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ABSTRACT
Background: Discovered on the southern margin of the North Sea Basin, “Phoca”

vitulinoides represents one of the best-known extinct species of Phocidae. However,

little attention has been given to the species ever since its original 19th century

description. Newly discovered material, including the most complete specimen of

fossil Phocidae from the North Sea Basin, prompted the redescription of the species.

Also, the type material of “Phoca” vitulinoides is lost.

Methods: “Phoca” vitulinoides is redescribed. Its phylogenetic position among

Phocinae is assessed through phylogenetic analysis. Dinoflagellate cyst

biostratigraphy is used to determine and reassess the geological age of the species.

Myological descriptions of extant taxa are used to infer muscle attachments,

and basic comparative anatomy of the gross morphology and biomechanics are

applied to reconstruct locomotion.

Results: Detailed redescription of “Phoca” vitulinoides indicates relatively little

affinities with the genus Phoca, but rather asks for the establishment of a new

genus: Nanophoca gen. nov. Hence, “Phoca” vitulinoides is recombined into

Nanophoca vitulinoides. This reassignment is confirmed by the phylogenetic

analysis, grouping the genus Nanophoca and other extinct phocine taxa as stem

phocines. Biostratigraphy and lithostratigraphy expand the known stratigraphic

range of N. vitulinoides from the late Langhian to the late Serravallian. The

osteological anatomy of N. vitulinoides indicates a relatively strong development

of muscles used for fore flipper propulsion and increased flexibility for the

hind flipper.

Discussion: The extended stratigraphic range of N. vitulinoides into the middle

Miocene confirms relatively early diversification of Phocinae in the North Atlantic.

Morphological features on the fore- and hindlimb of the species point toward

an increased use of the fore flipper and greater flexibility of the hind flipper as

compared to extant Phocinae, clearly indicating less derived locomotor strategies
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in this Miocene phocine species. Estimations of the overall body size indicate that

N. vitulinoides is much smaller than Pusa, the smallest extant genus of Phocinae

(and Phocidae), and than most extinct phocines.

Subjects Evolutionary Studies, Paleontology, Taxonomy, Zoology

Keywords Phocidae, Neogene, North Sea Basin, Belgium, Redescription, Taxonomy, Locomotion

INTRODUCTION
The fossil record of Phocidae Gray, 1821 (Mammalia, Carnivora) is poorly known and

largely consists of isolated and fragmentary material (Ray, 1976; Koretsky, 2001). Apart

from a limited number of isolated localities (Tavani, 1941; Muizon & Bond, 1982;

Walsh & Naish, 2002; Valenzuela-Toro et al., 2013), virtually all Neogene fossil material

comes from five relatively phocid fossil-rich areas dispersed around the world: (1) the

Miocene of the Paratethys region and the Mediterranean region (Koretsky, 2001), (2) the

Miocene and Pliocene of the North American East Coast (True, 1906; Ray, 1976; Koretsky

& Ray, 2008), (3) the Miocene and (presumably) Pliocene of the southern North Sea

Basin, including both the Belgian Antwerp area and the Netherlands (Van Beneden, 1859,

1871, 1876, 1877; Koretsky & Peters, 2008; Koretsky, Ray & Peters, 2012; Koretsky, Peters &

Rahmat, 2015), (4) the Miocene/Pliocene Pisco Formation of Peru (Muizon, 1981;

Amson &Muizon, 2014; Valenzuela-Toro et al., 2016), and (5) the Miocene and Pliocene of

Langebaanweg, South Africa (Hendey & Repenning, 1971; Muizon & Hendey, 1980;

Govender, Chinsamy & Rogers Ackermann, 2012).

The family Phocidae is subdivided in two extant subfamilies: Monachinae Gray, 1869

and Phocinae Gray, 1821; and one extinct subfamily: Devinophocinae Koretsky & Holec,

2002. Devinophocinae only includes Devinophoca claytoni Koretsky & Holec, 2002 and

Devinophoca emryi Koretsky & Rahmat, 2015, both from the Serravalian of Slovakia.

The extant subfamilies Monachinae and Phocinae are easily discernable, as has been

proven by numerous molecular and morphological phylogenetic analyses (Muizon,

1981; Berta & Wyss, 1994; Bininda-Emonds & Russell, 1996; Higdon et al., 2007;

Arnason et al., 2006; Amson & Muizon, 2014). Generally, Monachinae tend to be larger

than Phocinae (see Valenzuela-Toro et al., 2016). Despite the co-occurrence of both

subfamilies in the Northern Hemisphere during the Neogene (Koretsky & Ray, 2008),

they are currently biogeographically separated: Monachinae include the Antarctic seals,

the subtropical monk seals (Monachus spp.), and the elephant seals (Mirounga spp.)

along the eastern North Pacific and subantarctic waters, while Phocinae are restricted to

the Northern temperate and Arctic coasts. Phocine and monachine ranges only overlap

in the North Eastern Pacific, where the range of the harbor seal, Phoca vitulina Linaeus,

1758, overlaps with that of the northern elephant seal, Mirounga angustirostris Gill,

1866. A number of researchers have grouped the monachine Mirounga Gray, 1827

and the phocine hooded seal, Cystophora cristata (Erxleben, 1777) into a separate

subfamily Cystophorinae Gray, 1869 (Chapskii, 1974; Koretsky & Rahmat, 2013)

and some researchers have grouped the Antarctic seals into Lobodontinae Hay, 1930.
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However, the existence of Cystophorinae has been contradicted by molecular and

morphological evidence (King, 1966; Higdon et al., 2007; Fulton & Strobeck, 2010)

and members of Lobodontinae are generally considered to make a monachine tribe

Lobodontini (Muizon, 1981; Amson & Muizon, 2014; Berta et al., 2015).

Apart from the monachines Acrophoca longirostris Muizon, 1981, Hadrokirus martini

Amson & de Muizon, 2013, Homiphoca capensis (Hendey & Repenning, 1971), Piscophoca

pacifica Muizon, 1981, and Pliophoca etrusca Tavani, 1941, in which the skeleton is almost

completely known (Tavani, 1941; Hendey & Repenning, 1971; Muizon & Hendey, 1980;

Muizon, 1981; Amson & Muizon, 2014; Berta et al., 2015), the overall fossil record of

Phocidae predominantly consists of disarticulated cranial and postcranial elements

(Van Beneden, 1877). Extinct phocines in particular are nearly exclusively known from

isolated bones or sets of a few articulated bones (Koretsky, 2001; Koretsky, Peters & Rahmat,

2015). The species “Phoca” vitulinoides Van Beneden, 1871, from the Neogene of the

southern margin of the North Sea Basin (Antwerp area, Belgium), is arguably one of the

most completely known phocine seals (Van Beneden, 1877), apart from Praepusa

vindobonensis (Toula, 1897), and maybe Leptophoca proxima (Van Beneden, 1877); these

two species are known based on a series of postcranial remains (Van Beneden, 1877;

Toula, 1897; Koretsky, 2001; Dewaele, Lambert & Louwye, 2017). The strong need for a

redescription of “Phoca” vitulinoides has been stated on multiple occasions and it has been

proposed that the generic attribution of “Ph. vitulinoides” is erroneous (Koretsky &

Ray, 2008; Koretsky & Peters, 2008). Indeed, Van Beneden (1877) considered the species

referable to the genus Phoca Linnaeus, 1758 on the basis of similarities with Pusa hispida

(Schreber, 1775), at the time considered Phoca hispida. Even today, the phylogentic

position of Pusa Scopoli, 1777 among Phocinae remains questionable, both based on

morphological and molecular data (Bininda-Emonds & Russell, 1996; Higdon et al., 2007;

Fulton & Strobeck, 2010). Therefore, a redescription of “Phoca” vitulinoides and an

investigation of its phylogenetic affinities are required.

Because the phocid material at the IRSNB has not been reinvestigated for a long

time, the proposed stratigraphic range of “Phoca” vitulinoides does not include

more recently discovered specimens nor has the stratigraphic position of the known

specimens been reassessed. Neither has it formally been shown that the syntype material

of “Phoca” vitulinoides, presented by Van Beneden (1871), has been lost. The currently

described stratigraphic time range for “Ph.” vitulinoides is far from satisfactory; all

published specimens from the IRSNB had been assigned a “Scaldisian” age (Van

Beneden, 1877), a confusing and disused term with little precise age determination

(Laga & Louwye, 2006). Dinoflagellate cyst biostratigraphy of sediment preserved in

cavities of several specimens provides the opportunity to reassess the geologic age and

origin of these specimens.

Furthermore, the IRSNB recently acquired one partial postcranial skeleton of

“Ph.” vitulinoides (IRSNB M2276a-q), which is the most complete phocid skeleton ever

recorded from the North Sea Basin (Fig. 1). Similarly, access to the private collection of

Paul and Gigase was provided for study. In agreement with the latter, selected specimens

were transferred to the collection of the IRSNB (IRSNB M2269, IRSNB M2270, and
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IRSNB M2271). The access to new specimens of “Ph.” vitulinoides further spurred the

redescription of the species and the reassessment of its stratigraphic range, phylogenetic

position, and paleoecology.

HISTORICAL BACKGROUND
“Phoca” vitulinoides was one of the earliest extinct seals from the Antwerp area to be

described by Van Beneden (1871). Although Van Beneden (1871, 1877) states that remains

of “Ph.” vitulinoides were first mentioned in 1859 publication on extinct marine mammals

from the city of Sint-Niklaas, we could not find any mention of fossils of “Ph.” vitulinoides

in Van Beneden’s 1859 publication. In the 1871 description, a small set of poorly

diagnostic, isolated bones was grouped together to establish the species; the original

material consisted of a maxilla, an atlas, an ulna, a sacrum, two calcanea, and a phalanx,

and illustrations were only provided for the atlas, ulna, sacrum, one of the calcanea (which

proves to be an astragalus), and the phalanx (Van Beneden, 1871, p. 1). This original

description of “Ph.” vitulinoides is short and little detailed, and no argument is provided

explaining for example the referral of the isolated maxilla to the same species as the other

bones. The etymology of the species epithet vitulinoides is based on the superficial

Figure 1 Nanophoca vitulinoides neotype and other articulated specimen. Left (A) and right

(B) lateral views of a generalised and simplified phocine skeleton with the bones of the neotype specimen

of Nanophoca vitulinoides (IRSNB M2276) shown. Black arrows indicate the smaller partial axis

(IRSNB M2276i) and metatarsal (IRSNB M2276h). The second most complete specimen of Nanophoca

vitulinoides, IRSNB 1059-M240 is shown in close-up (C).
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similarities of the generally poorly diagnostic material with the extant harbor seal

Phoca vitulina (Van Beneden, 1871).

“Phoca” vitulinoides is then only shortly mentioned in Van Beneden’s next publication

(Van Beneden, 1876), and a more detailed description appears in his 1877 magnum opus

on Phocidae from the Antwerp area (Van Beneden, 1877), including the attribution of

more recently discovered material to the species. At the time, “Phoca” vitulinoides was

considered the best-known extinct phocid from the Neogene of the southern margin

of the North Sea, with 125 specimens in the collection of the IRSNB, ranging from

fragmentary elements to seven articulated bones, representing almost the entire

postcranial skeleton (Van Beneden, 1877).

Following the redescription of “Phoca” vitulinoides by Van Beneden (1877), the

collection at the IRSNB expanded considerably during the 20th century. Also, private

collectors acquired another considerable body of specimens. However, research on extinct

seals largely neglected these collections and apart from Friant (1944), “Ph.” vitulinoides

has only been mentioned in research focusing on other taxa (Koretsky & Peters, 2008) or

in review studies (Kellogg, 1922; Koretsky & Ray, 2008). Friant (1944) considered the

species when erecting the new species Phocanella straeleni Friant, 1944 from the

“Scaldisian” of the third section of the fortification ring around Antwerp, saying it is a very

specialized species (considering the femur), better adapted to an aquatic lifestyle than

Phoca vitulina. King (1964) accepted the validity of Phocanella straeleni, but it was

subsequently degraded to a nomen dubium by Koretsky & Ray (2008).

More recently, Koretsky & Ray (2008) briefly dealt with “Phoca” vitulinoides in their

redescription of Pliocene North Atlantic seals. However, their research focused on species

occurring along both the eastern and western margins of the North Atlantic realm.

Hence, because “Ph.” vitulinoides is currently only known from the southern margin of

the North Sea, they only noted that Van Beneden apparently lumped two species in

“Ph.” vitulinoides. They interpreted the specimens (excluding the sacrum) in Van Beneden

(1871) as representing a much larger species than the material presented in the subsequent

paper (Van Beneden, 1877). When assigning a lectotype to “Ph.” vitulinoides, Koretsky &

Ray (2008, p. 88) stated the following: “We concluded that under Phoca vitulinoides we

have to admit the greater seal of Van Beneden (1871), but not the smaller seal, as described

and illustrated later by Van Beneden (1877, pp. 72–74, atlas pl. 15). Although none of

the specimens in Van Beneden’s original hypodigm is truly satisfactory, we choose the

sacrum as the least unsatisfactory lectotype. We believe, however, that this bone is not

diagnostic at the species level, and therefore regard Phoca vitulinoides as a nomen

dubium.” A similar statement is repeated by Koretsky & Peters (2008).

MATERIALS AND METHODS
Specimens studied

The IRSNB collection
This collection comprises (1) nearly all fossil seal specimens from the Antwerp area

that have been illustrated or described in the past (Van Beneden, 1859, 1871, 1876, 1877),

Dewaele et al. (2017), PeerJ, DOI 10.7717/peerj.3316 5/79

http://dx.doi.org/10.7717/peerj.3316
https://peerj.com/


(2) fossil seal specimens that were studied by Van Beneden (1877) but not illustrated,

as well as (3) material that has been collected by or donated to the IRSNB in the course

of the 20th century. Geographic and stratigraphical data associated with these specimens

are of uneven scientific value: for some specimens a relatively precise and accurate

positioning can be retrieved, while for other specimens no information exists at all.

Recently acquired specimens
The recent acquisition of a number of specimens attributed to “Phoca” vitulinoides

directly spurred the re-investigation of this species. These acquisitions include the

“Gommers–Bosselaers specimen” (IRSNB M2276a–q), specimens recently found at the

Antwerp International Airport (IRSNB M2272, IRSNB M2273, IRSNB M2274, and

IRSNB M2275), and specimens from the Gigase collection (IRSNB M2269, IRSNB

M2270, and IRSNB M2271). The Gommers–Bosselaers specimen is the most complete

specimen of fossil seal from the Neogene of the Antwerp area (and the whole North

Sea Basin), containing seventeen bones attributed to a single individual: the dens of the

axis, five thoracic vertebrae, two lumbar vertebrae, the sacrum, one caudal vertebra, the

head and neck of the right scapula, the complete left humerus and the distal half of

the right humerus, the complete left and right femora, the proximal half of the right tibia,

and the right fourth metatarsal with the distal extremity unfused. Dutch fossil collector

Henny Gommers recovered the specimen in the 1980s, during road works along the

Antwerp R1 ring road. Mark Bosselaers subsequently acquired the specimen in 2015 and

donated it to the IRSNB. The geographic and stratigraphic data of this specimen are

described and discussed in the corresponding sections.

Material from the Antwerp International Airport (IATA: ANR – ICAO: EBAW) has

been collected during construction works at the airport in 2015 by a group of private

collectors, including Luc Anthonis, Bert Gijsen, and Frederik Mollen. A total of

approximately 60 m3 of scooped sediment has been sieved and yielded isolated and

associated bones that can be attributed to several individuals of “Phoca” vitulinoides.

Selected specimens have been donated to the IRSNB. The geographic and stratigraphic

data of these specimens are described and discussed in the corresponding sections.

