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Abstract: The P300 paradigm is one of the most promising techniques for its robustness and reliability
in Brain-Computer Interface (BCI) applications, but it is not exempt from shortcomings. The present
work studied single-trial classification effectiveness in distinguishing between target and non-target
responses considering two conditions of visual stimulation and the variation of the number of
symbols presented to the user in a single-option visual frame. In addition, we also investigated the
relationship between the classification results of target and non-target events when training and
testing the machine-learning model with datasets containing different stimulation conditions and
different number of symbols. To this end, we designed a P300 experimental protocol considering,
as conditions of stimulation: the color highlighting or the superimposing of a cartoon face and from
four to nine options. These experiments were carried out with 19 healthy subjects in 3 sessions.
The results showed that the Event-Related Potentials (ERP) responses and the classification accuracy
are stronger with cartoon faces as stimulus type and similar irrespective of the amount of options.
In addition, the classification performance is reduced when using datasets with different type of
stimulus, but it is similar when using datasets with different the number of symbols. These results
have a special connotation for the design of systems, in which it is intended to elicit higher levels of
evoked potentials and, at the same time, optimize training time.

Keywords: P300 BCI; performance assessment; visual stimuli paradigm

1. Introduction

Brain-Computer Interfaces (BCI) were first proposed almost fifty years ago as an alternative
output pathway to allow people communication and control of external devices without performing
muscular activity [1]. Since then, this technology has evolved considerably and nowadays the main
applications are found in clinical environments. Areas, such as neuro-rehabilitation for patients
with neurodegenerative diseases [2–6], as well as assistive technologies for people with motor
impairments [7–10], have had the widest presence. However, BCI’s applications have now transcended
the clinical environment [11,12]. BCIs commonly rely on the non-invasive electroencephalogram (EEG)
technique to record the brain activity and on a mental task to generate control signals, such as P300
Event-Related Potentials (ERP) or Steady-State Visually Evoked Potentials (SSVEP). Today, scientific
efforts to successfully incorporate BCIs into daily life activities by end users are mainly focused towards
improvements in performance [13], either by reduction of calibration time [14] or development of
novel stimuli presentation strategies [15], among other aspects.

Notably, EEG-based P300-BCIs have been the focus of numerous investigations since they
stand out for its relative easiness and also because they have shown great potential in different
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applications [16]. These BCIs are based on the "oddball paradigm" where a rare (i.e., target) stimulus
is presented among other frequent but irrelevant (i.e., non-target) stimuli. The set of stimuli are
commonly presented on a screen, and they are intensified or highlighted in random order, so that,
communication is achieved by focusing attention on a target stimulus and silently counting the
number of times it flashes, while ignoring the other non-target stimuli [17]. This process elicits the
P300 potential solely in the target stimulus, a positive deflection in the EEG signals with a latency of
around 300 ms after stimulus presentation that is associated with cognitive processes, such as attention
and decision-making [18]. Hence, a machine-learning model is needed to detect the presence of the
P300 potential by discriminating between target and non-target events from the EEG signals and,
in consequence, to identify the stimulus the user is attending to.

One important aspect of P300-BCIs is the presentation of the visual stimuli which is carried out
through a Graphical User Interface (GUI) [19]. This is because the characteristics of the visual stimuli
provide the framework to interact with the system, to select targets, and, consequently, to evoke P300
responses. Indeed, parameters, such as shape, size, color, and type of flash, may enhance or diminish
the difference between target and non-target responses and, thus, may influence the performance of the
machine-learning model [20–22]. Therefore, an alternative to improve the accuracy and reliability of
P300-BCIs is to employ stimuli properties that evoke stronger P300 responses [23] and that might also
elicit other ERP components that occur before or after the P300 [24]. Such components may be the P100,
N170, and N400 deflections which are associated with working memory, visual processing, and other
cognitive functions triggered during the stimulation. In this regard, previous studies have shown
that P300-BCI employing facial-type flashes elicit visual-related N170 and N400 ERP components,
in addition to the P300 components [25–27].

Some studies have investigated the effect that different stimulation conditions, in particular
the type of flash, have on the ERP components and/or on the discrimination between target and
non-target responses. For instance, grey semi-transparent familiar faces have shown to evoke higher
ERP components and to provide higher classification accuracy than those achieved with standard
flashes [28]. Faces of relatives and famous people, and standard flashes have been compared, and the
results have indicated better performance using face stimuli instead of the classical flashes [29],
though no differences were found between the types of faces [30]. Faces and standard flashes of
different sizes (large or small) have also been compared with results showing waveform differences
though no significant difference in BCI performance [31]. Pictures of locations and graspable tools
as flashes have also been studied, and the results have shown unique and discriminable brain
responses that can be used to improve classification accuracy [32]. In addition, semi-transparent
colored unfamiliar face patterns have been proposed where red semi-transparent faces have provided
the highest BCI performance [33].

Despite the fact that various studies have demonstrated that human faces elicit stronger ERP
components and therefore provide higher BCI performance than those provided by standard flashes,
the face-type stimuli can lead to copyright infringements that limits its use and implementation [34].
Due to this, the use of cartoon faces is advisable since they do not present this limitation. Previous
works have studied this aspect, and they have reported no significant differences in ERP components
and in BCI performance between cartoon faces and human faces [34–36]. However, there are no works
that have studied differences between the standard flash and cartoon faces, without taking into account
the semantic connotation of facial expression [37,38]. Likewise, another property that has not been
explored is the number of symbols that are intensified (flashed) during the presentation of the visual
stimuli in target selection BCI applications. Indeed, regardless of the visual stimulation paradigm
(e.g., row-column, single-option, checkerboard, region-based with levels), the number of options can
range from 1 [36,39] up to 24 [40–43]. Hence, this is a critical property since it imposes the number of
flashes required to activate all options presented to the user and, thus, influences the time required
for calibration and online selections. Another aspect that has gained interest in BCI research is the
possibility of relying on machine learning models in which performance is minimally affected by the
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variation in the characteristics used to infer the different classes. This usually occurs when there are
variations at the session and subject level. This issue is very important and can occur in applications
where users are losing physical and cognitive faculties from one session to another due to degenerative
diseases, such as Amyotrophic Lateral Sclerosis, Parkinson’s, Alzheimer’s, etc.

