the increased risk
of adverse effects (e.g. suicide) [44].

Implications for public health and research
Public health organisations could utilise the methods
outlined in this paper to continuously monitor popula-
tion mental health. The current application has shown
the national trends and groupings for 2009–2014, but it
could also be useful for a number of spatiotemporal con-
figurations. Further drilling down to refine groupings
may also be useful. Future research could usefully
develop this approach to examine measures of mental
illness across the life course to understand continuation,
relapse and remission, in combination with personal
experiences by patients [45]. In particular, a high-risk
change in living arrangements - going from marriage to
separation and divorce and how that can lead to loneli-
ness associated with living alone, warrants further
investigation.
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Conclusions
This study provides a novel approach to understanding
population-level risk group changes in mental health,
using health service (prescription) data. These methods
provide new opportunities for policymakers to monitor
population mental health inequalities. Combining the at-
risk prescription group from the current study (i.e.
white, female participants, of low social grade, living in
deprived neighbourhoods, living alone, being separated/
divorced or out of the labour force), with the at-risk pro-
files of other indicators of mental illness would improve
the approach to delivering policies to help those most in
need.
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