Father and son, Paul and Gigase are long-time collectors of fossil vertebrates, including

marine mammals from the Antwerp region. With a fossil pinniped collection totaling

more than one hundred specimens, the Gigase collection includes numerous isolated

bones that were attributed to the species “Phoca” (Nanophoca) vitulinoides. The Gigase

donated relevant specimens from their private collection to the IRSNB (see “referred

specimens”).

The majority of the specimens have been found isolated. Because of their diagnostic

value, isolated humeri and femora can easily be tied to “Phoca” (Nanophoca) vitulinoides.

However, the ribs, the radius, the ulna, and the calcaneum are only known from relatively

isolated bones. Their assignment to “Phoca” (Nanophoca) vitulinoides remains highly

tentative, because they are neither known for other contemporaneous small phocine seals

from the North Sea basin (Batavipusa neerlandica and Praepusa boeska). Similarly, the

neotype specimen of the axis of “Phoca” (Nanophoca) vitulinoides (IRSNBM2276i) is very
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incompletely preserved. A better-preserved specimen (IRSNB M2268) has been found

isolated. The assignment of the latter axis to the species is based on its comparable size to

the neotype specimen and, hence, tentative.

Comparative material
Comparative specimens of extant and extinct taxa are listed as Supplemental Information.

Extant taxa are listed as List S1 and extinct taxa are listed as List S2.

Measurements and body length estimates
Measurements were taken to the nearest 0.1 mm, using analog calipers. For reasons of

consistency, these measurements were taken following the same scheme as Koretsky

(2001), which has also been applied to L. proxima, P. etrusca, and Prophoca rousseauimore

recently (Berta et al., 2015; Dewaele, Lambert & Louwye, 2017). Measurements are

presented in Tables S1–S8.

Regarding the body length estimates of the species, a number of published dissections

of Phocidae mention the relationship between lengths of individual long bones and total

body length (snout-to-tail length). Dissected species and references considered include

Pusa hispida (as Phoca hispida; Howell, 1929), Leptonychotes weddelli (Pi�erard, 1971),

and Ommatophoca rossi (Pi�erard & Bisaillon, 1975). For the body length estimates of

N. vitulinoides, long-bone-to-total-body-length ratios of the aforementioned species are

extrapolated for long bone length measurements of N. vitulinoides. This is partly in

accordance with the body length estimate of another diminutive fossil seal Australophoca

changorum Valenzuela-Toro, Pyenson, Gutstein, & Suárez, 2015, for which the authors

used Howell’s dissection of Pusa hispida (Howell, 1929). Additionally, the humerus length

to total body length ratio and the femur length to total body length ratio have been

calculated for specimens of Phoca vitulina (n = 5) and Pusa sibirica (n = 1). These

additional ratios are also used to estimate the total body length of N. vitulinoides.

Terminology
In order to be consistent with other recent publications on extinct Phocidae, we adopted

the nomenclature and terminology used by Amson & Muizon (2014), Berta et al. (2015),

and Dewaele, Lambert & Louwye (2017) to describe the morphological anatomy.

Whenever it was not possible to refer to these, we adopted the nomenclature and

terminology for the osteological description of the domestic dog by Evans & de Lahunta

(2013).

For myological inferences, we refer to published dissections of the ringed seal Pusa

hispida, the Southern elephant seal Mirounga leonina (Linnaeus, 1758), the Weddell seal

L. weddelli, and the Ross seal O. rossi (Howell, 1929; Bryden, 1971; Pi�erard, 1971; Pi�erard &

Bisaillon, 1975). We also use the myological inferences made for the extinct monachines

A. longirostris and P. pacifica, and their locomotive interpretations (Muizon, 1981).

Phylogenetic analysis
The phylogenetic analysis was performed using PAUP version 4.0b10 for Macintosh

(Swofford, 2001) with a heuristic search option with simple sequence addition, using the
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tree-bisection-reconnection (TBR) algorithm. Bootstrap values were obtained after

a full heuristic search with 10,000 replications with random number seed zero

and the best tree saved for each replication. Character states were optimized with

accelerated transformation criterion (ACCTRAN). For the Goloboff criterion the k-value

was set at 3. Formerly, different character matrices resulting in different phylogenetic

trees have been used to elucidate the phylogenetic relationships among Phocidae

(see, e.g., Bininda-Emonds & Russell, 1996; Koretsky, 2001; Koretsky & Rahmat, 2013;

Amson & Muizon, 2014; Berta et al., 2015). In this study, we use 85 morphological

characters, either newly described, adopted, or adapted from published phylogenetic

analyses incorporating Phocidae (Berta & Wyss, 1994; Bininda-Emonds & Russell, 1996;

Cozzuol, 2001; Koretsky, 2001; Koretsky & Grigorescu, 2002; Koretsky & Rahmat, 2013;

Amson &Muizon, 2014; Berta et al., 2015; Koretsky, Peters & Rahmat, 2015) (List S3). One

character is parsimony-uninformative (24) and three (32, 33, 81) are ordered. A

significant number of the phylogenetic characters scored by Koretsky (2001) and Koretsky

& Rahmat (2013) are prone to subjective scoring (e.g., character states “deep” versus

“shallow”). Therefore, only a limited number of those characters have been adopted

for the current analysis. Time-calibration of the phylogenetic analyses presented in this

study has been performed by time-fixating the nodes that have been recovered in the

molecular phylogenetic analysis from Higdon et al. (2007).

The analysis includes 31 operational taxonomic units (OTUs). Outgroups include the

early Miocene pinnipedimorph Enaliarctos mealsi Mitchell & Tedford, 1973 and the

pinnipediform Pteronarctos goedertae Barnes, 1989, the extant South American sea

lion Otaria byronia Blainville, 1820 and the extinct otariid Thalassoleon mexicanus

Repenning & Tedford, 1977, and the desmathophocid Allodesmus kernensis Kellogg, 1922.

Information on outgroup OTUs included in the phylogenetic analysis is based on

personal observations and descriptions in the relevant literature. Ingroup taxa

include representatives of all extant phocid genera: the Monachinae Hydrurga leptonyx,

L. weddelli, Lobodon carcinophaga, Mirounga leonina, Monachus monachus, and O. rossi;

and the Phocinae C. cristata, Erignathus barbatus, Halichoerus grypus, Histriophoca

fasciata, Pagophilus groenlandicus, Phoca vitulina, Pusa caspica, Pusa hispida, and Pusa

sibirica. Extinct phocid taxa included in the analysis are limited to the lobodontin

Monachinae H. martini Amson & de Muizon, 2013 and P. pacifica Muizon, 1981;

the Devinophocinae Koretsky & Holec, 2002 D. claytoni Koretsky & Holec, 2002 and

Devinophoca emryi Koretsky & Rahmat, 2013; and the Phocinae Kawas benegasorum

Cozzuol, 2001, L. proxima (Van Beneden, 1877, Praepusa boeska Koretsky, Peters &

Rahmat, 2015, Praepusa magyaricus Koretsky, 2003, Praepusa pannonica Kretzoi, 1941,

Praepusa vindobonensis, and “Phoca” (Nanophoca) vitulinoides. The character matrix

is provided as Data S1. We follow Barnes (1972) in considering Allodesmus kelloggi

as a junior synonym of Allodesmus kernensis. Extant Phocidae, L. proxima, Praepusa

boeska, and “Phoca” (Nanophoca) vitulinoides were scored after personal observation.

Praepusa vindobonensis has been scored after on-hand observations of casts at the

USNM, and illustrations and descriptions by Toula (1897) and Koretsky (2001).

Koretsky (2001) assigned different isolated cranial, mandibular, and postcranial bones to
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Praepusa vindobonensis on the basis of an ecomorphotype hypothesis presented in her

publication. Pending the discovery of new associated or articulated cranial and

mandibular material of Praepusa vindobonensis, we tentatively score mandibular and

cranial characters of Praepusa vindobonensis on the basis of mandibles and skulls currently

housed in the IZUAN collection, but coding is based on descriptions and illustrations

from Koretsky (2001) and are not readily adopted from her character matrix. Character

states of other OTUs are scored on the basis of illustrations and descriptions in the

literature (Mitchell, 1966; Barnes, 1972; Mitchell & Tedford, 1973; Berta & Ray, 1990;

Cozzuol, 2001; Koretsky, 2001; Koretsky & Holec, 2002; Koretsky, Peters & Rahmat, 2015;

Koretsky & Rahmat, 2015; Rahmat & Koretsky, 2016; Dewaele, Lambert & Louwye, 2017).

Nomenclatural acts
The electronic version of this article in portable document format (PDF) will represent a

published work according to the International Commission on Zoological Nomenclature

(ICZN), and hence the new names contained in the electronic version are effectively

published under that code from the electronic edition alone. This published work and the

nomenclatural acts it contains have been registered in ZooBank, the online registration

system for the ICZN. The ZooBank life science identifiers (LSIDs) can be resolved and the

associated information viewed through any standard web browser by appending the LSID

to the prefix http://zoobank.org. The LSID for this publication is: urn:lsid:zoobank.org:

pub:1310A48E-A725-40E7-AFFB-D0A9043CFE04. The online version of this work is

archived and available from the following digital repositories: PeerJ, PubMed Central, and

CLOCKSS.

RESULTS
Geological context

Lithostratigraphy
Specimens of “Phoca” vitulinoides have been recovered (and described) over the course of

more than a century, from a number of locations and by a number of different collectors.

Historically, the specimens of “Ph.” Vitulinoides from the Van Beneden collection (1871,

1876, 1877) were collected by the military during the 1860s fortification works around the

city of Antwerp (Van Beneden, 1877). Specimens studied by Van Beneden hence came

either from construction sites at forts or from different “sections” (i.e., trenches) around

the city of Antwerp. These sections have been numbered, with section 1 representing

the section north of Antwerp, section 2 northeast of Antwerp, and section 3 east of

Antwerp (Fig. 2) (Vanden Broeck, 1878). The location of these sections roughly coincides

with that of today’s highway R10 around Antwerp. Van Beneden (1876, 1877) assigned a

“Scaldisien” (Scaldisian) age to the specimens of “Ph.” Vitulinoides he studied. However,

the Scaldisian is currently considered an obsolete term (Laga & Louwye, 2006) and

there appears to be confusion about what the Scaldisian represented (Laga & Louwye,

2006; and references therein). Although Van Beneden never provided lithostratigraphic

data, it is generally accepted that the Scaldisian Van Beneden used to date “Ph.”
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Figure 2 Localities. (A) Regional map showing the southern part of the North Sea basin with bordering

countries and labeled capital cities (yellow) and the Antwerp area (red). (B) Close-up of the Antwerp

area with color-coding for the outcropping Paleogene and Neogene strata underneath the Quaternary

top layer. The sections of the fortification walls around Antwerps used by Van Beneden (1877) as

localities for the Neogene marine mammals (including seals) from the Antwerp area are indicated by

dashed lines and numbered as in Van Beneden (1877), using Vanden Broeck (1878). (C) Stratigraphic

legend for the Paleogene and Neogene strata from the Antwerp Area, with small seals indicating the

stratigraphic occurrence of the neotype (IRSNB M2276) and other recently discovered specimens of

Nanophoca vitulinoides Abbreviations: NL, Netherlands; GER, Germany; LUX, Luxembourg; FRA,

France; UK, United Kingdom; BEL, Belgium; Lux., Luxembourg City; Plei., Pleistocene; Plio., Pliocene;

Pi., Piacenzian; Za., Zanclean; Mes., Messinian; Ser., Serravallian; Lang., Langhian; Burdigal., Burdi-

galian; Aq., Aquitanian; Priabon., Priabonian; Barton., Bartonian; Fm., Formation. Image based on data

from Dienst Ondergrond Vlaanderen (DOV; dov.vlaanderen.be).
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Vitulinoides in fact refers to the basal gravel of the Zanclean (early Pliocene) Kattendijk

Formation (e.g., Koretsky & Ray, 2008; P. Gigase, 2015, personal communication). Hence,

all species Van Beneden “dated” to the Scaldisian are currently considered to be of early

Pliocene age or older. However, no lithostratigraphic or biostratigraphic evidence

supports this assumption.

Collections from the IRSNB that have not been studied by Van Beneden include the

Hasse collection, which entered the IRSNB collection decades after Van Beneden’s work.

Quality of stratigraphic data associated with specimens of these collections is low and

Hasse’s specimens have been “dated” to the “Bold�erien” (Bolderian). As with the

Scaldisian, the term Bolderian has currently been abandoned and should not be used

anymore (Laga & Louwye, 2006). Following Table 1 in Laga & Louwye (2006), it appears

that some researchers considered the early to middle Miocene Berchem Formation to

represent the Bolderian stage. In the region of Kessel, where the specimens of the Hasse

collection come from, the Berchem Formation crops out (Fig. 2). Sediment recovered

from the sacral canal of IRSNB M2277 from the Hasse collection has been dated

biostratigraphically using dinoflagellate cysts (see section below).

The collection from the site at the Antwerp International Airport has a detailed

stratigraphic framework (Hoedemakers & Dufraing, 2015). The specimens have been

recovered from the layer V, overlying the Antwerpen Sands Member of the Berchem

Formation and underlying the Deurne Sands Member of the Diest Formation

(Hoedemakers & Dufraing, 2015). This layer V has a relatively high vertebrate fossil

content, but has not yet been formally studied and dated. However, bracketed by dated

sediments of the Berchem and Diest Formations, its age must range between late

Serravallian and early Tortonian (late middle to early late Miocene).

Specimens of “Phoca” (Nanophoca) vitulinoides from the Gigase collection from

different localities are associated with relatively detailed stratigraphic data. Many of

them come from a basal gravel, which has sometimes been identified as the basal gravel

of the Kattendijk Formation. Gigase also tentatively assumes that a number of these

specimens was reworked from—presumably—Miocene deposits on the basis of their

state of preservation, which often consists of abrasion (P. Gigase, 2015, personal

communication). One specimen has been found in situ in Miocene deposits: IRSNB

M2270 in the Deurne Sands Member of the Diest Formation.

No stratigraphic data has been provided with the Gommers–Bosselaers specimen.

However, the geographic location is precisely known: just northwest of the crossing of the

Zurenborgbrug (bridge) over the R10 highway. Studying a section at the site is hampered

by the presence of a highly disturbed top layer and a dense network of tree roots.

Stratigraphic inferences are based on the study of two stratigraphic drillings carried out

by the Geological Survey of Belgium (available at Databank Ondergrond Vlaanderen;

http://www.dov.vlaanderen.be) and one section (section I B.P.) presented by De Meuter,

Wouters & Ringele (1976), from within a 50 m radius of the locality. Both drillings

show approximately 1.5 m of (disturbed) quaternary sediments on top of 1.5–2 m of

brownish to greenish glauconitic sands from the Berchem Formation, which become

greener with increasing depth. In one drilling, the Berchem Formation has been

Dewaele et al. (2017), PeerJ, DOI 10.7717/peerj.3316 11/79

http://www.dov.vlaanderen.be
http://dx.doi.org/10.7717/peerj.3316
https://peerj.com/


specified to the Antwerpen Sands Member. Similarly,DeMeuter, Wouters & Ringele (1976)

interpret section I B.P. as the Antwerpen Sands [Member] subsequently covered by

reworked Deurne Sands [Member of the Diest Formation] and reworked Kattendijk Sands

[i.e., Kattendijk Formation], a lumachelle layer representing reworked Lillo Formation,

Quaternary, and “Filling up.” The neotype of N. vitulinoides has been recovered from a

slope, about two meters below the top of the slope. While the drillings were on top of

this slope, the exact location of section I. B.P. in relation to this slope is unknown.