Motivated by the lack of studies addressing these issues, the purpose of this work was to assess
the effects on the ERP waveform and on the single-trial classification between target and non-target
responses. We intend to do it considering two conditions of the visual stimuli: the visual stimulation
(standard flashes or cartoon faces) and the number of symbols presented to the users (from four
to nine). To this end, we designed a P300 experimental protocol which was carried out with 19
healthy participants in 3 sessions. The results revealed that the ERP responses and the classification
performance are stronger with cartoon faces than with standard flashes and similar irrespective of
the amount of options presented to the user. This is significant because sets standards in P300 BCI’s
visual interface design for target selection applications. The results also showed that the classification
performance of training and testing the machine learning model is reduced when using datasets
containing different type of stimulus, but it is similar, regardless of the number of symbols. This is
important because it would yield answers about the optimal number of symbols required to train the
interface. Under these premises, our contribution is addressed to the optimization of BCI performance
from establishing design parameters in the single-option visual stimulation paradigm, where only
one element of those presented in the visual scheme flashes at a time and in which applications
can be found in navigation systems [44] or remote control of devices, in addition to the clinical
environment. Finally, the recorded EEG data is freely available to anyone interested in the study,
evaluation, and implementation of signal processing and machine-learning algorithms for P300-BCI.
The rest of the manuscript is organized as follows: Section 2 describes the experimental protocol and the
methodology; Section 3 presents the results; Section 4 discuss the results and presents the conclusions.

2. Materials and Methods

Here, we describe the P300 paradigm experiments carried out to record EEG signals from
healthy volunteers; the collected EEG datasets containing target and non-target responses to visual
stimuli with different schemes (stimulation condition and number of symbols); and the data analysis
methodology carried out to study the effects of those scenarios on the classification between target and
non-target responses.

2.1. Experimental Protocol

The experiments were conducted in an acoustically isolated room where only the participant and
the experimenter were present. Participants were seated in a comfortable chair in front of a computer
screen (17”, LED Technology, Dell, Round Rock, TX, USA). On this screen, a Graphical User Interface
(GUI) showed the stimuli (distributed uniformly on the screen) and an instruction box that guided
the participants on the execution of the experiment (presented at the bottom of the screen). The GUI
allows us to vary the parameters of the stimuli, such as stimulus shape, size and color, the number of
symbols, and the flash condition, among others. Figure 1a shows a snapshot of the experimental setup
with a participant, the computer screen displaying the GUI with a set of stimuli and the instruction
box, and the EEG recording system.

A P300 experiment was carried out in several consecutive blocks. The temporal timing of each
block is depicted in Figure 1b and consisted of the following five phases:

1. Fixation. A cross symbol is shown for 2 s in the information box, which indicates to be prepared
and relaxed.

2. Target Presentation. One of the symbols on the screen is randomly highlighted with a blue
background for 2 s, and the same symbol is also shown in the information box. This indicates
the participant the location of the screen and the particular symbol that they have to focus their
attention during the subsequent "Stimulation" phase.
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3. Preparation. No stimuli is highlighted or shown in the information box. This lasts one second and
indicates to the participant that he or she must be ready for the upcoming phase.

4. Stimulation. The stimuli flash randomly, one at a time, with both no-repeat and equiprobable
selection constraint. The participants are asked to silently count each time the target stimuli
flashes, while ignoring when the other stimuli flash. Each flash consists of highlighting a stimulus
for 75 ms followed by other 75 ms without any highlighting. This phase lasts around 30 s,
which slightly varies, according to the number of symbols.

5. Rest. None of the symbols are highlighted, and the text “Rest” is presented in the information box.
This instructed the participants to rest from the experiment for 5 s.

g.USBamp
amplifier 

g.GAMMAsys

g.GAMMAcap
PCMonitor 

with visual 
stimuli

𝑩𝒍𝒐𝒄𝒌 𝒅𝒖𝒓𝒂𝒕𝒊𝒐𝒏
~𝟒𝟎 𝒔

𝟐𝒔 𝟐𝒔 ~𝟑𝟎𝒔

𝑅𝐸𝑆𝑇

Fixation Target 
Presentation

Preparation

𝟏𝒔

Stimulation Rest

✚

~𝟓𝒔

stop stop stop stop stop

(a) (b)

Figure 1. Description of the experimental paradigm. (a) Picture of the experimental setup with a
participant, the computer screen with the Graphical User Interface (GUI) displaying a set of 5 stimuli
and the instruction box, and the electroencephalogram (EEG) recording system. (b) Illustration of
the temporal sequence of a block. Each block consists of five phases: Fixation, Target Presentation,
Preparation, Stimulation, and Rest.

The duration of this block is about 40 s, and several consecutive blocks are repeated until
the target stimulus flashes at least 280 times. This number of target events was chosen to obtain
a sufficient number of instances that ensures significant classification rates between target and
non-target [7]. The next experimental segment, which consisted of the variation in the number
of symbols, also comprised the five phases previously described. The approximate overall time of
a session was about fifty minutes. Note that, for each block, the target stimulus is different as it
is randomly selected in the Target Presentation phase. Overall, if the number of symbols displayed
in the GUI is Nstimuli and the target stimulus flashes Ntarget times, then the other non-target stimuli
flashes Nnontarget = Ntarget · (Nstimuli − 1) times. The execution of the experiment is fully controlled
by an in-house software (SW) implemented in C++ that manages the operation of the GUI and the
simultaneous acquisition of the EEG signals, along with marks that indicate the initiation of each
phase, the target element, and the presentation of each of the symbols [7].

This P300 experiment was carried out by changing visual stimuli schemes: the flash condition and
the number of symbols. Two conditions of visual scheme were considered: standard flash based on
green-highlighting the stimulus (SF) and superimposing a yellow smiling cartoon face (CF). Figure 2a
shows real screenshots of the GUI with the two types of flash. The number of symbols were varied
from four to nine and they were evenly distributed on the screen. Figure 2b shows real screenshots
with the different configurations for the different number of symbols. Note that the shape of the
stimuli were arrow symbols (if the stimulus location is on the periphery of the screen) pointing out
of the screen and/or an octagon with the text “STOP” (if the stimulus location is on the center of the
screen). The other stimulus parameters, such as the shape, size, color, brightness, and transparency,
were kept constant.

The experimental protocol consisted of the following procedure: Participants first conducted the
P300 experiment independently with the two type of stimulation conditions (SF and CF) but only with
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5 blinking symbols. The order of these two visual schemes were randomly chosen. The classification
rate between target and non-target of these two conditions were computed using the procedure
described in the subsequent Sections 2.5 and 2.6. The stimulation condition that provided the higher
classification rate was selected and used in the subsequent experiments. This selection was carried
out individually for each participant. Participants then conducted the P300 experiment with the
selected type of flash but with 4, 6, 7, 8, and 9 symbols. The order of these experiments was also
random. Therefore, each participant performed in total seven P300 experiments. To avoid tiredness
and boredom, participants were encouraged to rest as long as needed between P300 experiments.
This procedure was carried out in three experimental sessions, separated by a maximum one week.
The maximum number of days between the three sessions was 21 days, while the minimum was
10 days. The order of the stimulation condition (SF and CF with 5 symbols) and of the number of
symbols (4, 6, 7, 8, and 9) was also random across the sessions.