However, shell fragments are abundant on the slope at and above the level of the locality

of the neotype. Hence, all indications points toward the Berchem Formation (and

presumably the Antwerpen Sands Member) as the stratigraphic origin of the neotype

IRSNB M2276.

Dinoflagellate cyst biostratigraphy
Two sediment samples (sample 1018/1019 from the sacrum of N. vitulinoides IRSNB

M2276a and sample 1026 from the sacrum IRSNB VERT-8243-07, the latter being

not figured in this study) recovered from bone cavities were palynologically analysed

for organic-walled dinoflagellate cysts (dinocysts) and acritarchs (Table S9). The

palynological preparation of the sediments followed standard techniques described by

Louwye, Head & De Schepper (2004). Acid treatments with HCl and HF were applied

for the removal of carbonates and silicates, respectively. Sieving of the organic residue

was carried out on a nylon screen with a 10 mm mesh size. The residue was placed on

glass slides with glycerol gelatine jelly. The microscopic analysis was carried out with a

transmitted light microscope Zeiss AxioImager A1 under a 400� magnification. The

entire slide was scanned in non-overlapping traverses. The taxonomy of the dinocysts and

acritarchs follows Fensome, MacRae & Williams (2008).

The preservation and diversity of the dinocysts in sample 1018/1019 is moderate to

good. A total of 21 dinocyst species and one acritarch were recorded (Table S9). A

maximum age for the sample is provided by the key species Habibacysta tectata, with a

lowest occurrence in high latitudes dated at 14.2 Ma (Schreck, Matthiesen & Head, 2012), a

datum later confirmed by Quaijtaal et al. (2014) in lower latitudes (Porcupine Basin, off

southwest Ireland). A minimum age for the sample is given by Cleistosphaeridium

placacanthum; several authors report a highest occurrence of this key species in the

Serravallian of the North Sea Basin and the North Atlantic realm: mid-Serravallian (chron

C5Abn) of New Jersey, USA (de Verteuil & Norris, 1996); mid Serravallian (12.8 Ma)

offshore Denmark (Dybkjær & Piasecki, 2010); middle-upper Serravallian of the southern

North Sea Basin (Munsterman & Brinkhuis, 2004); and upper Serravallian of the

Porcupine Basin offshore southwest Ireland (Louwye et al., 2008). The sediment samples

1018/1019 retrieved from the sacrum IRSNB M2276a are thus not older than late

Langhian (14.2 Ma) and not younger than late Serravallian (middle Miocene).

The preservation and diversity of the dinocysts in sample 1026 are poor. Only

ten dinocyst species and one acritarch were recorded. Only two dinocysts can be

considered as biostratigraphic key species. The lowest occurrence of H. tectata has

been dated at 14.2 Ma (see above). The presence of C. placacanthum provides a minimum
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age in the late Serravallian (see above). The sediment retrieved from the sacrum

IRSNB VERT-8243-07 found at Kessel has thus an age between late Langhian (14.2 Ma)

and late Serravallian, corroborating the middle Miocene age of the first sample.

Systematic paleontology

Family PHOCIDAE Gray, 1821

Subfamily PHOCINAE Gray, 1821

NANOPHOCA gen. nov.

Type and only included species: Nanophoca vitulinoides (Van Beneden, 1871).

Diagnosis of genus: As for the type and only species.

Etymology: The name of the genus is derived from the Greek nouns “nanos” (m.),

meaning “dwarf,” and “phok�e” (f.), meaning “seal.” This name highlights the small size of

this seal genus.

NANOPHOCAVITULINOIDES. (Van Beneden, 1871)

Phoca vitulinoides Van Beneden, 1871.

Phoca (Phoca) vitulinoides Friant, 1944.

“Phoca” vitulinoides Koretsky & Ray, 2008.

Neotype

IRSNB M2276a–q, including the dens of the axis (i), two middle thoracic vertebrae (j, k),

two posterior thoracic vertebrae (l, m), three lumbar vertebrae (n, o, p), sacrum (a),

?one caudal vertebra (q), partial right scapula (f), complete right (c) and partial left

humeri (b), right and left femora (d, e), partial right tibia (g), and the right fourth

metatarsal (h) of a single individual (Fig. 1A).

Type locality

North of the Zurenborgbrug and between the R10 road and E19 highway, Berchem

District, Antwerp, Antwerp Province, Belgium (Fig. 2).

Type horizon and age

A sediment sample recovered from the sacral canal of the Gommers–Bosselaers

specimen has been subjected to dinoflagellate cyst biostratigraphy (see section below).

Dinoflagellate cyst biostratigraphy of a sediment sample recovered from the sacrum of

IRSNB M2276a yield a minimum age ranging from late Langhian to late Serravallian

(middle Miocene) age for the neotype of N. vitulinoides.

Diagnosis

Nanophoca vitulinoides is a small seal, estimated to have reached a length of approximately

one meter, which is slightly smaller than members of the genus Pusa (1.3 m for male

Pusa sibirica Ciesielski et al., 2006). It differs from other genera of Phocinae in the

following characteristics: sacrumwith three (also in Monachinae Gray, 1869) to four fused

sacral vertebrae (also in other Phocinae); sacral spinous processes fused and dorsally
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elongate; prominent hook-like ischiatic spine; and a low proximodistally oriented ridge

just proximal to the medial condyle of the femur, less than one millimeter raised over the

condyle. Additionally, the following characteristics have also been observed in other

Phocinae, but their combination is unique to N. vitulinoides: a scapular spine and

subspinous ridge (see definition below) fuse at scapular neck (also in H. grypus, Phoca,

and Pusa) lesser tubercle of humerus at same level as humeral head (also in Cryptophoca

maeotica); greater trochanter of femur higher than head (also in Praepusa vindobonenesis,

Pusa caspica, and Pusa sibirica); head of femur on narrow, long neck (also in C. maeotica,

L. proxima, Monachopsis pontica, Praepusa vindobonensis, and Sarmatonectes sintsovi).

Referred specimens

Associated or articulated referred specimens: IRSNBM2276a–q, neotype, partial skeleton

with dens of axis (i), two middle thoracic vertebrae (j, k), two posterior thoracic vertebrae

(l, m), three lumbar vertebrae (n, o, p), sacrum (a), ?one caudal vertebra (q), partial

right scapula (f), complete right (c) and partial left (b) humeri, right and left femora

(d, e), partial right tibia (g), and the right fourth metatarsal (h); from the Berchem

Formation from N of the Zurenborgbrug, Antwerp, Belgium, and collected by

H. Gommers and donated to the IRSNB by M. Bosselaers. IRSNB 1059-M240a–f, pelvic

girdle with three lumbar vertebrae (d–f), sacrum (b), left and right innominates (a), and

left femur (c), from the “Scaldisian” of section 3 at Borgerhout, Belgium, and illustrated

by Van Beneden (1877, pl. XV, Figs. 1–4, 17, 18) (Fig. 1B). IRSNB 1066-M243a–c,

right radius (a), right ulna (b), and right rib (c), from the “Scaldisian” of section 3 at

Antwerp and illustrated by Van Beneden (1877, pl. XV, Figs. 10, 11, 29) (Fig. 1C).

IRSNB 1226-M244a,b, one anterior thoracic vertebra (b), and left innominate (a),

from the “Scaldisian” of section 3 at ?Borgerhout and illustrated by Van Beneden (1877,

pl. XV, Fig. 12).

Isolated referred specimens include:

One axis. IRSNB M2268, from the Miocene or earliest Pliocene reworked in a Pliocene

basal gravel of either Rumst or Steendorp (Fig. 1D). Two cervical vertebrae. IRSNBM2274,

third cervical vertebra, from the unnamed late middle to early late Miocene layer V at the

Antwerp International Airport, Deurne, Antwerp, Belgium. IRSNB M2270, seventh

cervical vertebra, from the late Miocene Deurne Sands Member of the Diest Formation at

the former construction site of the Steenbrug at Borgerhout, Antwerp. One anterior

thoracic vertebra. IRSNB M2269, from the Deurne Sands Member (Diest Formation) at

Antwerp. One middle thoracic vertebrae. IRSNB 1075-M245, from the “Scaldisian” of

section 3 at Borgerhout and illustrated by Van Beneden (1877, pl. XV, Figs. 12, 13). One

posterior thoracic vertebra. IRSNB M2273, from the unnamed late middle to early late

Miocene layer V at the Antwerp International Airport, Deurne, Antwerp. One rib.

IRSNB M2279, from the “Bolderian” at Kessel, Belgium. One lumbar vertebra. IRSNB

1073-M246, from the “Scaldisian” of section 3 at Borgerhout and illustrated by

Van Beneden (1877, pl. XV, Figs. 15, 16). Three sacra. IRSNB 1092-M236, from

the “Scaldisian” of section 2 at Borgerhout and illustrated as Phocanella minor by

Van Beneden (1877, pl. XIV, Figs. 18, 19). IRSNB M2277, from the “Bolderian” at Kessel.
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IRSNB VERT-8243-07, from the “Bolderian” at Kessel (biostratigraphy only).One scapula.

IRSNB 1068-M241, right scapula, from the “Scaldisian” of section 3 at Antwerp,

illustrated by Van Beneden (1877, pl. XV, Fig. 5). One humerus. IRSNB 1063-M242, left

humerus, from the “Scaldisian” of section 3 at Borgerhout, Belgium, and illustrated by

Van Beneden (1877, pl. XV, Figs. 6–9). One radius. IRSNB M2278, right radius, from

the “Bolderian” at Kessel. One ulna. IRSNB M2272, left ulna, from the unnamed late

middle to early late Miocene layer V at the Antwerp International Airport, Deurne,

Antwerp, Four femora. IRSNB M2271, left femur, Miocene in Pliocene basal gravel of

Kattendijk Formation at brickyard Swenden, Antwerp. IRSNB 1049-M247, right femur,

from the “Scaldisian” of section 3 at Borgerhout and illustrated by Van Beneden (1877,

pl. XV, Figs. 19–21). IRSNB 1051-M251, left femur, from the “Scaldisian” of section 3 at

Borgerhout, illustrated by Van Beneden (1877, pl. XV, Figs. 26, 27). IRSNB 1102-M238,

right femur, from the “Scaldisian” of section 3 at Borgerhout and illustrated as Phocanella

minor by Van Beneden (1877, pl. XIV, Figs. 21–23).

Five tibiae. IRSNB 1069-M248, left tibia, from the “Scaldisian” of section 3 at Antwerp

and illustrated by Van Beneden (1877, pl. XV, Fig. 22). IRSNB 1070-M249, proximal

left tibia and fibula, from the “Scaldisian” of section 3 at Borgerhout and illustrated by

Van Beneden (1877, pl. XV, Fig. 23, 24). IRSNB 1090-M233, proximal right tibia and

fibula, from the “Scaldisian” of section 3 at ?Borgerhout, illustrated as Phocanella pumila

by Van Beneden (1877, pl. XIV, Fig. 12). IRSNB 1105-M239, right tibia with proximal

fibula, from the “Scaldisian” of section 3 at Borgerhout, illustrated as Phocanella minor

by Van Beneden (1877, pl. XIV, Figs. 24, 25). IRSNB 1300-M250, middle and distal right

tibia and middle fibula, from the “Scaldisian” of section 3 at Borgerhout, illustrated by

Van Beneden (1877, pl. XV, Fig. 25).One calcaneum. IRSNBM2275, right calcaneum from

the unnamed late middle to early late Miocene layer V at the Antwerp International

Airport, Deurne.

Comments

In the first description of “Phoca” vitulinoides, Van Beneden (1871) did not assign any type

specimen. The original material included one maxilla, one atlas, one ulna, one sacrum,

two calcanea (illustration shows one astragalus), and one phalanx. Originally jointly

curated by the Biology and Geology departments at the KUL, this collection was

transferred to the IRSNB in different stages during the 20th century. Unfortunately,

currently, the original material could neither be located in the collections at the IRSNB

nor at the KUL. Primary possibilities for this loss are (1) destruction at the KUL during

World War II bombings, and (2) disappearance during transfer from the KUL to the

IRSNB. More recently, Koretsky & Ray (2008) re-investigated Van Beneden’s original

description, concluding that the type material represents two different species: the

illustrated sacrum represents a small species conforming the currently acceptance of

“Ph.” vitulinoides as a small phocine seal, and the other illustrated bones belong to a much

larger species. Thorough re-reading of the publications of Van Beneden (1871, 1876, 1877)

along with the publications of Koretsky & Ray (2008) and Koretsky & Peters (2008) leads to

the conclusion that the latter were mistaken, probably due to incorrect translation of
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French from the original publication (Van Beneden, 1871). While Van Beneden (1871)

states that “Ph.” vitulinoides does not exceed the size of Phoca vitulina, and that the

phalanx is similar in size to that of E. barbatus, Koretsky & Ray (2008) and Koretsky &

Peters (2008) seem to have mistranslated these statements as “Ph.” vitulinoides being

morphologically similar to Ph. vitulina, with a size comparable to or even larger than

E. barbatus. From our study, we consider that all specimens illustrated by Van Beneden

(1877) are of comparatively small size for phocine remains, just as other specimens

assigned toN. vitulinoides [“Ph.” vitulinoides] and, hence, the illustrated specimens do not

appear to belong to different taxa, based on their size alone. However, Koretsky & Ray

(2008) were correct when they stated that the original material is unsatisfactory for the

designation of a lectotype, with the sacrum being the least unsatisfactory. Because the

lectotype designated by Koretsky & Ray (2008) is lost, we replace this lectotype by a

neotype: IRSNB M2276a-q (ICZN 75.1). Furthermore, given the quality of the illustrated

specimen (Van Beneden, 1871, pl. 1), care should be taken when considering this

former lectotype sacrum because no sacrum is known for the geographically close

B. neerlandica. Despite the strongly elongated wings and the small size (see Description

and Comparison), its attribution to N. vitulinoides may be questionable. One study by

Koretsky & Rahmat (2013) found B. neerlandica also being phylogenetically close to

N. vitulinoides. Apart from B. neerlandica, only Praepusa boeska is a contemporaneous

small phocine seal from the North Sea Basin (Tables S3 and S10) (Koretsky, Peters &

Rahmat, 2015). For Praepusa boeska, a sacrum has been described, but this specimen

had been found isolated and, hence, its assignment to Praepusa boeska remains

questionable. Given the aforementioned similarities between the lectotype sacrum of

N. vitulinoides, the neotype sacrum of N. vitulinoides, and the only known sacrum of

Praepusa boeska, it is likely that the sacrum assigned to Praepusa boeska actually represents

a sacrum of N. vitulinoides.

Description and comparison
Cranial skeleton

Maxilla

One maxilla has been mentioned by Van Beneden (1871). However, he neither described it

in detail nor provided illustrations. As stated earlier, this specimen has been lost and

redescription is hence precluded.

Axial skeleton

Atlas

Van Beneden (1871, pl. 1, Fig. 1) describes and illustrates one atlas that he assigned

to “Phoca” (Nanophoca) vitulinoides. This specimen has been lost and will not be

treated in the current study. Moreover, in the absence of any other known atlas

assigned to the species, it remains uncertain as to whether this atlas indeed belongs to

N. vitulinoides.
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Axis

Two axes have been assigned to N. vitulinoides: one nearly complete (IRSNB M2268),

and IRSNB M2276i (neotype) that only preserves the axial dens (Fig. 3). The right

postzygapophysis of IRSNB M2268 is missing and the spinous process is slightly abraded,

but the left postzygapophysis is preserved and can be described. The dens is slightly

flattened laterally, slightly directed dorsally, and weakly constricted at its base (maximum

width 6.1 mm, width at constriction 5.7 mm). In dorsal view, the angle between the

dens and the paired articular surfaces for the atlas varies, being strongly obtuse, around

120�, in the two partial axes; and less strongly obtuse in the complete axis. The paired

articular surfaces for the atlas are roughly teardrop-shaped. The longitudinal ventral

median crest on the body is thin and extends along the entire ventral margin of the

axis, broadening posteriorly and forming a pronounced tubercle. There is a slightly

elevated and contracted median crest on the dorsal side of the body, on the floor of

the neural canal.

The neural canal is slightly dorsoventrally elongate in anterior view, yet not as much

as in other phocines. The postzygapophysis is short and stubby, and with a circular

postzygapophyseal articular surface facing lateroventrally. The transverse process

bifurcates distally, with a relatively long lateral branch and a short, stubby ventral branch.

To our knowledge, no other phocine, either extant or extinct, has such a bifurcating

transverse process. In N. vitulinoides, the spinous process is more strongly

anteroposteriorly elongate than in extant Phocidae, extending far posterior to the level of

the posterior articular surface of the body of the axis. This character is currently only

known for N. vitulinoides and the extinct monachine A. longirostris (Muizon, 1981). In

other extinct and extant phocids, the spinous process is strongly tilted anteroventrally.

Potentially analogous to the domestic dog, the combined musculus obliquus capitis

caudalis has its origin on the lateral side of the spinous process of the axis and inserts on

the dorsal wing of the atlas. Musculus obliquus capitis caudalis serves to unilaterally rotate

the atlas around the dens of the axis and to bilaterally fixate the atlantoaxial joint (for the

dog, see Evans & de Lahunta, 2013).

Other cervical vertebrae

Only one C3 is preserved (IRSNB M2274) (Fig. 4). Generally among phocines, the

spinous process of C3 is consistently smaller than in the following cervical vertebrae,

i.e., practically absent (L. Dewaele, 2015, personal observation). Hence, based on the

strongly reduced spinous process, IRSNB M2274 is identified as C3. The vertebra is

anteroposteriorly shorter than it is dorsoventrally high, compared to the elongated axis.

The anterior and posterior articular surfaces of the body are sub rounded to oval and

there is a prominent median crest on the ventral side of the body. The dorsoventral length

of the neural arch equals that of the body (total height 20.9 mm versus body height

10 mm, Table S1). The prezygapophysis is an anteriorly oriented oval protrusion, i.e.,

strongly projecting anteriorly but low in dorsal direction. The prezygapophyseal

articular surface is oval, and right and left articular surfaces draw an obtuse angle in

anterior view. Similarly, the postzygapophyseal articular surface covers the entire ventral
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part of the simple and robust postzygapophysis, facing ventrally and slightly laterally.

The neural canal is strongly reniform and dorsoventrally half as high as the vertebral

body, in cross-section (6.4 mm versus 12.1 mm; IRSNB M2270). While other phocines

have a tiny spinous process on C3, no spinous process could be detected in the C3 of

N. vitulinoides.

The isolated C7 IRSNB M2270 shows moderate abrasion of the processes of the neural

arch. This specimen is roughly of the same dimensions as the C3 vertebra described above.

The vertebra is anteroposteriorly shortened, as compared to extant phocines, and with

oval anterior and posterior articular surfaces. A prominent median crest runs along

the ventral margin of the body. This median crest is highest in its middle portion and

reduced toward the anterior and posterior margins of the body; it is mediolaterally

thickest distally. The neural arch is relatively large, with simple prezygapophyses and

postzygapophyses, i.e., apparently lacking mammillary processes. Prezygapophyseal and

postzygapophyseal articular surfaces are subcircular in outline and cover the entire

prezygapophysis and postzygapophysis, respectively. The prezygapophyseal articular

surfaces are at a slightly obtuse angle from each another. C7 has transverse foramina,

Figure 3 Axes of Nanophoca vitulinoides. IRSNB M2268 axis of Nanophoca vitulinoides (A–D) and

corresponding drawings (E–H) in left lateral (A, E), anterior (B, F), dorsal (C, G), and ventral (D, H)

view. IRSNB M2276i (neotype) axis of Nanophoca vitulinoides in left lateral (I), anterior (J), dorsal (K),

and ventral (L) view. Broken or obliterated areas are indicated in gray.
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lateral to the vertebral body. The transverse process is spatulate, with a pronounced

anterodorsally oriented concavity. The spinous process of C7 is well developed, projecting

straight dorsally. C3 and C7 of N. vitulinoides do not differ strongly from those of

other phocines.

Figure 4 Other cervical vertebrae of Nanophoca vitulinoides. IRSNB M2274 third cervical of

Nanophoca vitulinoides (A–C) and corresponding drawings (D–F) in left lateral (A, D), anterior (B, E),

and dorsal (C, F) view. IRSNB M2270 seventh cervical vertebra of Nanophoca vitulinoides (G–I) and

corresponding drawings (J–L) in left lateral (G, J), anterior (H, K), and dorsal view (I, L). Broken or

obliterated areas are indicated in gray.
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Thoracic vertebrae

For the convenience of their description, the thoracic vertebrae are arbitrarily separated

in anterior, middle and posterior series (Figs. 5–7). Based on analogy with the known

complete series of thoracic vertebrae in extant phocines, in the anterior (T1, T2) and

posterior (T11–15) series a single, subcircular costal fovea is located on the lateral side

of each centrum. In the middle thoracic vertebrae series (T3–10), each vertebra has

crescent-shaped costal foveae on its lateral sides: a cranial and a caudal costal fovea.

Also the shape of the transverse processes gradually changes throughout the series of

thoracic vertebrae, but it is not interspecifically consistent among phocines (L. Dewaele,

2015, personal observation).

Anterior thoracic vertebrae

We know of only two anterior thoracic vertebrae in public collections that can be

assigned to N. vitulinoides, including IRSNB M2269, and IRSNB 1226-M244b (Fig. 5).

The last specimen is associated with a left innominate, but such an association is highly

unusual, hence doubtful. Consequently, assignment of anterior thoracic vertebrae is

tentative and based on their small size and the overall abundance of bones assigned to

N. vitulinoides in general (Table S1).

In general, in extant phocines T1 and T2 can easily been distinguished: the costal fovea

on the transverse process is strongly concave in T1 and noticeably less concave in T2.

In analogy to extant phocines, we tentatively identify IRSNB M2269 and IRSNB 1226-

M244b as T1. The body of T1 is short, bearing strongly developed transverse processes and

a robust and thick ventral median crest. This median crest is better developed at the

cranial part of the vertebra and becomes smaller toward the caudal part of the vertebra.

This differs from the cervical vertebra C3, in which the ventral median crest is better

developed at the posterior margin of the vertebra, and from C7, in which the ventral

median crest is better developed in the center of the ventral margin of the vertebra, as

observed in vertebrae of other phocines. The vertebral body is oval to reniform in anterior

view. The costal fovea on the vertebral body is strongly concave and well outlined; it

faces ventrally and is dorsoventrally at the same level as the long axis through the body of

the vertebra.

The transverse process is large compared to the body; the width across the whole

vertebra is nearly three times the width of the vertebral body. A similar ratio is also

seen in Pusa spp., but not in other phocines (L. Dewaele, 2015, personal observation). The

prezygapophysis is short and stubby, with right and left circular prezygapophyseal

articular surface drawing a slightly obtuse angle with each other, in anterior view. The

transverse process is knobby with a small but deep concave transverse costal fovea facing

ventrally. The postzygapophysis is not particularly well developed, consisting in a short

protrusion with a ventrolaterally facing postzygapophyseal articular facet. The spinous

process is transversely thick and robust, and long, compared to other phocines, and

strongly projects posteriorly. Compared to other phocines, the neural canal, of reniform

section, is very small in relation to the dimensions of the vertebral body: as in C3, the

neural canal is dorsoventrally almost half as high as the vertebral body (6.2 mm versus
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10.5 mm; IRSNB M2269). Overall, T1 of N. vitulinoides does not differ significantly

from T1 of other phocines.

Middle thoracic vertebrae

The IRSNB houses few middle thoracic vertebrae that can be assigned to N. vitulinoides:

neotype IRSNB M2276j,k and IRSNB 1075-M245 (Fig. 6). The former have been found

in association with a partial skeleton assigned to N. vitulinoides and the latter specimen

has been found isolated. Hence, assignment of these two middle thoracic vertebrae is

only tentative and predominantly based on the small size fitting that of N. vitulinoides.

Direct designation of a specific position for an isolated middle thoracic vertebra of

N. vitulinoides as a thoracic vertebra is impossible. While the shape of the transverse

process is the most prominently changing structure from T3 to T10, which should

primarily be useful for identification, this feature is strongly variable intraspecifically.

Figure 5 Anterior thoracic vertebrae of Nanophoca vitulinoides. IRSNB 1226-M244b (A, D, G, J) and

IRSNB M2269 (B, E, H, K) anterior thoracic vertebrae of Nanophoca vitulinoides; and corresponding

drawings of the latter (C, F, I, L) in left lateral (A–C), anterior (D–F), dorsal (G–I), and ventral (J–L)

view. Broken or obliterated areas are indicated in gray.

Dewaele et al. (2017), PeerJ, DOI 10.7717/peerj.3316 21/79

http://dx.doi.org/10.7717/peerj.3316
https://peerj.com/


Hence, it remains difficult to locate an isolated middle thoracic vertebra in the absence

of a complete middle thoracic vertebrae series of N. vitulinoides. Of lesser value for a

precise localization, there is the degree of development of the median ventral crest on the

body. This crest is best developed in T3 and lowers progressively backwards.

Currently, only specimens of the middle and posterior sections of the middle thoracic

vertebral series are unambiguously assigned to N. vitulinoides. Designation of more

than ten other, isolated, middle thoracic vertebrae toN. vitulinoides remains questionable,

due to their strong degree of weathering combined with the lack of any direct association

or articulation to other bones. The vertebral body is oval in anterior view and no ventral

median crest is observed, contrasting with cervical and anterior thoracic vertebrae. On

the anterior part of the lateral surface of the body there is a slightly concave crescent-

shaped costal fovea. Based on analogy with extant closely related species, it can be

assumed that a similar facet on the posterior part of the lateral surface of the body of

the preceding vertebra joins this facet. The prezygapophysis is strongly reduced, basically

Figure 6 Middle thoracic vertebrae of Nanophoca vitulinoides. IRSNB M2276k (neotype) (A–C),

IRSNB 1075-M245 (D–F) middle thoracic vertebrae of Nanophoca vitulinoides, and corresponding

drawings of the latter (G–I); in left later (A, D, G), anterior (B, E, H), and dorsal (C, F, I) view. Broken or

obliterated areas are indicated in gray.
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lying on the neural arch and with the oval articular surface facing dorsally and slightly

laterally. Similarly, the postzygapophysis is much reduced and the postzygapophyseal

articular surface does not protrude much from the ventral surface of the neural arch. The

transverse process is knobby and slightly elongate anteroposteriorly, with a tendency to

bifurcate in anterior and a posterior accessory processes. Anteriorly, the transverse process

bears a convex costal fovea for the articulation with the tubercle of the rib. The spinous

process is short and stubby. As for the thoracic vertebra T1, the neural canal has a

reniform section and is small compared to the body of the vertebra, more than in other

phocines. At the contact between both halves of the neural arch, at the anterior margin

of the arch, there is a small but distinct and sharp process. This process has also been

observed in a number of specimens of extant phocine species, including the harp seal,

P. groenlandicus, and Pusa spp., but this is not consistent within each taxon and appears

intraspecifically variable. As with T1, the middle thoracic vertebrae of N. vitulinoides

generally resemble those of other phocines. However, they are on the whole much smaller

(Table S1), with a proportionally reduced neural canal.

Posterior thoracic vertebrae

Similar to the anterior and middle thoracic vertebrae, we only know a small number of

posterior thoracic vertebrae that can be assigned to N. vitulinoides: two vertebrae

from the neotype (IRSNB M2276l,m) and one specimen from the Antwerp Airport

Figure 7 Posterior thoracic vertebra of Nanophoca vitulinoides. IRSNB M2273 posterior thoracic

vertebra of Nanophoca (A–C) and corresponding drawings (D–F), in left lateral (A, D), anterior (B, E),

and dorsal (C, F) view. Broken or obliterated areas are indicated in gray.

Dewaele et al. (2017), PeerJ, DOI 10.7717/peerj.3316 23/79

http://dx.doi.org/10.7717/peerj.3316/supp-2
http://dx.doi.org/10.7717/peerj.3316
https://peerj.com/


(IRSNB M2273) (Fig. 7). Whereas the body retains the oval to sub rounded outline in

anterior view, as observed in the middle thoracic series (see above), it is proportionally

longer than in the anterior and middle thoracic vertebrae. The prezygapophysis is strongly

developed and it is located dorsal to the body of the vertebra, but protrudes only slightly

anterior to it. The articular surface of the prezygapophysis is oval-shaped and facing

medially, being nearly parallel to the opposite prezygapophyseal articular surface. The

mammillary process of the prezygapophysis extends dorsal to this surface, making a

pronounced thick and high tuberosity. The reduced transverse process is a blunt

tuberosity projecting lateroposteriorly. The postzygapophysis is similar in size and shape

to that in the anterior thoracic vertebrae, and is larger and protrudes more than that in

the middle thoracic vertebrae. The postzygapophysis is strongly laterally tilted; its sub

rounded articular surface faces laterally. In none of the specimens, the spinous process is

completely preserved, preventing proper description. Compared to the posterior thoracic

vertebrae of other phocines, the entire vertebral arch is constricted anteroposteriorly,

i.e., the prezygapophysis and the postzygapophysis do not extend far anteriorly and

posteriorly, respectively. The costal fovea for the articulation of the head of the rib to the

body of the vertebra is moderately deep and well outlined. As with the anterior and middle

thoracic vertebrae, the neural canal has a reniform section and is small relative to the

body of the vertebra when compared to other phocines (neural canal height 6.6 mm

versus vertebral body height 13.4 mm). In comparison with Praepusa vindobonensis,

the anteroposterior length of the posterior thoracic vertebra of N. vitulinoides is

noticeably shorter.

Lumbar vertebrae

Overall, around fifteen lumbar vertebrae have been assigned to N. vitulinoides (Fig. 8).

However, the majority of them has been found isolated and are only tentatively assigned

to that species on the basis of size. Only six lumbar vertebrae are associated with other

remains assigned to N. vitulinoides: IRSNB M2276n,o,p (three vertebrae) and IRSNB

1059-M240d-f (three vertebrae; Fig. 8). Lumbar vertebra IRSNB 1092-M236 had

originally been assigned to Phocanella minor, but appears to belong to N. vitulinoides

based on our observations.

The ventral median crest on the vertebral body is slightly more robust and larger

posteriorly. Hence, the anterior articular surface is subcircular, while the posterior

articular surface is somewhat more triangular. The lumbar vertebrae of N. vitulinoides

are relatively more elongate anteroposteriorly than the cervical and thoracic vertebrae

in extant phocids. The prezygapophysis is well developed and projects only slightly

anteriorly, but strongly dorsally. Half of the articular surface on the prezygapophysis lies at

a level anterior to the anterior articular surface of the body. This surface is oval and

the prezygapophysis has a strongly developed, dorsally located mammillary process.

The angle between the two opposing prezygapophyseal articular surfaces, in anterior

view, is less than 90�. The postzygapophysis is well developed and the circular

postzygapophyseal articular surface faces ventrolaterally. The spinous process does not

extend dorsally beyond the level of the prezygapophysis.
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In none of the specimens the transverse process is preserved completely; nevertheless,

the preserved parts indicate a strongly anteriorly projected transverse process. This

anterior projection is seemingly stronger than in most other phocines, except Pusa spp. In

N. vitulinoides, the lumbar transverse process is also relatively thin, anteroposteriorly.

Among extant phocines, a similarly thin transverse process in only observed in Pusa spp.