(a)

(b)

Figure 2. Screenshots of the GUI with the two visual configurations under study. (a) Illustration of the
two stimulation conditions with the configuration for 5 symbols. Left panel: standard flash based on
green-highlight of the stimulus or stimulus (SF). Right panel: superimposing a yellow smiling cartoon
face or cartoon face (CF). (b) Illustration of the configuration on the screen for 4, 6, 7, 8, and 9 symbols
for both stimulation conditions. Note that, in all cases, the symbols are evenly distributed on the screen
and the information box is in the bottom.

2.2. EEG Data Acquisition

EEG signals were recorded from 8 scalp locations using a g.SCARABEO Ag/AgCl active
biopotential electrodes system and a g.USBamp biosignal amplifier (g.tec medical engineering GmbH,
Schiedlberg, Austria). The EEG electrode positions were Fz, Cz, P3, Pz, P4, PO7, PO8, and Oz,
according to the 10–20 international system. These positions were employed because they are the
standard scalp locations to record the P300 evoked responses [45–47]. The ground was placed to the
AFz position and referenced to the right earlobe with an active Ag/AgCl electrode. EEG signals were
recorded at a sampling frequency of 256 Hz, power-line notch-filtered and band-pass filtered from
0.5 to 60 Hz. The electrode impedance was checked and kept below 5 kΩ. This was carried out before
the initiation of each P300 experiment using the g.Recorder software.

2.3. Participants

Nineteen healthy volunteers (11 males and 8 females) with age range from 19 to 33 years
(mean 25) were recruited to participate in the study. Enrollment in the study was completely
free, and no compensation was given to the recruited participants. All participants had normal
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or corrected-to-normal vision and also had no previous experience as BCI users. Prior to the initiation
of the experimental sessions, participants were duly instructed about the nature and goals of the
research, and they were instructed about the correct execution of the experiment. The experimental
procedure and the study’s consent form was approved by our institution ethics committee and met the
standards of the Helsinki Declaration. All participants voluntarily signed consent form and provided
written authorization to take video and picture recordings.

2.4. Dataset Description

Each participant (sub-01 to sub-019) performed 3 experimental sessions (ses-01 to ses-03) and each
session consisted of seven P300 experiments or data files. The seven data files for each session are: one
for stimulation type standard flash or SF with 5 symbols, one for stimulation type cartoon face, or CF,
with 5 symbols, and five for 4, 6, 7, 8, and 9 number of symbols with the stimulation condition that
provided the greater classification accuracy with 5 symbols. The raw EEG signals along with a detailed
description of the recorded data (see Appendix A) are freely available and can be accessed through the
online site https://openneuro.org/datasets/ds003190. The datasets are formatted according to the
Brain Imaging Data Structure (BIDS) standard [48]. The database for this study is also available on
request to the corresponding author.

2.5. Single-Trial Classification

2.5.1. Data Preparation and Pre-Processing

Recorded EEG data of each P300 experiment was independently subjected to the following
pre-processing steps. First, EEG epochs were extracted from −0.2 to 1.0 s relative to the time of
the stimulus presentation and they were labelled as target or non-target according to whether the
participant was attending or not the stimulus. Here, the number of EEG epochs for the target
condition is Ntarget (which is at least 280 and varies slightly according to the number of symbols)
and the number of EEG epochs for the non-target condition is Nnontarget = Ntarget · (Nstimuli − 1),
where Nstimuli is the number of symbols presented on the GUI. Afterwards, the following exclusion
criteria were applied to identify and discard noisy epochs: (i) Peak-to-peak amplitude greater than
200 µV; (ii) Standard deviation amplitude greater than 50 µV; and (iii) Power ratio between the
frequency bands [20–40] Hz and [4–40] Hz greater than 0.5 [7]. EEG epochs with at least one electrode
fulfilling any of these criteria were discarded and not used in the subsequent analyses. Accepted epochs
were then band-pass filtered from 4 to 14 Hz using a Finite Impulse Response (FIR) digital filter.
These data preparation and pre-processing steps lead to the cleaned dataset (for each P300 experiment)
{EEGi, yi}Nt

i=1, where EEGi ∈ RNs×Ne is the EEG activity of the i-th epoch, yi ∈ {target, nontarget}
indicates whether the epoch belongs to the target or non-target condition, Nt is the number of epochs,
Ns is the number of samples, and Ne is the number of electrodes. Cleaned datasets were employed
to compute the ERP waveform of each channel by simply computing the across-all-epochs average
separately for the target and non-target conditions.

2.5.2. Feature Extraction

There are several feature extraction methods suitable in the field of BCIs [49–51]. In our proposal,
features were computed using spatial filters based on the Canonical Correlation Analysis (CCA)
technique, which measures the inter-relation between two sets of random observations P ∈ RT×N and
Q ∈ RT×M, where T is the number of observations, and N and M are the number of variables in P
and Q, respectively. CCA seeks the linear combinations p = Pwp and q = Qwq that maximize the
so-called canonical correlation ρ between them. Hence, the weight vectors wp ∈ RN×1 and wq ∈ RM×1

are found by solving:
ρ = max

wp ,wq
corr(p, q), (1)

https://openneuro.org/datasets/ds003190
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which can be rewritten as the following optimization problem:

ρ = max
wp ,wq

w>p Cpqwq√
w>p Cppwpw>q Cqqwq

, (2)

where Cpq is the cross-covariance matrix, and Cpp and Cqq are the auto-covariance matrices for P
and Q, respectively. The solution to this problem is obtained by solving a generalized eigenvalue
problem [52], from which the weight vector wp is an eigenvector of C−1

pp CpqC−1
qq Cqp, whereas the

weight vector wq is an eigenvector of C−1
qq CqpC−1

pp Cpq. It follows that several consecutive eigenvectors
can be selected in descending order according to the eigenvalues to construct the spatial filter matrices

Wp = [w1
p, w2

p, · · · , w
Ns f
p ] and Wq = [w1

q, w2
q, · · · , w

Ms f
q ], where Ns f ≤ N and Ms f ≤ M are the

number of selected weight vectors or filters. From here, the spatial filtered (i.e., projected) data for P is
Ps f = PWp, while, for Q, it is Qs f = QWq.

Given a training dataset {EEGtrain
i , ytrain

i }Nt
i=1, the feature extraction procedure based on CCA

spatial filtering is applied as follows. First, all epochs are trimmed from 0 to 0.8 s and decimated by a
factor of 4, yielding to {Xi, yi}Nt

i=1 where X ∈ RNd×Ne , and Nd is the new number of reduced samples.

Epochs from the target class are then selected to obtain the dataset {Xtarget
i }Ntarget

i=1 where Ntarget is

the total number of epochs of the target event. The average is computed to obtain Xtarget, which is

replicated Ntarget times to obtain the dataset {Xtarget
i }Ntarget

i=1 . Subsequently, these two datasets of target
epochs and replicated averaged target epochs are re-shaped to obtain the same-size 2D matrices
X′ ∈ R(Ntarget ·Nd)×Ne and X′ ∈ R(Ntarget ·Nd)×Ne . The CCA analysis described above is then applied to

these two matrices to obtain the spatial filter Wx′ = [w1
x′ , w2

x′ , · · · , w
Ns f
x′ ]. Finally, given a trimmed

and decimated epoch, the spatial filtered data is computed as Xs f = XWx′ , which is concatenated to
obtain the feature vector x ∈ R1×(Nd ·Ns f ). Note that Wx′ is computed exclusively from training data
and provides a lower dimensional representation if Ns f < Ne. Here, we employed Ns f = 3 spatial
filters as this is sufficient to capture all the underlying activity of the EEG [7,53].

2.5.3. Classifier

To discriminate between target and non-target responses, Linear Discriminant Analysis (LDA)
with regularized (shrinkage) covariance was used as classification model. Here, we applied the option
in which the covariance matrix is regularized in a fully automatic way, so no hyper-parameter tuning
is needed [54,55]. This classifier was selected because it is widely used in many P300-based BCI
applications [56] due to its robustness and performance. Technical details of this method can be found
in Reference [57].

Additionally, the forward-backward step-wise (SW) method is used to select the characteristics
to evaluate in the classification stage. This algorithm integrates the classification model that better
contributes to an optimal performance guided by a scoring criterion. By starting with an empty
classification model, the best features that improves the performance but are not included in the
successive incorporated models are selected. The model remains unchanged if none of the candidate
characteristics improves the performance of the classifier. In the next step, that variable in the model
that can be excluded without significantly reducing the scoring is eliminated. Once again, if it is not
possible to discard a feature without affecting the model, then the feature set remains unchanged.
The previous steps are replicated as long as changes to the feature set are possible. The model training
and feature selection are performed simultaneously on the used platform.

The combination of CCA spatial filter with regularized LDA classifier shows better performance
in the process of single-trial classification of P300 events. Reference [45], as well as Reference [7],
studied different options of feature extraction methods combined with classification models,
confirming a better performance of this option with respect to other proposals.
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2.6. Evaluation Process and Metrics

First, the effect of stimulation condition and of the number of symbols on the single-trial
classification between target and non-target responses was assessed through a five-fold cross-validation
process. Although there exist a sample overlapping, this performance evaluation approach is quite
acceptable to estimate the online performance of the BCI [58,59]. Here, all the epochs in a given dataset
were randomly allocated into five sets. Four of the sets were used to train the machine-learning model
(the CCA-based spatial filter and the LDA classifier), while the remaining set was used to estimate
classification accuracy, i.e., the rate of correct classifications for target (CAtarget or true positive rate),
non-target (CAnontargetor true negative rate), and for the total (CAtotal = 0.5x(CAtarget + CAnontarget)),
here we use balanced accuracy due to the imbalance present in the training samples [60]. With this
procedure we are avoiding bias toward the non-target class and balance the accuracy calculation.
In addition, we calculated the significance levels of the model’s accuracies with a permutation
test [61] where the null hypothesis indicates that the observations of both classes are interchangeable,
therefore any random permutation of the class labels produces accuracies comparable to those obtained
with the non-interchangeable data. The alternative hypothesis is accepted when the accuracy of the
model is an extreme value in the empirical distribution constructed with m random permutations.
When the alternative hypothesis is accepted, we can say that the cross-validation accuracy is above the
level of chance. This process was applied independently for each cleaned dataset of each participant
and session, and distributions of classification accuracies were then constructed for each stimulation
condition, SF and CF, and for each number of symbols, from 4 to 9.

Second, the effects on the classification between target and non-target responses when training
and testing the machine-learning model with datasets containing different stimulation conditions or
different number of symbols were evaluated as follows. In the case of stimulation condition, the model
was trained using the entire cleaned dataset recorded with SF (or CF), while classification accuracy
for target, non-target, and the total were computed using the entire cleaned dataset recorded with CF
(or SF). Similarly, the case of number of symbols consisted of training the model with an entire cleaned
dataset with a given number of symbols and testing performance separately with all the other cleaned
datasets with different number of symbols. As an example, if the machine-learning model is trained
with the entire cleaned dataset recorded with 4 symbols, then, classification performance is computed
separately with each one of the remaining datasets, that is, with the cleaned datasets recorded with
5, 6, 7, 8, and 9 symbols. This was repeated until all number of symbols were used as training set.
This procedure was also applied independently for each participant in each session.

We applied the non-parametric Kernel Distribution Estimator (KDE) method [62] to analyze
the discrimination process between target and non-target events, for both stimulation conditions.
Through this statistical test, significant ERP peaks were identified at each post-stimulus time sample,
for each channel, by evaluating with the probability density function (PDF) of the pre-stimulus
interval. We established a significance level α, thus identifying as ERP responses all those values that,
compared to the pre-stimulus PDF, were greater than 1− α/2 or lower than α/2.

Statistical non-parametric Wilcoxon signed-rank, Wilcoxon rank-sum and Kruskal–Wallis tests
were employed to assess significant differences between distributions of classification accuracies for
the two visual paradigms and for the six amount of symbols, respectively. All statistical tests were
carried out at a confidence level of α = 0.05.

3. Results

This subsection presents the results of the data analysis procedure which aimed, first, to study the
effect of the stimulation conditions and of the number of symbols on the classification accuracy and
on the P300 responses, and second, to investigate the effect on the classification accuracy of training
and testing the machine-learning model with datasets containing different stimulation conditions and
different number of symbols.
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3.1. Stimulation Conditions