On the posterolateral margin of the vertebral body, between the base of the transverse

process and the base of the prezygapophysis, there is a small and blunt, but prominent

accessory process (sensu Evans & de Lahunta, 2013). The same process is present in other

phocines, but it is commonly not as pronounced as in N. vitulinoides. The neural canal is

reniform in cross-section. Lumbar vertebrae of other phocines have a proportionally

larger neural canal.

Sacrum

The sacrum figured by Van Beneden (1871; pl. 1, Fig. 2) represented the former

lectotype specimen of N. vitulinoides (Fig. 9). Although this sacrum has been lost,

its illustration shows a combination of characteristics diagnostic of N. vitulinoides

Figure 8 Lumbar vertebrae of Nanophoca vitulinoides. IRSNB M2276n (neotype) (A–C), IRSNB

M2276o (neotype) (D–F), and corresponding drawings of the latter (G-I); in left lateral (A, D, G),

anterior (B, E, H), and dorsal (C, F, I) view. Broken or obliterated areas are indicated in gray.
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Figure 9 Sacra of Nanophoca vitulinoides. IRSNB M2276a (neotype) (A–C) and IRSNB M2277 (D–F)

sacra of Nanophoca vitulinoides, and corresponding drawings (G–I; J–L) in dorsal (A, G; D, J), anterior

(B, H; E, K), and left lateral (C, I; F, L) view. Broken or obliterated areas are indicated in gray.

Dewaele et al. (2017), PeerJ, DOI 10.7717/peerj.3316 26/79

http://dx.doi.org/10.7717/peerj.3316
https://peerj.com/


among Phocinae: large wings (total lateral width across wings three times the width of

the promontory), slightly everted anteriorly, reniform sacral foramina, and small size.

However, formal identification as N. vitulinoides based on these characters is not

straightforward: the stratigraphic context of this specimen is very poorly resolved

(Miocene–Pliocene) and currently no sacrum is known for the potentially sympatric

B. neerlandica. Twelve specimens unambiguously assignable to N. vitulinoides have been

identified at the IRSNB, including the sacrum of the neotype IRSNB M2276a and two

other referred specimens IRSNB M2277 and IRSNB VERT-8243-07. A sacrum originally

assigned to Phocanella minor by Van Beneden (1877, IRSNB 1092-M236) was reassigned

to N. vitulinoides: this particular sacrum is of both size and shape markedly similar to

that of other sacra of N. vitulinoides. The number of fused sacral vertebrae in the

sacrum is one of the primary characters separating extant monachines and phocines:

monachines have three fused sacral vertebrae, while phocines have four fused sacral

vertebrae (Muizon, 1981). Interestingly, N. vitulinoides yields specimens of sacra with

either three (nine specimens observed, including IRSNB M2276a (neotype), IRSNB

M2277, and IRSNB VERT-8243-07) or four vertebrae (three specimens observed,

including IRSNB 1092-M236, IRSNB 1059-M240). This is surprising, as noticeable

intraspecific variation in the number of fused sacral vertebrae in pinnipeds is not known

to us. It is possible that the fourth sacral vertebra did not fuse during growth in a

significant number of individuals. Given the limited number of specimens adequately

preserved, it is impossible to ascertain whether N. vitulinoides predominantly had three

or four fused sacral vertebrae.

The wings for the articulation with the innominate are large relative to the anterior

articular surface of the first sacral vertebra and their lateral projection strongly bends

anteriorly. Overall, these wings are much larger in phocids than they are in other

carnivorans (Muizon, 1981). The ratio of width across the wings/width across the

promontory in N. vitulinoides is around 3 (Dewaele, Lambert & Louwye, 2017). Also,

the ventral margins of the wings extend far ventral to the ventral border of the first

sacral vertebra. In other phocines, these sacral wings do not tend to project as far

anteriorly as in N. vitulinoides, whereas in monachines there is not such a strong ventral

deflection of the sacral wings. The lateral margin of the sacral wings of N. vitulinoides

is directed dorsolaterally. This is a typical phocine trait, contrasting with the

dorsoventrally directed margin in monachines. The prezygapophysis of the first sacral

vertebra is raised above the dorsal margins of the wing, but retains a thick base on the

wing. The prezygapophyseal articular surfaces are roughly teardrop-shaped and right

and left surfaces form an approximate 90� angle with each other. The lateral sacral crest

is relatively thick dorsoventrally at the fused vertebral bodies and more blade-like

laterally. This blade-like crest is located lateral to the third and fourth sacral vertebrae,

while the part of the lateral crest located along the second sacral vertebra is robust,

forming a thick and robust bridge around the first sacral foramen. Posteriorly, this crest

becomes a blunt tuberous extension posterior to the fourth sacral vertebra. The sacral

canal is dorsoventrally flattened, reniform in anterior view, and forming a narrow

crescent posteriorly. The sacral foramina vary intraspecifically from a reniform to an
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hourglass shape. A thick and broad bridge covers the first sacral foramen laterally.

The sacral spinous processes are all fused and their dorsal apices align to form a single

median sacral crest. Anteriorly, this median sacral crest is dorsally high, and markedly

lowering posteriorly. At the level of S2 and S3, this crest is laterally flattened; at the

level of S4 (when present), it forms a blunt posteriorly projecting stub. In anterior

view, the crest is thicker at the center of each individual spinous process and thinner

at the fused margin between two spinous processes. The intermediate sacral crests are

knob-like, but anteroposteriorly elongate, being thicker anteriorly, and tapering

posteriorly.

The sacrum of the contemporaneous small Praepusa boeska from the Netherlands

has been described and illustrated by Koretsky, Peters & Rahmat (2015), based on an

isolated and strongly damaged specimen. It shows marked similarities with that of

N. vitulinoides: three fused sacral vertebrae, relatively large sacral wings, and a generally

small size. Hence, it is not impossible that this sacrum assigned to P. boeska instead

represents that of N. vitulinoides.

Caudal vertebrae

Currently, only one incomplete caudal vertebra (neotype, IRSNB M2276q) has been

tentatively assigned to N. vitulinoides (Fig. 10). Based on its size as compared to the

sacrum and on the degree of development of the transverse processes and vertebral arches,

this vertebra is proposed to be the first caudal vertebra. However, it is significantly larger

than S3, the last sacral vertebra of this specimen, raising doubts about the association with

the other bones of this specimen, and hence about the determination of this caudal.

Although the dimensions of the body seem similar to those of the lumbar vertebrae of

the same specimen IRSNB M2276n,o,p (neotype), the anteroposteriorly elongate shape of

the preserved portion of the transverse process prevents from considering this caudal

vertebra a lumbar vertebra.

Rib

Only two ribs may be assigned to the species: IRSNB 1066-M243c (associated with radius

and ulna) and IRSNB M2279 (found in association with radius IRSNB M2278) (Fig. 11).

Both ribs are incomplete, with the former missing its distal half and the latter missing its

proximal extremity.

Overall, the ribs of N. vitulinoides are relatively slender and strongly flattened

anteroposteriorly. Flattening is most prominent proximally and tends be strongest

pronounced at the medial margin of the rib, yielding a teardrop-shaped section of the

rib. The head of IRSNB 1066-M243c is seated on a long neck, forming a knob-like

proximal extremity. The articular surface on the head of the rib is slightly elongated

anteroposteriorly. The tubercle is little pronounced, forming only a weak protuberance at

the base of the neck. The tubercle is entirely covered by a convex articular surface for

articulation with the corresponding costal fovea on the transverse process of the vertebra.

At its distal extremity, IRSNB M2279 thickens slightly radially, forming a pronounced

knob-like extremity.
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Appendicular skeleton

Scapula

Two scapulae are assigned to N. vitulinoides: a right scapula from the partial skeleton

(neotype, IRSNB M2276f) and one isolated scapulae IRSNB 1068-M241 (Van Beneden,

1877, pl. XV, Fig. 5) (Fig. 12). Only the head and neck of the scapula are known. The

scapula is similar in size to that of Praepusa vindobonensis. In cranial view, the glenoid

fossa is roughly teardrop-shaped and slightly concave, with the glenoid tubercle at its

apex. The edges of the glenoid fossa are straight in lateral view, with a craniodorsally

Figure 10 Caudal vertebra of Nanophoca vitulinoides. IRSNB M2276q (neotype) caudal vertebra of

Nanophoca vitulinoides? (A–C) and corresponding drawings (D–F) in left lateral (A, D), anterior (B, D),

and dorsal (C, F) view. Broken or obliterated areas are indicated in gray.

Figure 11 Ribs of Nanophoca vitulinoides. IRSNB M1066-M243c, right rib of Nanophoca vitulinoides

in anterior (A), dorsal (B), and posterior (C) view. IRSNB M2279, rib of Nanophoca vitulinoides (D).
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projecting glenoid tubercle. This trait is also observed in H. grypus, Phoca spp., Praepusa

vindobonensis, and Pusa spp., providing an enlarged origin for musculus biceps (Toula,

1897; Howell, 1929; Bryden, 1971; Muizon, 1981). In lateral view, the glenoid tubercle

is square. The surface for the origin ofmusculus triceps brachii on the ventrolateral margin

of neck of the scapular spine is well defined and relatively deep. Muizon (1981)

identified this surface as being the origin of the long head of musculus triceps brachii (for

P. pacifica and A. longirostris), while Howell (1929) identified it to be the origin of the

lateral head of musculus triceps brachii (for Pusa hispida). At the scapular neck, the

scapular spine appears to fuse with an infraspinous ridge (=secondary spine in Tedford

(1976)) lying ventral to the scapular spine. Hodgetts (1999) refers to this ridge and the

scapular spine as “two ridges of bone.” Savage (1957) identified this condition as being

present in the extinct mustelid Potamotherium Geoffroy, 1860, referring to this feature

as “secondary spine,” and Tedford (1976) observed a similar condition in the extant

Phoca vitulina and Pusa spp. However, we only observed a lowly raised ridge in Phocidae

and consider it a “ridge” rather than a “spine,” which is only noticeably developed in

the anterior portion of the scapula. Moreover, referring to this structure as the

infraspinous ridge avoids confusion with the secondary scapular spine observed in the

middle of the supraspinous fossa of otariids (Berta & Wyss, 1994). The infraspinous ridge

separates the origins ofmusculus infraspinatus (dorsal) andmusculus teres major (ventral),

both rotator muscles of the humerus.

Humerus

Humeri of N. vitulinoides are some of the most frequently collected phocid remains

from the Neogene of the Antwerp area (Fig. 13). The collection at the IRSNB yields

over 40 small phocine humeri of varying degrees of preservation and completeness.

Unfortunately, only about 20 of these specimens could be attributed to N. vitulinoides

unambiguously. The poor state of preservation of other specimens inhibited

unambiguous attribution to the species, due to the absence or abrasion of diagnostic

Figure 12 Scapula of Nanophoca vitulinoides. IRSNB M2276f (neotype), partial right scapula of

Nanophoca vitulinoides in lateral (A) and anterior (B) view.
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Figure 13 Humeri of Nanophoca vitulinoides. IRSNB M2276c (neotype) left humerus of Nanophoca

vitulinoides (A–D) and corresponding drawings (E–H) in medial (A, E), anterior (B, F), lateral (C, G),

and posterior (D, H) view. IRSNB 1063-M242 right humerus of Nanophoca vitulinoides in medial (I),

anterior (J), lateral (K), and posterior (L) view. Broken or obliterated areas are indicated in gray.
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regions. Specimens used for the description in this study include the right humerus of the

neotype (IRSNB M2276c) and the specimen illustrated by Van Beneden (1877, IRSNB

1063-M242). The humerus is one of the most commonly found specimens of extinct seals

in general (L. Dewaele, 2015, personal observation), and it should be noted that the

humerus of N. vitulinoides can easily be compared with contemporaneous extinct

seals from the North Sea Basin and Paratethys. Given the small size of N. vitulinoides,

only a limited number of other taxa should be considered for close comparison:

B. neerlandica and Praepusa boeska from the Netherlands, and Praepusa vindobonensis

from the Paratethys. A scatterplot of a quantitative analysis of the humerus shows that

N. vitulinoides is morphologically distinct from the other three species (Figs. 14 and 15;

Table S10). Similar comparisons are more difficult for the femur given the very poor

preservation of the femur of B. neerlandica (Koretsky & Peters, 2008), and the lack

of femora in the fossil record of Praepusa boeska (Koretsky, Peters & Rahmat, 2015).

However, a preliminary comparison between three femora of N. vitulinoides and the

averaged femur of Praepusa vindobonensis shows that both are morphologically distinct

(Fig. 16; Table S11).

The head of the humerus is roughly hemispherical and strongly overhangs the diaphysis

posteriorly. Related to this projection, the area of the diaphysis just distal to the neck is

correspondingly well-excavated, indicating relatively strong development of the lateral

head of the musculus triceps brachii. A similarly strongly overhanging head has been

observed in the extinct Praepusa vindobonensis and extant Pusa, but not in Praepusa

magyaricus. In posterior view, the proximal tip of the head of the humerus reaches

slightly more proximal than both the lesser and the greater tubercles. This contrasts with

most extant phocids, in which the lesser tubercle is much more prominent and reaches a

much more proximal level than both the head and the greater tubercle. Among extant

seals, only the genus Monachus has a reduced lesser trochanter, whereas this character

is more common in extinct phocids, for example the monachines A. longirostris,

Monotherium spp. and P. pacifica, and the phocines B. neerlandica, L. proxima [Leptophoca

lenis], Pachyphoca spp. Koretsky & Rahmat, 2013, and Praepusa spp. (Muizon, 1981;

Koretsky, 2001; Koretsky & Peters, 2008; Koretsky & Rahmat, 2013; Koretsky, Peters &

Rahmat, 2015;Dewaele, Lambert & Louwye, 2017). An enlarged greater tubercle, exceeding

the height of the head proximally, has been observed in some extinct species, such as

B. neerlandica, Praepusa magyaricus, and Praepusa vindobonensis but not in extant species.

However, in all species of Phocidae, the greater tubercle is still significantly smaller than

in Otariidae (L. Dewaele, 2015, personal observation). The short lesser tubercle strongly

deviates from the long axis of the bone and the base of this deviation is located very

proximally on the diaphysis, similar to Praepusa vindobonensis and other extinct phocines,

but contrasting to extant phocines in which the deviation of the lesser tubercle off the

diaphysis starts more distal on the bone. A proximodistally elongated rugose surface

on the posterior surface of the lesser tubercle is the attachment site of the musculus

subscapularis. The bicipital groove is U-shaped, deep, and narrow. In transverse section,

the deltopectoral crest is thick, only slightly thinner than the diaphysis. The deltopectoral

crest extends along the proximal half of the bone. In lateral view, the deltopectoral crest
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of N. vitulinoides is equally wide throughout, to slightly wider proximally. This contrasts

with the contemporary Praepusa vindobonensis and Praepusa magyaricus, having a

deltopectoral crest that is wider distally. In anterior view, the deltopectoral crest of

N. vitulinoides is wider than that of Praepusa vindobonensis and Praepusa magyaricus,

which have a relatively slender deltopectoral crest. At the proximolateral surface of

the deltopectoral crest, the insertion facets for musculus supraspinatus and musculus

infraspinatus are well defined, deep pits, with the pit for the musculus supraspinatus

being the deepest and the pit for the musculus infraspinatus being smaller and just

anteroproximal to the former. The deltopectoral crest is strongly elongated and smooth,

with a marked deltoid tuberosity halfway on its lateral side. This tuberosity serves as

an insertion site for musculus deltoideus (Howell, 1929; Muizon, 1981) or musculus

humerotrapezius (Howell, 1929). Distally, the deltopectoral crest of N. vitulinoides

ends more abruptly than it does in Praepusa vindobonensis, but not as abruptly as in

B. neerlandica.

The diaphysis is only weakly curved in lateral view compared to most extant phocines,

except the hooded seal C. cristata and the ribbon sealH. fasciata. Among extinct phocines,

the geologically oldest stem phocine L. proxima has a relatively straight diaphysis as well

(True, 1906; Koretsky, 2001; Dewaele, Lambert & Louwye, 2017). Praepusa vindobonensis

and Praepusa magyaricus have relatively straight humeri, whereas the humerus of

B. neerlandica is strongly curving. In lateral view, the diaphysis appears more slender

Figure 14 Scatterplot of humerus measurements of contemporaneous small Phocinae from

the Neogene North Sea and Paratethys basins. Scatterplot based on the humerus measurements

shown in Table S10. Green represents Batavipusa neerlandica, black Nanophoca vitulinoides, orange

Praepusa boeksa, and red Praepusa vindobonensis. The red ellips encompasses both Praepusa species.