Figures 3 and 4 show the results of the ERP analysis for one participant. These graphs illustrate
all the channels for the stimulation conditions, SF and CF, respectively. In each graphic, the signals
associated to the target and non-target events are presented in blue and red, respectively. For both
stimulation conditions, significant positive and negative components are identified (p < 0.05, two-tail
test) in a latency of approximately 200 to 600 ms for the waveforms associated with the target events.
In contrast, signals associated with non-target events do not manifest significant peaks (p > 0.05,
two-tail test) in both stimulation conditions. For the SF stimulation condition, all channels, except Fz
and Cz, show significant components. In some channels only negative values are generated, such as
Pz, P3, and P4, and, in other channels, both polarities are seen, such as PO7, PO8, and Oz. In the
CF stimulation condition, all channels manifested significant components with both polarities. It is
important to highlight the latency in which these potentials are elicited, which provides strong
clues that we are in the presence of ERPs linked to the visual stimuli presented to the participants.
The significance graphs for each stimulation condition (Figure 5a,b) show in a complementary format
the occurrence by channel of relevant ERP target events for the single-trial classification. It can be
noted that the CF condition, with respect to the SF condition, contributes with a greater occurrence of
significant events to the process of discriminating target from non-target events, and, at the same time,
except for the P3 and PO7 channels, there is specific generation of the P300 component.
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Figure 3. ERP responses for all channels in one participant for the target (blue signal) and non-target
(red signal) events used in single-trial classification for SF stimulus. Reported signal-to-noise ratios
(target vs. non-target): Fz-3.63 dB, Cz-0.48 dB, P3-0.88 dB, Pz-3.20 dB, P4-2.99 dB, PO7-1.86 dB,
PO8-4.02 dB, Oz-4.26 dB. Green and orange areas in the ERP correspond to the positive and negative
peaks that presented significant differences (p < 0.05, two tail test) with the estimated Probability
Density Function (PDF) of the baseline period. No significant peaks are observed in the ERP for the
non-target condition.
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Figure 4. ERP responses for all channels in one participant for the target (blue signal) and non-target
(red signal) events used in single-trial classification for CF stimulus. Reported signal-to-noise ratios
(target vs. non-target): Fz-10.38 dB, Cz-7.10 dB, P3-8.46 dB, Pz-7.51 dB, P4-6.36 dB, PO7-4.89 dB,
PO8-6.05 dB, Oz-4.46 dB. Green and orange areas in the ERP correspond to the positive and negative
peaks that presented significant differences (p < 0.05, two tail test) with the estimated PDF of the
baseline period. No significant peaks are observed in the ERP for the non-target condition.
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Figure 5. Statistical significance for all channels in one participant for the target and non-target events
used in single-trial classification for (a) SF stimulus and (b) CF stimulus.

The amplitude of the positive peak of the ERP in the target condition was computed for each
participant and session. This was carried out for the two types of stimuli (SF and CF). Then, for each
electrode, across all participants and sessions distributions of SF and CF were subjected to a statistical
analysis. Indeed, significant differences between the medians of the P300 amplitude distributions of
SF and CF were found (p < 0.05, Wilcoxon rank-sum test) in electrodes P3, Pz, P4, PO7, PO8 and Oz,
while, no significant differences were found between the medians of the two distributions (p > 0.05,
Wilcoxon rank-sum test) for electrodes Fz and Cz.

Table 1 shows the average values of accuracy rate for the two stimulation conditions obtained
for each participant across the three sessions. These results show that the stimulus with CF
provided the higher accuracy rates in the majority of the participants (17 out of 19). In addition,
the across-all-participants averaged accuracy rates for CF and SF were, respectively, 0.824± 0.068
(minimum of 0.678± 0.033 and maximum of 0.903± 0.027) and 0.759± 0.069 (minimum of 0.630 and
maximum of 0.874), that is, the accuracy rate is 6% greater for CF than for SF. Altogether, considering all
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participants, stimulation with CF provided greater accuracy rate than SF stimulation condition in the
89.47% of the cases.

Table 1. Average value of accuracy rate for the two stimulation conditions obtained for each participant
in all sessions. The value in bold for each participant is the highest between both types of stimuli.

Participant
Stimuli Type

Cartoon Face Flash

1 0.823± 0.004 0.822± 0.026
2 0.678± 0.033 0.630± 0.000
3 0.813± 0.101 0.719± 0.000
4 0.797± 0.002 0.723± 0.030
5 0.878± 0.006 0.734± 0.028
6 0.898± 0.016 0.874± 0.022
7 0.885± 0.038 0.808± 0.056
8 0.774± 0.036 0.621± 0.044
9 0.847± 0.034 0.805± 0.062
10 0.792± 0.041 0.671± 0.069
11 0.876± 0.011 0.794± 0.028
12 0.833± 0.012 0.787± 0.010
13 0.781± 0.024 0.736± 0.076
14 0.878± 0.051 0.835± 0.019
15 0.728± 0.052 0.743± 0.077
16 0.709± 0.074 0.717± 0.082
17 0.878± 0.051 0.835± 0.019
18 0.895± 0.012 0.765± 0.045
19 0.903± 0.027 0.800± 0.039

Average 0.824± 0.068 0.759± 0.069

Figure 6 shows the across all participants and sessions distribution of accuracy rate for both
types of stimuli. Significant differences were found between the two distributions (p < 0.05,
Wilcoxon rank-sum test) and the median value for CF (0.829) was indeed 5% greater than for SF
(0.779). This shows that CF provides significant greater accuracy rates than SF.

Cartoon Face Standard Flash
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Figure 6. Across all participants and sessions, distribution of accuracy rates for both types of stimuli (CF and
SF). Significant differences were found between the two distributions (p < 0.05, Wilcoxon rank-sum test)
with median values of 0.829 and 0.779 for CF and SF, respectively.

Finally, Table 2 shows the accuracy rates for training the classification model with one type of
flash and assessing performance with the other type of flash. These results are for all participants in all
session and with 5 stimuli only. For comparison purposes, the Table also include the cross-validation
results of training and testing with the same type of flash. For the case of training with SF and
evaluating with CF, the average of accuracy rate is 0.753, 0.551, and 0.652 for non-target, target,
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and total, respectively, which are lower accuracies than those obtained in the cross-validation analysis
with SF (0.822, 0.803, and 0.812). Similarly, for the case of training with CF and evaluating with SF,
the average of accuracy rate is 0.817, 0.412, and 0.619 for non-target, target, and total, respectively.
These are also lower accuracies than those obtained in the cross-validation analysis with CF (0.878,
0.848, and 0.863). In the two cases, the median of the distribution of accuracy rate is significantly
different (and lower) than the median of the classification accuracy obtained with the cross-validation
results (p < 0.05, Wilcoxon signed-rank test). This shows that training with one type of stimulus and
then testing performance with other type of stimuli reduces performance.

Table 2. Across-all participants and sessions accuracy rates for training the machine learning model
with one type of flash and assessing performance with the other type of flash. The cross-validation
accuracy rate results of training and testing with the same type of flash are also included
(gray-highlighted values).

Training Stimulus Type

Test Stimuli Type SF CF
Non-Target Target Average Non-Target Target Average

SF 0.822± 0.059 0.803± 0.056 0.812± 0.057 0.817± 0.060 0.412± 0.107 0.619± 0.060
CF 0.753± 0.058 0.551± 0.099 0.652± 0.066 0.878± 0.060 0.848± 0.056 0.863± 0.057

3.2. Number of Symbols

The ERP for each number of symbols for the target condition is presented in Figure 7. All ERP
show negative peaks between 200 and 300 ms in all electrodes, as well as the characteristic P300 positive
peaks between 300 and 400 ms in parietal (P3, Pz, P4), parieto-occipital (PO7, PO8), and occipital (Oz)
electrodes. Note that the amplitude of these negative or positive peaks are similar regardless of the
number of blinking stimuli.
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Figure 7. Across all participants and sessions EPR target responses for the different number of symbols
(from four to nine).