For the selected characters, the humerus of N. vitulinoides differs noticeably from that of the other

considered taxa.
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compared to the size of the epiphyses than it is in all extant phocines, except Phoca and

Pusa spp. A slender diaphysis has also been observed in the extinct phocines L. proxima,

Praepusa vindobonensis, Praepusa magyaricus and S. sintsovi. The diaphysis of the

humerus has a sharp edge located distal to the head of the humerus, continuing distally

toward the lateral epicondyle. This edge separates the areas of origin for the musculus

triceps brachii caput medialis posteriorly and the musculus brachialis laterally and has

been observed in B. neerlandica (Koretsky & Peters, 2008), but not in other extinct

and extant phocines. At the distal epiphysis, the lateral epicondyle reaches twice as far

proximally as the medial epicondyle, but still ends distal to the distal end of the deltoid

crest. The crest of the lateral epicondyle is thick and positioned proximally. Consequently,

the attachment surface for musculus supinator is well developed in N. vitulinoides.

Figure 15 Comparison of humeri. Humeri of Praepusa vindobonensis (A–D) (cast), Praepusa boeska

(E–H) (holotype MAB 4686), and Batavipusa neerlandica (I–L) (holotype MAB 3789) for comparison

with the humerus of Nanophoca vitulinoides, shown in Fig. 13. Humeri in medial (A, E, I), posterior

(B, F, J), lateral (C, G, K), and anterior view (D, H, L). Note the relatively small size of the humerus of

Batavipusa neerlandica.
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The medial epicondyle is very robust and square, projecting well laterally, but reaching

only slightly more proximal than the trochlea. The entepicondylar foramen is oval.

The lateral epicondyle does not reach proximally the level of the deltopectoral crest, as

it does in Praepusa species. In anterior view, the middle portion of the humeral trochlea

is at the level of the coronoid fossa, a diagnostic trait distinguishing phocines from

monachines (Koretsky, 2001). The coronoid fossa on the anterior surface of the humerus is

well defined, with a semicircular outline, terminating proximally at a level intermediate

to the lateral and medial epicondyles. The olecranon fossa is a very small, only about

2 mm in height and 5 mm in width, but forms a deep pit just proximal of the trochlea.

Overall, the humerus of N. vitulinoides shares most similarities with the extinct Praepusa

vindobonensis.

Ulna

Currently one right and one left ulnae have been assigned to N. vitulinoides: IRSNB

1066-M243b and IRSNB M2272. IRSNB 1066-M243b is associated with a partial right

radius (IRNSB 1066-M243a) and a partial rib (IRNSB 1066-M243c) (Fig. 17). The ulna

is of very small size, as the other remains of N. vitulinoides, and slender, as in Pusa and

Phoca spp. The trochlear notch is bilobed, as in other phocines (except C. cristata and

P. groelandicus, which have three lobes). The greater sigmoid cavity (proximal lobe) is

Figure 16 Scatterplot of femurmeasurements of contemporaneous small Phocinae from theNeogene

North Sea and Paratethys basins. Scatterplot based on the femur measurements shown in Table S11.

Black represents Nanophoca vitulinoides, and red the average of over 20 Praepusa vindobonensis

specimens. The black ellips encompasses all N. vitulinoides measurements. For the selected characters,

the femur of N. vitulinoides differs noticeably from that of the average of P. vindobonensis specimens.
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elongate and narrow, and almost entirely restricted to the anterolateral side of the ulna.

The lesser sigmoid cavity (distal lobe) is clearly defined and triangular, located along

the anterior margin of the ulna. Compared to other phocines, the trochlear notch is

Figure 17 Ulnae of Nanophoca vitulinoides. IRSNB M2272 left ulna of Nanophoca vitulinoides (A–C)

and corresponding drawings (D–F) in medial (A, D), anterior (B, E), and lateral (C, F) view. And IRSNB

1066-M243b right ulna of Nanophoca vitulinoides (G, H) and corresponding drawings (I, J) in lateral

(G, I) and anterior (H, J) view. Broken or obliterated areas are indicated in gray.
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strongly concave in lateral view. The proximal margin of the olecranon process slopes only

slightly posterodistally in N. vitulinoides, contrasting with other Phocinae, in which the

olecranon process slopes much more abruptly. The tubercle for the insertion of the

musculus anconeus medialis on the anteromedial side of the olecranon process is well

developed compared to extant phocines. The olecranon process is proportionally large

compared to the width of the diaphysis, a condition approached by Phoca, and Pusa.

However, the diaphysis is slender in Phoca, N. vitulinoides, and Pusa, which might explain

the apparent relatively large size of the olecranon process in those taxa. The anconeal

process is prominent, which does not appear to be significantly different from that of

Phoca vitulina, and Pusa. A well-developed anconeal process is also present on the

partial ulna figured by Van Beneden (1871, pl. 1, Fig. 5). Unfortunately, this specimen

has been lost and could only be examined from illustrations; hence, its assignment to

N. vitulinoides can only be considered tentative on the basis of the development of the

anconeal process. On the medial side of the diaphysis, there is a marked, narrow and

proximodistally elongate groove just distal to the trochlear notch. This groove most likely

served for the insertion of the medial collateral ligament of the elbow joint. At midlength

of the diaphysis, an oblong rugosity indicates the insertion of the interosseous ligament

uniting radius and ulna. The distal styloid process is pointed. The ulna of N. vitulinoides

differs strongly from that of its close relative Praepusa vindobonensis. The latter has a

relatively strongly sloping olecranon process which is not particularly large, compared to

extant Phocinae. The ulna of Praepusa vindobonensis also has a relatively thick and straight

diaphysis. All this contrasts with N. vitulinoides.

Radius

Two radii have been assigned to N. vitulinoides (Fig. 18). One, IRSNB M2278, is complete

and associated with a partial rib (IRSNB M2279), whereas only the proximal part of the

other radius (IRSNB 1066-M243a), associated with a partial rib and a partial ulna (IRSNB

1066-M243c), is preserved. Overall, the radius is small and relatively slender, relatively

barely widening toward the distal end, as in the extant Phoca spp. and Pusa spp., and the

extinct L. proxima and Praepusa vindobonensis. The proximal epiphysis has a slightly

mediolaterally elongated humeral articular fovea. The articular fovea for the ulna is

moderately developed; yet, it strongly protrudes medially off the articular fovea for

the humerus. The bicipital tuberosity is strongly pronounced and is located on the

posteromedial side of the shaft. This tuberosity is located relatively proximal on the shaft,

nearly bordering the ulnar fovea of the proximal epiphysis. Directly distal to the bicipital

tuberosity, the diaphysis takes on a rather strong cranially convex shape, which is a

phocine trait (Muizon, 1981); it is yet stronger in N. vitulinoides than in extant

phocines. The surface for musculus supinator on the mediolateral face of the shaft is well

excavated. The eminence for the attachment of the musculus brachialis and musculus

brachioradialis is well developed and located proximal on the radius when compared to

other phocines. The strong development of the eminence for the attachment of musculus

brachioradialis suggests relatively strong development of this muscle. The surface

for the attachment of the musculus pronator teres is also moderately well developed.
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Although the distal part of the radius is moderately abraded, it can be observed that the

grooves for the tendons of musculus extensor digitorum lateralis and musculus abductor

pollicis longus are wider than deep, thus only weakly to moderately developed. The

radius of N. vitulinoidesmost strongly resembles the radius of Pusa spp. On the other, the

radius assigned to Praepusa vindobonensis by Toula (1897) differs strongly from the one of

N. vitulinoides. The radius of Praepusa vindobonensis is much more straight and it appears

that the development of the insertion areas for musculus supinator, musculus pronator

teres, and musculus brachioradialis approaches much more the condition of the extant

Lobodontini (see Muizon, 1981).

Innominate

The innominate of N. vitulinoides is one of the most completely known fossil phocid

innominates from the Antwerp area (Fig. 19). Seven innominates from the IRSNB can be

assigned toN. vitulinoides unambiguously. Furthermore, nearly twenty other innominates

may tentatively be assigned to the species. The latter specimens are within the size

range of N. vitulinoides, but they are all less well preserved. In none of the specimens the

ischium and the pubis are completely preserved. The ischiatic tuberosity is preserved in

only two innominates (IRSNB 1059-M240a and IRSNB 1226-M244a). The Phocinae are

historically assumed to have a more strongly laterally everted ilium than the Monachinae

(Muizon, 1981). A preliminary quantitative study (Fig. S1; Table S12) based on a

small sample of phocines and monachines supports this observation, but rather loosely.

Overall, there appears to be a general trend, with the average lateral eversion of the

phocine ilium exceeding that of the monachine by approximately nine percent (74.6�

versus 65.3�, see Table S12). Despite the overlap between the measurement ranges of both

subfamilies, statistical analysis (Fig. S2) indicates a significant difference in lateral eversion

Figure 18 Radius of Nanophoca vitulinoides. IRSNB M2278 right radius of Nanophoca vitulinoides

(A, B) and corresponding drawings (C, D) in medial (A, C) and lateral (B, D) view.
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between both subfamilies. Although supported by statistical evidence, the differentiation

between Phocinae and Monachinae on the basis of the lateral eversion of the ilium should

be considered with care: due to the strong overlap in measurements, the applicability

of this character is largest at the ranges of non-overlap but gradually decreasing within

the range of overlap between both taxa. From that perspective, the innominate of

N. vitulinoides is typically phocine, with an angle of 77.2�. The gluteal fossa is only weakly
concave and is in some specimens hardly distinguishable from the general concavity of

the lateral surface of the ilium. In extant phocids, monachines and E. barbatus completely

lack a gluteal fossa, while the Baikal seal Pusa sibirica only has a faintly developed

gluteal fossa (Bininda-Emonds & Russell, 1996). Praepusa vindonbonensis also has a

poorly developed gluteal fossa, whereas in other extant and extinct phocine taxa, e.g.,

B. neerlandica, the gluteal fossa is more developed. Consequently, the area of origin of the

glutei muscles is relatively weakly developed in N. vitulinoides, when compared to other

phocines, but still better developed than in monachines and E. barbatus. The auricular

surface for the articulation of the wing to the first sacral vertebra is deeply excavated,

yielding a firm contact between the innominate and the sacrum. The iliac crest is

slightly convex. Both anteroventral and anterodorsal processes are well developed,

giving the iliac blade a distinctly triangular outline. The rounded posteroventral process

is well developed, yielding a strongly concave ventral edge of the iliac blade between

Figure 19 Innominates of Nanophoca vitulinoides. IRSNB 1226-M244a left innominate of Nanophoca

vitulinoides (A, B) and corresponding drawings (D, E), in lateral (A, D) and dorsal (B, E) view. IRSNB

1059-M240a left innominate of Nanophoca vitulinoides in lateral (C) and dorsal (F) view. Broken or

obliterated areas are indicated in gray.
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the anteroventral and posteroventral processes. Anterior and anteroventral to the

acetabulum, two small fossae mark muscle attachment surfaces. The fossa anterior to

the acetabulum is shallow and rounded; it most likely serves for the attachment of the

musculus rectus femoris. The ventralmost fossa is much deeper and slightly more elongate

anteroposteriorly; it is thought to serve for the attachment of musculus sartorius and

musculus iliacus. The posterodorsal process reaches the same anterior level as the

posteroventral process. The posterodorsal process is robust but only poorly raised dorsal

to the level of the body of the ilium, as in other phocines. The acetabulum is deep and

its edges are raised over the surrounding bone. The acetabular notch is deeper than it is

wide, with a pronounced fossa at the bottom of the acetabulum. The iliopectineal

eminence is small and blunt, and is located anterior to the anterior margin of the

acetabulum, or level to it in some specimens. Except for H. grypus, the iliopectineal

eminence is located much more posteriorly in all extant phocines. An important

characteristic of the ischium is the strong development of an ischiatic spine on the

anterodorsal margin of the iliac branch of the ischium (not to be confused with the

ischiatic tuberosity, see below and Adam (2009)). Whereas this ischiatic spine is strongly

reduced in all extant Pinnipedia Illiger, 1811, it makes a strongly posteriorly recurved

eminence in N. vitulinoides. The anteriormost part of the base of the ischiatic spine is

approximately at the same anteroposterior level as the anteriormost margin of the

obturator foramen. Posteriorly, the ischium is strongly curving medially. The dorsal tip of

the ischiatic tuberosity is well developed, similar to that of other phocines. The ischiatic

spine and the ischiatic tuberosity are less developed in Praepusa vindobonensis. The

ischiatic spine of B. neerlandica is well developed as well. However, the innominate of

B. neerlandica is overall morphologically strongly similar to that of N. vitulinoides.

Moreover, because the only known innominate of B. neerlandica has been found isolated,

its assignment to the species remains questionable, and it may potentially represent an

innominate of N. vitulinoides.

Contrasting with other phocines, the dorsolateral margin of the iliac branch of

the pubis of N. vitulinoides is strongly transversely flattened. This strongly flattened

surface is thought to correspond to the surface of origin for musculus obturatorius

externus. The strong degree of flattening of this region in relation to the iliac branch

of the pubis as a whole may be linked to a well-developed origin of the musculus

obturatorius externus.

Femur

Apart from humeri, femora are the most commonly found bones assigned toN. vitulinoides

(Fig. 20). Ten specimens in the IRSNB collection can be assigned unambiguously to

N. vitulinoides, and more than 20 other femora are within the size range of the species and

share several characters with the species, but are too poorly preserved to be identified

unambiguously. In addition to the above specimens, Van Beneden (1877) illustrated

IRSNB 1051-M251 as a left femur of N. vitulinoides. Although this specimen is badly

preserved, a number of diagnostic characters of the femur are still visible. Similarly,

specimen IRSNB 1049-M247 was also illustrated by Van Beneden (1877) as representing
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N. vitulinoides, and we concur on this identification. Finally, IRSNB 1102-M238 was

identified as Phocanella minor by Van Beneden (1877), but in our opinion it clearly

represents a specimen of N. vitulinoides. The head of the femur is subspherical in

N. vitulinoides; the height/width ratio approximates 1. Multiple extinct phocines

have a subspherical femoral head as well, e.g., L. proxima, M. pontica, and Praepusa

vindobonensis (Koretsky, 2001). Most specimens of N. vitulinoides bear a noticeable pit

for the teres femoris ligament on the femoral head. Such a pit is generally not developed

in most Pinnipediformes and is considered to be a primitive trait. The greater

trochanter reaches a much more proximal level than the head, a condition similar to the

extant P. groenlandicus, and Pusa, as well as many extinct phocines such as Leptophoca,

and Praepusa vindobonensis (Koretsky, 2001). The greater trochanter is roughly

triangular in cross-section. In posterior view, the outline of the greater trochanter is

subrectangular and the trochanteric fossa opens medially and is proximally capped by a

thin lip. The area of the lesser trochanter is represented by a low, but well-defined

elevation located slightly distal to the head, on the posteromedial edge of the femur.