Table 3 shows the average values of accuracy rate for each number of symbols. These results are
for each participant across the three experimental sessions. The accuracy rate is greater in 7, 4, 3, 0, 5,
and 0 of the 19 participants for 4, 5, 6, 7, 8, and 9 number of symbols, respectively. The average values
across all participants are very similar irrespective of the number of symbols (see the values presented
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at the bottom of the Table), indeed, the minimum and maximum accuracy rate are 0.790 and 0.816,
respectively, where there is only a difference of 0.026.

Table 3. Average value of accuracy rate for each number of symbols obtained for each participant
in all sessions. The value in bold for each participant is the highest accuracy rate among all number
of symbols.

Participant
Number of Symbols

4 5 6 7 8 9

1 0.804± 0.064 0.765± 0.098 0.787± 0.082 0.801± 0.087 0.767± 0.102 0.780± 0.075
2 0.711± 0.003 0.665± 0.033 0.735± 0.018 0.680± 0.026 0.658± 0.060 0.637± 0.041
3 0.759± 0.116 0.711± 0.075 0.784± 0.123 0.762± 0.121 0.805± 0.114 0.764± 0.111
4 0.712± 0.096 0.730± 0.115 0.710± 0.077 0.728± 0.100 0.754± 0.072 0.719± 0.077
5 0.885± 0.028 0.865± 0.024 0.869± 0.016 0.809± 0.037 0.862± 0.025 0.801± 0.019
6 0.873± 0.048 0.875± 0.042 0.879± 0.015 0.875± 0.043 0.896± 0.023 0.887± 0.027
7 0.891± 0.021 0.885± 0.038 0.861± 0.101 0.847± 0.045 0.866± 0.062 0.854± 0.057
8 0.746± 0.017 0.774± 0.036 0.729± 0.019 0.715± 0.031 0.726± 0.022 0.740± 0.022
9 0.840± 0.061 0.774± 0.012 0.729± 0.032 0.715± 0.050 0.726± 0.061 0.740± 0.045

10 0.772± 0.039 0.792± 0.041 0.776± 0.014 0.751± 0.036 0.757± 0.040 0.759± 0.036
11 0.898± 0.011 0.876± 0.011 0.878± 0.023 0.864± 0.023 0.877± 0.010 0.895± 0.007
12 0.810± 0.048 0.833± 0.012 0.835± 0.029 0.764± 0.022 0.791± 0.030 0.773± 0.034
13 0.734± 0.044 0.790± 0.009 0.787± 0.020 0.792± 0.024 0.795± 0.032 0.732± 0.040
14 0.837± 0.078 0.878± 0.051 0.830± 0.075 0.819± 0.091 0.852± 0.051 0.832± 0.027
15 0.741± 0.063 0.751± 0.071 0.762± 0.030 0.756± 0.007 0.774± 0.060 0.758± 0.012
16 0.812± 0.102 0.717± 0.063 0.738± 0.075 0.729± 0.085 0.739± 0.081 0.755± 0.057
17 0.837± 0.078 0.878± 0.051 0.830± 0.075 0.819± 0.091 0.852± 0.051 0.786± 0.027
18 0.912± 0.004 0.895± 0.012 0.918± 0.013 0.900± 0.010 0.898± 0.006 0.891± 0.011
19 0.935± 0.005 0.903± 0.027 0.910± 0.005 0.916± 0.002 0.925± 0.002 0.912± 0.029

Average 0.816± 0.084 0.808± 0.085 0.808± 0.077 0.792± 0.080 0.806± 0.082 0.790± 0.080

To examine significant differences, Figure 8 shows the across all participants and sessions
distribution of accuracy rate for each number of symbols. No significant differences were found
in the distributions of accuracy rate for the different number of symbols (p = 0.628, Kruskal–Wallis
test), which indicates the same classification accuracy regardless of the number of blinking stimuli.
We also examined significant differences of the classification accuracy across all number of symbols
separately for the two stimulation conditions (this is possible since the experiments of the number
of symbols were carried out with the stimulation condition that provided the greater accuracy rate,
that is 89.47% of the cases with CF and the rest of the cases with SF). In both stimulation conditions,
no significant differences were found in the accuracy rate across the different number of symbols
(p > 0.05, Kruskal–Wallis test). These results suggest the same classification accuracy regardless of the
number of symbols irrespective of the stimulation condition employed in the study.

Finally, Table 4 shows the accuracy rate results for training the machine learning model with a
dataset recorded with a given number of symbols and assessing performance separately with each one
of the remaining datasets recorded with a different number of symbols.

For comparison purposes, the cross-validation results of training and testing with datasets
containing the same number of symbols are also included (gray-highlighted values in the diagonal).
These results shows that the accuracy rates are very similar irrespective of the number of symbols
employed to train and test the model and that they are also similar to the cross-validation results of
training and testing with the same number of symbols. For instance, for the case of training with
datasets with 5 symbols, the minimum and maximum accuracy rates are 0.798, 0.699, and 0.748 for
datasets with 9 stimulus, and 0.839, 0.696, and 0.768 datasets with 4 symbols (for non-target, target,
and total, respectively), while the cross-validation results are 0.841, 0.771, and 0.806. For each case,
no significant differences were found in the distributions of accuracy rate across the different number
of symbols (p > 0.05, Kruskal–Wallis test). This shows that training with a dataset with a given number
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of symbols and then testing performance with other datasets containing different number of symbols
results in similar performance.

Figure 8. Across all participants and sessions distribution of accuracy rates for each number of
symbols. No significant differences are found between the median of distributions (p = 0.628,
Kruskal–Wallis test).

Table 4. Across-all participants and sessions accuracy rates for training the classification model
with a dataset recorded with a given number of symbols and assessing performance separately
with other datasets recorded with different number of symbols. The cross-validation accuracy rate
results of training and testing with the dataset with the same number of symbols are also included
(gray-highlighted values in the diagonal).