Figure 20 Femora of Nanophoca vitulinoides. IRSNB M2276e (neotype) left femur of Nanophoca

vitulinoides (A, B) and corresponding drawings (C, D), in posterior (A, C) and anterior (B, D) view.

IRSNB M2271 left femur of Nanophoca vitulinoides in posterior (E), lateral (F), anterior (G), and medial

(H) view. Broken or obliterated areas are indicated in gray.
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However, this feature is not present in all specimens of N. vitulinoides (present in,

e.g., IRSNB M2276d,e; neotype). Nevertheless, no extant phocines and few extinct

phocines (C. maeotica, L. proxima, Praepusa vindobonensis, and S. sintsovi) bear a lesser

trochanter (Koretsky, 2001). A lowly raised but transversely broad intertrochanteric

ridge connects the lesser and greater trochanters. The general shape of the diaphysis

is typically pinniped, i.e., with a transverse section mediolaterally broad and

anteroposteriorly flattened. The mediolateral width of the femur of N. vitulinoides is

greater in relation to the femoral epiphyses than in Praepusa vindobonensis. The

minimum mediolateral width is in the proximal portion of the diaphysis. The deep

patellar facet is wider than it is high. While the width/height ratio of the patellar facet

corresponds to that of other phocines, its deep concavity separates N. vitulinoides from

extant phocines. The suprapatellar fossa is as large as the patellar facet; it forms also a

prominent depression within the bone. This condition strongly differs from that in

extant phocids, where such a suprapatellar fossa is either much reduced or absent.

The patellar facet of monachines is anteriorly raised over the distal epiphysis and

wider than it is high (Muizon, 1981), whereas the patellar facet of phocines is at

the level of the distal epiphysis, but it has slightly elevated lateral margins. Moreover, in

the latter the patellar facet is higher than it is wide. This difference between extant

monachines and phocines implies a larger mobility of the patella, i.e., knee joint, in

phocines as compared to monachines (Muizon, 1981). The depth of the suprapatellar

fossa may have further increased the extension capability of the knee joint. As is typical

for pinnipedimorphs (Berta & Ray, 1990; Berta & Wyss, 1994), the distal epiphysis

of the femur of N. vitulinoides is strongly asymmetrical, with the medial condyle

located much more distally than the lateral condyle. The lateral condyle is only

slightly larger than the medial condyle. The intercondylar fossa is deep and narrow,

gradually becoming narrower with increasing depth of the fossa. The medial epicondyle

forms a distinct ridge and bears a prominent proximally directed adductor tubercle.

A similar adductor tubercle is not uncommon among phocines, such as Phoca vitulina,

but it is rarely as pronounced. At the base of the medial epicondyle, just proximal to

the medial condyle, there is a small and low proximodistally elongated ridge in

N. vitulinoides, approximately 5 mm in length, 1 mm in width, and 1 mm in height.

This ridge serves as an attachment site for the medial head of musculus gastrocnemius.

We observed the same feature in several specimens of H. grypus and H. fasciata.

However, given the fact that this feature is not present in all studied specimens

of the latter species, and given the limited number of specimens of extant seals

investigated, this character may also be present in other phocine species. The lateral

epicondyle does not expand far laterally in N. vitulinoides, but does so proximally; it

has a smoothly rounded shape. The medial and lateral epicondyles are relatively

thick and robust, compared to other phocines. Although both known femora attributed

to B. neerlandica, n�10373 and MAB 4342, do not differ noticeably from those of

N. vitulinoides, it should be noted that the state of preservation of the former is poor

to moderate.
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Tibia–Fibula

Currently, there are 21 tibiae in the collection of the IRSNB that can be assigned

to N. vitulinoides with a high degree of certainty (Fig. 21). Tibiae are assigned to

N. vitulinoides on the combined basis of their small size, the strong concavity of the

insertion for the musculus popliteal, and the overall morphology of the tibial plateau.

Because the tibia and fibula of phocids are fused (except for the Hawaiian monk seal

Monachus schauinslandi), some are preserved together with the fibula. Two tibiae are

almost completely preserved (IRSNB 1069-M248 and IRSNB 1105-M239). Although

Van Beneden (1877) identified specimens IRSNB 1090-M239 and IRSNB 1105-M239 as

Phocanella pumila and Phocanella minor, respectively, we reassign both specimens to

N. vitulinoides on the basis of their overall same size and shape (including diagnostic

features) to N. vitulinoides. Both femoral articular facets are slightly concave and the

medial condyle is noticeably smaller than the lateral condyle (see Table S6). The

intercondyloid eminence is highly raised over the two adjacent tibial condyles and is

split by a notch. The shape of the tibial plateau of N. vitulinoides conforms with that of

other phocines. Anterior to this intercondyloid eminence, the anterior tibial fossa is

oval, shallow compared to other Phocinae, and opens anterolaterally. On the cranial

margin of the tibial plateau, the tibial tuberosity for the insertion of the quadriceps

femoris muscle is a well-outlined equilateral triangle. Posterior to the intercondyloid

eminence, the posterior tibial fossa is deep and sloping posteriorly into the popliteal

notch. The posterior tibial fossa is predominantly located adjacent to the medial

tibial condyle and mostly separated from the lateral facet by the popliteal notch. The

latter is deep, relatively narrow, and semicircular in section. The diaphysis of the tibia

is slender and strongly curves sigmoidally in anterior view. In the closely related

Praepusa vindobonensis, the tibia shows a lesser curvature. Compared to other Phocinae,

the diaphysis of the tibia of N. vitulinoides is less flattened anteroposteriorly, but

rather is subcircular in cross-section. On the proximal part of the cranial surface, the

fossa for musculus tibialis cranialis is moderately well developed but well outlined, as

well as the facet for musculus biceps femoris on the medial surface. Posteriorly, the

attachment surfaces for musculus tibialis caudalis and musculus popliteus are well

developed. The latter is very well developed, yielding a relatively strong concave

incursion in the bone, not observed in other phocines. The deep, short attachment

surface for musculus flexor digitorum longus is located very proximal. At mid-length, the

diaphysis is subcircular and much narrower than at its extremities. The distal fibular

facet has the shape of an isosceles triangle, strongly elongated along the axis of the

bone. The distal epiphysis is relatively thick and sub rectangular in cross-section. The

astragalar facet is sub-triangular to sub-rounded, in distal view, and moderately sloping

mediodistally. On its posterior surface, the epiphysis and the distal part of the diaphysis

bear two deep grooves defined by three sharp ridges. These grooves are for the tendons

of musculus tibialis cranialis (medial) and musculus flexor digitorum longus (lateral).

On the anterior surface of the distal epiphysis, one deep groove most likely

accommodated the tendons of musculus extensor hallucis longus and musculus tibialis
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Figure 21 Tibiae of Nanophoca vitulinoides. IRSNB 1105-M239 right tibia (A–C) in posterior (A),

medial (B), and anterior (C) view. IRSNB M2276g (neotype) left tibia of Nanophoca vitulinoides (D–F)

and corresponding drawings (G-I) in lateral (D, G), anterior (E, H), and proximal (F, I) view.
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cranialis. The small proximal facet of the fibula is triangular in cross-section and

strongly laterally sloping.

The proximal extremity of the diaphysis of the fibula is triangular, marked by

three well-outlined surfaces for muscle attachment: musculus extensor hallucis longus

(medial), musculus peroneus brevis (anterolateral), and musculus flexor hallucis longus

(posterolateral). The area to accommodate the latter is the least excavated. Posteriorly

on the proximal epiphysis, a narrow but deep fossa serves to accommodate the tendon of

the musculus flexor hallucis longus.

One specimen illustrated by Van Beneden (1877), IRSNB 1300-M250, should be noted,

because the diaphyses of the tibia and the fibula are fused for the major part of the

preserved portion (Fig. 22). Fusion of the distal epiphysis of the tibia points toward sexual

maturity, based on comparison with skeletal growth in extant phocines (Storå, 2000).

Hence, if this fusion would have happened during growth, it does not appear to have

provided the individual any biological disadvantage that would have prevented it from

reaching adulthood. Otherwise, fusion may also have happened pathologically in a

skeletally mature individual.

Calcaneum

Currently, one right (IRSNB M2275) calcaneum has been assigned to N. vitulinoides

(Fig. 23). Overall, the calcaneum is typically phocine: it is not particularly elongated and

slightly curved in lateral view, with the calcaneal tuber slightly projecting plantarly. The

proximal astragalar facet (=ectal facet) is strongly convex and short, while the distal

astragalar facet (=sustentacular facet) is slender. The lateral process for the tendon of

musculus peroneus longus is located rather dorsally, reaching only slightly plantar to the

dorsal margin of the cuboid facet. The cuboid facet is sub rounded, contrasting to other

phocines, which have a slightly more elongate cuboid facet and a lateral process more

centrally located on the lateral margin of the calcaneum. In the absence of the astragalus,

Figure 22 Pathologic tibia and fibula. IRSNB 1300-M250 right fibula and tibia of Nanophoca vituli-

noides fused. Note that the bone cortex covers both bones and fusion is pathological, not diagenetic.
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it is impossible to make any inferences on the length and shape of the calcaneum in

relation to the astragalus and, hence, on the mobility of the foot.

Astragalus

Two or three potential astragali are known for N. vitulinoides. Two have been mentioned

by Van Beneden (1871); although mentioned and described as calcanea, he clearly

illustrates an astragalus (Van Beneden, 1871, pl. 1, Fig. 3). However, the specimens have

been lost and will not be considered for the current study; not in the least because

their identification as belonging to N. vitulinoides [Phoca vitulinoides] is very tentative.

Recently, an astragalus has been found in the collection at the KUL. It is unclear whether

it represents a previously undescribed astragalus or the astragalus that Van Beneden

(1871) mentioned but did not illustrate. It is large, when compared to other bones

assigned to N. vitulinoides. Hence, we question whether this astragalus represents

N. vitulinoides or not.

Metatarsals

Currently, only one right fourth metatarsal from the partial skeleton IRSNB M2276h

has been assigned to N. vitulinoides. However, assignment of this metatarsal to the species

is not without doubt. Compared to other bones of this specimen, color differences and

the relatively large size cause us to question its assignment. Yet, its association with the

Figure 23 Calcaneum of Nanophoca vitulinoides. IRSNB M2275 right calcaneum of Nanophoca

vitulinoides (A, C, E, G) and corresponding drawings (B, D, F, H) in distal (A, B), medial (C, D), dorsal

(E, F), and lateral (G, H) view.
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most complete known fossil seal specimen from the Antwerp area favors the tentative

assignment of this metatarsal to N. vitulinoides. Nevertheless, this metatarsal does not

bear any remarkable visible traits to distinguish it from other phocines.

Phalanx

Among the original collection described by Van Beneden (1871), there was one phalanx

assigned to Phoca vitulinoides. Unfortunately, the original specimen is lost and one

illustration of the palmar/plantar side of the phalanx cannot be redescribed and reassessed

critically. Moreover, in the absence of phalanges associated to other specimens of

N. vitulinoides the designation of this isolated phalanx as belonging to N. vitulinoides

[Phoca vitulinoides] remains doubtful.

Body length estimates
The body length estimates for N. vitulinoides yield an average extrapolated body length

of 55.4 ± 3.06 cm for the estimate based on Pusa hispida (Howell, 1929), 92 ± 3.21 cm

for the estimate based on Pusa sibirica (this study), 104.5 ± 5.33 cm for the estimate

based on Phoca vitulina (this study), 122.4 ± 11.36 cm for the estimate based on

L. weddelli (Pi�erard, 1971), and 134.4 ± 12.40 cm for the estimate based on O. rossi

(Pi�erard & Bisaillon, 1975) (Table 1). Given the large discrepancy between the body

length extrapolated from P. hispida versus L. weddelli and O. rossi, based on data from

previous studies it is inappropriate to calculate a gross average before the discussion of the

results (see Discussion).

Phylogenetic analysis
No phylogenetic analyses including N. vitulinoides have been published before. The

aim of the phylogenetic study presented here is to resolve the affinities of N. vitulinoides

and to reassess the phylogenetic position of the genus Praepusa among Phocidae. The

character matrix is presented in Data S1.

The phylogenetic analysis including all 31 OTUs, without Goloboff criterion, resulted

in 736 most parsimonious trees, with a best score of 254 steps after 3,909,435 tried

rearrangements. The strict consensus and 50% majority consensus trees are shown below

(Fig. 24). In the strict consensus tree (Fig. 24A), the Phocinae remain unresolved, while in

the 50% majority consensus tree (Fig. 24B), most extinct Phocinae appear as successive

branches of stem Phocinae. Praepusa boeska is nested among the extant Phocinae, but

the tree of extant Phocinae contrasts markedly with previously published morphological

and molecular analyses (Muizon, 1981; Bininda-Emonds & Russell, 1996; Higdon

et al., 2007; Fulton & Strobeck, 2010). Therefore, a second analysis has been performed

with the exclusion of Praepusa boeska, Praepusa magyaricus, and Praepusa pannonica.

These three OTUs have been scored for relatively few characters. Additionally, the

k-value of the Goloboff criterion has been set at three, for down-weighting homoplastic

characters. The analysis resulted in one most parsimonious phylogenetic tree (Fig. 25)

with score -63.07 after 9,409 tried rearrangements. Consistency index (CI) is

0.42 (0.415 excluding parsimony-uninformative characters), homoplasy index (HI) is
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0.58 (0.585 excluding parsimony-uninformative characters), retention index (RI) is

0.74, and rescaled consistency (RC) index is 0.31.

All extinct phocine taxa included in this analysis (N. vitulinoides, K. benegasorum,

L. proxima, and Praepusa vindobonensis) as well as the Devinophocinae (Devinophoca

claytoni and Devinophoca emryi) return as stem phocines in our analysis. L. proxima

and K. benegasorum are the first and second stem phocines to branch off, followed

by Devinophoca emryi and Devinophoca claytoni, and finally Praepusa vindobonensis and

N. vitulinoides before crown Phocinae.

A complete list of the apomorphies that resulted from the phylogenetic analysis is

provided as Fig. S3 and Table S13. In the phylogenetic analysis, the identification of

N. vitulinoides as a separate taxon is supported by one equivocal and two unequivocal

autapomorphies: two ridges on lateral side of scapula join near glenoid (character 44, state

“0” to “1;” unequivocal); distal epiphysis wider than proximal epiphysis (character 72,

state “1” to “0;” equivocal); and greater trochanter of femur reaches more proximal than

head (character 74, state “1” to “2;” unequivocal).

DISCUSSION
Body length
Bones of N. vitulinoides are among the smallest among pinnipeds (Table 1; Fig. 26;

Tables S1–S8). Only the extinct B. neerlandica and M. pontica have smaller limb bones

(Koretsky, 2001; Koretsky & Peters, 2008).