Number of Symbols in the Training Dataset

Testing 4 5 6 7 8 9

4
Non-Target 0.841± 0.085 0.839± 0.083 0.854± 0.083 0.858± 0.078 0.864± 0.077 0.859± 0.076
Target 0.779± 0.102 0.696± 0.119 0.701± 0.110 0.686± 0.106 0.670± 0.110 0.637± 0.107
Average 0.812± 0.090 0.768± 0.096 0.778± 0.093 0.772± 0.089 0.767± 0.089 0.748± 0.086

5
Non-Target 0.796± 0.080 0.841± 0.079 0.834± 0.079 0.840± 0.074 0.846± 0.081 0.846± 0.072
Target 0.737± 0.109 0.771± 0.102 0.687± 0.110 0.689± 0.101 0.658± 0.112 0.652± 0.108
Average 0.767± 0.090 0.806± 0.090 0.761± 0.087 0.765± 0.083 0.751± 0.087 0.749± 0.084

6
Non-Target 0.792± 0.081 0.813± 0.080 0.863± 0.065 0.840± 0.072 0.852± 0.072 0.846± 0.070
Target 0.762± 0.110 0.708± 0.140 0.829± 0.059 0.737± 0.120 0.729± 0.119 0.704± 0.113
Average 0.779± 0.088 0.761± 0.099 0.846± 0.061 0.789± 0.088 0.791± 0.086 0.775± 0.082

7
Non-Target 0.782± 0.076 0.807± 0.073 0.823± 0.075 0.855± 0.066 0.841± 0.069 0.842± 0.068
Target 0.740± 0.105 0.708± 0.109 0.732± 0.094 0.816± 0.058 0.725± 0.087 0.726± 0.093
Average 0.761± 0.085 0.757± 0.085 0.778± 0.078 0.835± 0.060 0.782± 0.074 0.783± 0.078

8
Non-Target 0.776± 0.080 0.803± 0.074 0.821± 0.080 0.827± 0.075 0.861± 0.067 0.835± 0.074
Target 0.753± 0.111 0.717± 0.122 0.752± 0.103 0.753± 0.101 0.822± 0.066 0.736± 0.099
Average 0.764± 0.090 0.760± 0.091 0.787± 0.088 0.790± 0.084 0.841± 0.065 0.785± 0.082

9
Non-Target 0.770± 0.075 0.798± 0.074 0.815± 0.077 0.827± 0.074 0.835± 0.070 0.854± 0.066
Target 0.727± 0.108 0.699± 0.111 0.721± 0.107 0.740± 0.095 0.729± 0.096 0.811± 0.061
Average 0.748± 0.084 0.748± 0.084 0.768± 0.083 0.783± 0.078 0.782± 0.077 0.838± 0.064

3.3. Participant and Session

To examine the effect on the performance across participants and sessions, Figure 9 shows the
distribution of accuracy rates across-all number of symbols separately for each participant and for each
session. For the case of participants (Figure 9a), significant differences were found between the median
of distributions of accuracy rate (p < 0.05, Kruskal–Wallis test), with high variability in the median
values ranging from 0.673 for participant 2 up to 0.899 for participant 18. For the case of sessions
(Figure 9b), significant differences were also found between the median of distributions of accuracy
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rate (p < 0.05, Kruskal–Wallis test) with median values of 0.782, 0.808, and 0.831 for sessions 1, 2,
and 3, respectively, which indicates that the performance increases as more sessions are carried out.
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Figure 9. Across all participants and sessions distribution of accuracy rates obtained for (a) each
participant in all sessions, significant differences are verified (p < 0.05, Kruskal–Wallis test), and (b)
each session in all participants, significant differences are verified (p < 0.05, Kruskal–Wallis test).
These results are for all number of stimulus.

4. Discussion

Some aspects of the visual stimuli (e.g., shape, color, type of stimulation, number of options,
among others) in P300-based BCIs may affect the characteristics of the ERP; thus, they play a
critical role in the BCI performance. Some previous works have explored these issues; however,
further investigation is still required to gain more understanding of the effect that such parameters
have on the ERP and on the BCI performance. The first goal in this research was to compare the
effects of the stimulation conditions standard flash (SF) and cartoon face (CF), and of the number of
symbols that are intensified (from four to nine), on the ERP responses and on the classification accuracy
between targets and non-target events. The second goal was to assess the influence of training the
machine learning model that recognizes between targets and non-target events with a dataset recorded
with a stimulation condition or a number of symbols and assess classification accuracy with other
datasets containing a different stimulation condition or number of symbols. An additional aim of this
work was to provide a dataset of P300 EEG recordings to study and evaluate signal processing and
machine-learning algorithms for P300-BCIs considering two stimulation conditions, several number of
symbols, and several sessions.

Considering the stimulation condition, the analysis of the ERP showed higher amplitude values
with CF than with SF, which were more notorious in channels PO7, PO8, and Oz in the 200–300 ms
interval (see Figures 3 and 4 as an example). This indicates that stimulation condition based on CF
produces stronger ERP responses than the classical SF. In addition, this result about the posterior
location of ERP significant responses is consistent with results in Reference [47] and so is the fact that
responses associated with non-target events exhibit a sinusoidal pattern of visual evoked steady-state
potential that coincides with the frequency of stimulation. On the other hand, the significantly greater
classification accuracy achieved with CF (Figure 6), along with the almost 90% of the cases where
CF provided the greatest performance among all participants and sessions (Table 1), also indicated
that such stimulation condition provided better classification accuracy. A similar previous work also
suggested that CF provides better accuracy [37], nonetheless, the stimulation in that work includes
facial expression changes. Though this is different to the CF stimulation employed in our experiments,
it reinforces that CF is better than SF. We should point out that we did not study the relevance
of facial expression or emotional states in the CF, however, we must highlight that using “happy”
expressions agrees with previous works suggesting the use of positive expressions [63,64]. In summary,
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these results indicated that CF as stimulation strategy should be preferred over the classical SF for
P300-BCIs in specific applications of target selection. However, there is always the possibility that
some participants feel more comfortable with standard flashes.

Regarding the number of symbols, the analysis of the ERP showed the same waveforms,
peak amplitudes and latencies irrespective of the number of stimuli (see Figure 7). Hence, there are no
differences in the ERPs associated with the number of blinking options presented to the user. Likewise,
no significant differences in the classification accuracy were found among the number of symbols
(see Figure 8). Indeed, the maximum and minimum accuracy (averaged across-all-participants) among
all number of symbols presented a slightly difference of only 2.6% (see Table 3). A previous work
explored 3 configurations of rows-columns visual paradigm where the total number of options that
were intensified varied (4 × 4, 8 × 8 and 12 × 12 matrix), and despite the differences with our
single-option visual paradigm, they also found that different number of symbols generates ERPs with
greater amplitude in the posterior locations (parietal and parietal-occipital areas, respectively) of both
hemispheres [40]. On the other hand, we found no evidence suggesting differences in the amplitudes
of the ERPs and accuracy when applying different numbers of stimuli. The results presented in this
analysis indicate that the amount of stimulation symbols shown to the participants does not vary the
ERP signatures neither the accuracy in the recognition between target and non-target responses.

Additional analyses showed that the overall classification accuracy increase in most of the
participants as new sessions were carried out. This aspect is noteworthy as it possibly suggests
an adaptation of the users to the experimental environment and would be appropriate to consider for
studies where more than one session is required. In contrast, the variability in performance across
participants is high, which indicates that there is no relationship in the inter-subject performance.
This supports the individual nature of the BCI experience for each participant, particularly for those
based on P300 control signals.

Another critical aspect studied herein was the performance of the machine learning model when
training and testing using datasets recorded with different conditions of stimulation and different
number of symbols. This is important to ascertain whether the calibration and the online usage of
P300-BCIs can employ different stimuli parameters, which can occur when switching the P300-BCI
application due to, for example, changes in the disease state of patient users or improvements in
robotic devices. On the one hand, training with one stimulation type and testing with the other type
leads to a reduction of classification accuracy (see Table 2). This reduction is larger for target than for
non-target events, which is expected since we are just changing the visual scheme that evokes target
responses. Importantly, the accuracy of target events is also more reduced when training with CF
and testing with SF than vice-versa. This behavior is consistent since CF stimulation elicits stronger
potentials and this makes it easier for the model to identify target events. However, when testing with
signals containing lower amplitude resulting from SF stimulation, then the discrimination process
would be affected.

Training with a given number of symbols and testing with other number of symbols showed no
changes in classification accuracy (see Table 4). Therefore, the variation of the number of symbols
presented during calibration and online operation does not imply changes in the recognition between
target and non-target responses. These results have important implications for P300-BCIs (at least
in single-option stimuli paradigm configurations) because the calibration stage and the online usage
of the system: (i) should be carried with visual interfaces with the same stimulation condition to
avoid reduction in performance; (ii) can be carried out with visual interfaces with different number
of symbols without affecting performance, even, the calibration stage can be carried out with a low
number of symbols to decrease the calibration time and thus reduce fatigue and boredom to the users.

Previous works have reported single-trial classification rates in the order of 0.8
(see Reference [58,59,65]). The classification rates reported are similar to those achieved in this work.
It is important to mention that the single-trial classification results reported herein are meaningful
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for BCI systems since the accuracy in the recognition of the option the user is attending to in online
settings is boosted by classifying multiple instances to address the target and non-target selection.

In a different front, we want to point out that no questionnaire or survey was conducted
to qualitatively determine the level of comfort and/or the user’s preference with the two visual
stimulation conditions studied herein. However, at the end of each experimental session,
each participant was verbally asked about his/her predilection, and there was a generalized preference
for CF as stimulation type, while the preference for the number of symbols varied greatly from subject
to subject.

To sum up, the present work showed that: (i) the stimulation with cartoon faces is superior
to the stimulation with standard flash since it generates ERPs with larger amplitudes and favors
the appearance of other components that contribute to a more discriminative power of the target
events with respect to the non-target ones; (ii) stimulation with different number of symbols offers no
difference in performance so it is appropriate to perform the calibration process with as few stimuli as
possible to decrease the training time; (iii) the single-trial classification between target and non-target
events improves as users become more familiar with the interface and its environment; and (iv)
target and non-target events can be discriminated with an appropriate level of confidence in datasets
obtained by varying properties of the visual stimulus coming from the same subject and during the
same session.

Finally, the recorded EEG signals are freely available and they can be used for the study and
evaluation of signal processing and machine-learning models in P300-BCI (see Appendix A). The future
work will explore new classification algorithms that would be worth incorporating [66], also include
the understanding of the implication of changing the parameters of the stimuli (scheme and number)
between offline and online P300-BCI operation, and the inter-session and inter-subject performance
evaluation tests both in offline and online settings.
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Appendix A. Database Description

The database consists of 382 electroencephalographic files from 19 participants. All datasets were
collected on channels Fz, Cz, P3, Pz, P4, PO7, PO8, and Oz, according to the 10–20 EEG electrode
placement standard. Table A1 shows the recordings available in this database.

• Each participant (sub-01 to sub-019) performed 3 experimental sessions (ses-01 to ses-03) and in
each session there are 7 data-files.

• The coded names for these data-files are described as follows:
"sub-*_ses-**_task-***_run-****_eeg.vhdr".

Where *: subject number; **: session number; ***: task evaluated (ctos: changing type of stimuli,
cnos: changing number of symbols); ****: number of symbols shown on the screen (4, 5F, 5H, 6, 7,
8, 9).

• The letters ’F’ and ’H’ accompanying number ’5’ for data-files with five symbols indicates the
stimulation condition, F for Standard-Flash (SF) and H for Cartoon Face (CF), respectively.

• Note that filenames for data-files with 4, 6, 7, 8, and 9 symbols do not have a letter and were
recorded with the stimulation condition that provided the greater classification accuracy when
using 5 symbols. In our study Standard Flash was the winner stimulus type in session 2, subject 1;
session 3, subject 2; session 1, subject 9; sessions 1, 2 and 3, subject 13; session 1, subject 14;
session 3, subject 15 and session 3, subject 16. In the rest of the sessions and participants Cartoon
Face was the winner stimulus scheme.

• Files can be easily accessible with EEG-dedicated MATLAB toolboxs, such as Fieldtrip [67] and
EEGLAB [68].

The markers encodes this information as follows:

• (i) marker numbers 101, 200, 201, 202, and 203, indicate the beginning and end of the five phases
in a block

• (ii) marker numbers 1, 2, 3, 4, 5, 6, 7, 8, and 9, indicate the symbol that is activated
• (iii) each phase of the experiment block is identified with a marker
• (iv) the phases of one the experiment block are: fixation, target presentation, preparation,

stimulation and rest
• (v) in particular the stimulation phase has a start marker and an end marker

Table A1. Availability of electroencephalographic datasets. Legend: X (dataset available), O (dataset
not available), CF (Cartoon Face), SF (Standard Flash), S (Session).

Subject

Session and Stimuli

4 Symbols 5 Symbols (CF) 5 Symbols (SF) 6 Symbols 7 Symbols 8 Symbols 9 Symbols

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

1 X X X X X X O X X X X X X X X X X X X X X
2 X X X X X X O X X X X X X X X X X X X X X
3 X X X X X X O O X X X X X X X X X X X X X
4 X X X X X X O X X X X X X X X X X X X X X
5 X X X X X X O X X X X X X X X X X X X X X
6 X X X X X X O X X X X X X X X X X X X X X
7 X X X X X X X X X X X X X X X X X X X X X
8 X X X X X X X X X X X X X X X X X X X X X
9 X X X X X X X O X X X X X X X X X X X X X

10 X X X X X X X X X X X X X X X X X X X X X
11 X X X X X X X X X X X X X X X X X X X X X
12 X X X X X X X X X X X X X X X X X X X X X
13 X X X X X X X X X X X X X X X X X X X X X
14 X X X X X X X X X X X X X X X X X X X X X
15 X X X X X X X X X X X X X X X X X X X X X
16 X X X X X X X X X X X X X X X X X X X X X
17 X X X X X X X X X X X X X X X X X X X X X
18 X X X X X X X X X O X X X X X X X X X X X
19 X O X X O X X O X X O X X O X X O X X O X
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