Figure 24 Primary phylogenetic trees. Strict (A) and 50% majority (B) consensus phylogenetic trees

including Praepusa magyaricus and Praepusa panonnica based on 736most parsimonious trees with score

254. In the strict (A) consensus tree, Phocinae are poorly resolved. In the 50% majority (B) consensus

tree, all extinct Phocinae return as stem phocines, but the phylogenetic relationships of extant Phocinae

differ from molecular and other morphological phylogenetic analyses (see text).
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Extrapolation from the phocine Pusa hispida (presented as Phoca hispida;Howell, 1929)

points toward an estimated body length (snout to tail length) between 50 and 60 cm. In

contrast, extrapolations from the monachines L. weddelli (Pi�erard, 1971) and O. rossi

(Pi�erard & Bisaillon, 1975) yield a range between 110 and 150 cm. It can be argued that the

large discrepancy between the extrapolated ranges based on P. hispida versus L. weddelli

and O. rossi might be rooted in the ambiguity of the measurements for Phoca hispida by

Howell (1929). Other than publishing direct length measurements, measurements are

published by the latter as ratios to animal length. However, it is unclear whether Howell

considered the thoracolumbar column length or the snout-to-tail length for total length.

In order to test the validity of these extrapolations, the absolute length of the humeri

and femora of Phoca vitulina and Phoca sibirica specimens from the IRSNB and MSC

was measured. Because direct total length measurements were impossible due to the

incompleteness of the skeletons, ratios have been calculated in relation to the average

adult body size reported for each species: 150 cm for Phoca vitulina (see Storå, 2000) and

127 cm for Phoca sibirica (Ciesielski et al., 2006). The calculated ratios (Table 1) are higher

than the values retrieved from Pi�erard (1971) and Pi�erard & Bisaillon (1975), but still

much closer to those than to the values retrieved from Howell (1929). The extrapolated

body length ofN. vitulinoides is 92 cm based on the data from Phoca sibirica and 104.5 cm

based on the data from Phoca vitulina (see also Table S14).

Given the absence of a more complete skeleton including cranial material, body length

estimates for N. vitulinoides are based on extrapolations from single postcranial bones.

Although cranial measurements prove to be valuable for body size estimation (Churchill,

Clementz & Kohno, 2014), postcranial measurements appear to be less valuable and

consistent (compare Howell, 1929; Pi�erard, 1971; Pi�erard & Bisaillon, 1975; this study).

However, a total adult body length of approximately 100 cm (1 m) can be safely

considered for N. vitulinoides.

Because only the extinct B. neerlandica and M. pontica, also from the late Miocene of

the Netherlands and the Paratethys, respectively, have slightly smaller limb bones than

Figure 25 Phylogenetic tree of Phocidae. Most parsimonious phylogenetic tree used to elucidate the

phylogenetic relationships of Nanophoca vitulinoides among other genera of Phocinae. Time-calibration

of nodes is performed using Higdon et al. (2007) and all corresponding time-calibrated nodes are

indicated by a gray dot. The age ranges for extinct OTUs are expressed as a green bar over each relevant

terminal branch; uncertainty regarding the upper age of Nanophoca vitulinoides is expressed as a light

green bar. Bootstrap values exceeding 50% are indicated on the relevant branches. Geochronologic ages

for the included specimens, whenever fossil or subfossil specimens have been documented: Allodesmus

kernensis (Barnes, 1988), Cystophora cristata (Andreasen, 1997), Devinophoca claytoni (Koretsky & Holec,

2002), Devinophoca emryi (Koretsky & Rahmat, 2015), Enaliarctos mealsi (Mitchell & Tedford, 1973),

Erignathus barbatus (West, 1980; Harington, 2008), Hadrokirus martini (Amson & Muizon, 2014),

Halichoerus grypus (Repenning, 1983), Histriophoca fasciata (Repenning, 1983), Hydrurga leptonyx

(Kellogg, 1922; Fleming, 1968), Kawas benegasorum (Cozzuol, 2001), Leptophoca proxima (Dewaele,

Lambert & Louwye, 2017), Mirounga leonina (Avery & Klein, 2011), Monachus monachus (Stringer

et al., 2008), Nanophoca vitulinoides (this study), Ommatophoca rossi (Fleming, 1968), Otaria byronia

(Drehmer & Ribeiro, 1998), Pagophilus groenlandicus (Repenning, 1983), Phoca vitulina (Repenning,

1983), Piscophoca pacifica (Amson & Muizon, 2014), Praepusa vindobonensis (Koretsky, 2001), Pter-

onarctos goedertae (Berta, 1994), Pusa hispida (Repenning, 1983; Harington, 2008), and Thalassoleon

mexicanus (Dem�er�e & Berta, 2005).
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N. vitulinoides, it can be noted that a number of middle and late Miocene phocids from

Europe are considerably smaller than extant phocids. One hypothesis that may explain the

small size of middle and late Miocene European phocids is the influence of unusually

warm sea surface temperatures (SSTs) during the middle Miocene climatic optimum

(MMCO). Because heat loss is higher in smaller organisms, it puts a lower limit on

the possible body size range in marine endotherms (Whittow, 1987; Downhower &

Blumer, 1988). However, different simulations for SST duing the MMCO show contrasted

results, ranging from lower to similar to higher equatorial SSTs during the MMCO than

today SSTs (You et al., 2009). In these simulations, maximum equatorial SST discrepancies

with today’s SSTs are less than 5 �C. Also, simulated Arctic SSTs are consistently in the

order of 5 �C higher than today’s Arctic SSTs. Hence, SSTs in temperate zones are difficult

to infer and it can be argued that the impact of MMCO on the size of middle Miocene

phocids was relatively limited. A correlation between body size and temperature variation

during the middle Miocene is further mitigated by the presence of relatively large seals

as well, such as L. proxima and P. rousseaui (Dewaele, Lambert & Louwye, 2017). Moreover,

for pinnipedimorphs in general, Churchill, Clementz & Kohno (2015) did not observe

any variation in minimum body size during their evolutionary history. In addition, there

is no present-day analog for this hypothesis, because the smallest extant Phocidae include

Figure 26 Size variations in Phocinae. Size comparison of the humerus of Nanophoca vitulinoides

(A) with Pusa sibirica (B) and Phoca vitulina (C) and corresponding total body size reconstructions

(D, E, and F, respectively).
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Pusa caspica and Phoca sibirica, which both live in temperate zones, while the genus

Monachus, the only subtropical to tropical phocid, is relatively large.

Home range, and by consequence bioenergetics and nutrient availability, is a more

plausible characteristic controlling mammal body size (McNab, 1963; Lindstedt, Miller &

Buskirk, 1986). While most Pliocene Phocidae from Europe have also been found in North

America, only the larger Miocene L. proxima has a trans-Atlantic range (Koretsky &

Ray, 2008; Dewaele, Lambert & Louwye, 2017). All other European and Paratethyan

phocids are strongly endemic and have so far not been found in North American deposits

or elsewhere (Koretsky, 2001; Koretsky & Rahmat, 2013). Of these presumably endemic

species, all but few species, e.g., C. maeotica, Devinophoca spp., and P. rousseaui, appear to

be smaller than the smallest extant phocines (Koretsky, 2001; Koretsky & Holec, 2002;

Koretsky & Rahmat, 2013; Rahmat & Koretsky, 2016). In support, extant marine mammals

also show a correlation between body size and home range size: the phocid Pusa sibirica,

the Galápagos fur seal Arctocephalus galapagoensis, and the vaquita Phocoena sinus, are

the smallest phocid, otariid and cetacean, respectively, and they occupy the smallest ranges

within their respective clades.

Nutrient availability and bioenergetics are related to the range size (McNab, 1963;

Lindstedt, Miller & Buskirk, 1986). Although it is difficult to induce lifestyles and feeding

behavior for fragmentary and incompletely known extinct taxa, the anatomy of

N. vitulinoides and other extinct phocids, e.g., B. neerlandica and M. pontica, indicate

different modes of locomotion (see below) and, hence, most likely, different modes of prey

capture and feeding behavior compared to extant many Phocidae.

Functional anatomy of N. vitulinoides with notes on lever
arms in anatomy
Lever arms in anatomy

Levers are either used to obtain a mechanical advantage or to increase speed. A

mechanical advantage is achieved when the distance of the effort arm to the fulcrum

is large compared to the distance between the fulcrum and the load arm, enabling to

translocate a larger load with less effort. An example is lifting a car by using a jack: a heavy

object is lifted with relatively little effort (Fig. 27). On the other hand, speed can be

increased when the effort arm is shorter than the load arm, e.g., lifting a shovel (Fig. 27).

Hence, power and energy can be increased by increasing the length of the effort arm or

by decreasing the load arm. The opposite is true to increase speed over mechanical

advantage (see Davidovits, 2012; Fig. 27). There are three classes of lever within the

vertebrate body (see Davidovits, 2012). In first class levers (Fig. 27A), the fulcrum is

located between the effort and the load. First class levers are generally rare in vertebrate

organisms and may either operate at a mechanical advantage or at speed. One example of

a first class lever within the vertebrate body is the head-atlas joint. Acting as a fulcrum,

contraction of muscles in the neck lift up the face. In second class levers (Fig. 27B), the

load is applied between the effort and the fulcrum. Second class levers always act at a

mechanical advantage, reducing speed and range of motion. An example of a second class

lever in the body is the foot. With the toes acting as a fulcrum, force is applied to the

Dewaele et al. (2017), PeerJ, DOI 10.7717/peerj.3316 53/79

http://dx.doi.org/10.7717/peerj.3316
https://peerj.com/


metatarsals and phalanges, lifting the heel during running. Third class levers (Fig. 27C)

are the most common levers within the vertebrate body, with the effort applied between

the load and the fulcrum. Third class levers increase speed of the action. One example

of a third class lever in the body is the elbow joint. When contracting the biceps, the

forearm lifts up.

Cervical versus lumbar vertebrae

For the axial skeleton, the main anatomical differences between Phocidae and Otariidae

are situated at the level of the cervical and lumbar vertebrae. The spinous processes

and transverse processes of the lumbar vertebrae are better developed in Phocidae

than in Otariidae, while in the latter the spinous processes and transverse processes of

the cervical vertebrae are better developed than in Phocidae (Berta, Sumich & Kovacs,

2006; Pierce, Clack & Hutchinson, 2011; Kuhn & Frey, 2012). Moreover, in Phocidae, the

cervical vertebrae are considerably shorter than the lumbar vertebrae, while in

Otariidae, the bodies of cervical and lumbar vertebrae are of roughly equal dimensions.

The better development of the processes of the lumbar vertebrae in Phocidae

provides larger attachment surfaces for the hypaxial musculature (musculus quadratus

lumborum, musculus longissimus thoracis, and musculus iliocaudalis; Berta, Sumich &

Kovacs, 2006), correlating with horizontal movements in the posterior end of the

body. Hence, this characteristic is an adaptation to the prominent use of hind

flippers and pelvic oscillations for aquatic locomotion in Phocidae, contrasting with

the Otariidae mode of swimming (Berta, Sumich & Kovacs, 2006; Pierce, Clack &

Hutchinson, 2011; Kuhn & Frey, 2012). The enlarged processes of the relatively large

cervical vertebrae in Otariidae provide enlarged attachment surfaces for the epaxial

musculature (musculus multifidus lumborum, and musculus longissimus thoracis)

(Berta, Sumich & Kovacs, 2006). Otariidae require a reinforced neck musculature,

compared to Phocidae, not only because they heavily rely on pectoral oscillations

for aquatic locomotion, but also for terrestrial locomotion. During terrestrial

locomotion, Otariidae actively use their fore flippers to locomote on land, while

Phocidae rarely do so (O’Gorman, 1963; English, 1977; Muizon, 1981; Berta & Ray, 1990;

Berta, Sumich & Kovacs, 2006; Pierce, Clack & Hutchinson, 2011; Kuhn & Frey, 2012).

The axial skeleton of N. vitulinoides is very similar to that of other Phocidae; N.

vitulinoides has small cervical vertebral bodies in comparison to the lumbar vertebral

bodies and it has small processes on the cervical vertebrae and large processes on

the lumbar vertebrae (Table S1). Hence, regarding the axial skeleton, terrestrial and

Figure 27 Lever classes. (A) Class one lever with fulcrum located between load and effort arm. (B) Class

two lever with load located between fulcrum and effort arm. (C) Class three lever with effort arm located

between fulcrum and load. The third class lever is the most commonly encountered lever class in a

vertebrate animal’s body. Fulcrum = triangle, load = black arrow, effort = gray arrow. Arrows indicate

direction of movement during action.
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aquatic locomotion of N. vitulinoides is concordant with other Phocidae: prevailing use

of the pelvis for aquatic locomotion and reduced use for terrestrial locomotion as well

as globally reduced use of the pectoral girdle (i.e., fore flippers) for both aquatic and

terrestrial locomotion.

Pectoral girdle

Humerus

In N. vitulinoides, the greater tubercle of the humerus is at the level to or slightly proximal

to the lesser tubercle (Figs. 28 and 29). Muizon (1981) elaborately described the

functional implications of a large versus a small greater tubercle (insertion of musculus

supraspinatus and musculus infraspinatus) and lesser tubercle (insertion of musculus

subscapularis) in extant pinnipeds. Phocidae (except Monachus spp.) are characterized

by a strongly developed lesser tubercle, exceeding the greater tubercle, while Otariidae

have strongly developed greater tubercle, exceeding the height of the lesser tubercle.

N. vitulinoides exhibits an intermediate state with a moderately well developed lesser

tubercle reaching the proximal level of the head and greater tubercle reaching the

proximal level of the head or slightly proximal to it, an intermediate state between extant

Phocinae and Otariidae + Odobenidae (Figs. 30 and 31). Furbish (2015) noted that a

reduced greater tubercle and a reduced lesser tubercle represent ancestral traits among

pinnipeds (see Enaliarctos, Figs. 30A and 30H). Indeed, the early pinnipedimorph

Enaliarctos has been inferred to be a hindlimb dominated swimmer, like the Phocidae

(Bebej, 2009).

In extant Phocidae, fore flipper propulsion is very limited and the humerus is mostly

held along the body while the hind flippers are used for propulsion (Muizon, 1981;

Berta & Ray, 1990; Bebej, 2009). Therefore, the use of musculus subscapularis to rotate the

humerus medially must be neither powerful nor rapid but energy efficient, hence the large

effort arm (lesser tubercle) of this third class lever to increase energy efficiency of the

action. The spinatus muscles serve to abduct the forearm. The use of fore flippers for

aquatic directional (Tarasoff et al., 1972; Muizon, 1981; Berta & Ray, 1990) and

braking (Muizon, 1981) purposes in extant Phocidae requires both rapidity and strength

(Muizon, 1981). The use of the fore flippers for braking in Phocidae may be questionable.

Tarasoff et al. (1972) and Kuhn & Frey (2012) argue that Phocinae (P. groenlandicus in

Tarasoff et al. (1972) used their fore flippers principally for steering and to a lesser extent

for aquatic propulsion and to maintain stability during inactive periods. Neither observed

any indication of the use of the fore flippers for braking, contrasting withMuizon (1981).

Muizon’s (1981) observations of the active use of fore flippers for aquatic braking by

extending them may be related to the sharp turning (steering) at high velocity observed

by Kuhn & Frey (2012). While otariids use their fore flippers actively for terrestrial

locomotion, the use of fore flippers for terrestrial locomotion is strongly reduced in

phocids. For Lobodontini (O’Gorman, 1963) and the phocines C. cristata, E. barbatus,

H. grypus, P. groenlandicus, Phoca vitulina, Pusa hispida, and Pusa sibirica (Tarasoff et al.,

1972; Kuhn & Frey, 2012), different modes of terrestrial locomotion have been observed,
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depending on the substrate, speed and taxon (O’Gorman, 1963). The three different

modes are (1) a “caterpillar-like” (Kuhn & Frey, 2012) motion with vertical undulation

of the vertebral column without the use of fore flippers, (2) the aforementioned

“caterpillar-like” locomotion in part aided by the fore flippers to pull the body, and

(3) a horizontal sinuous locomotion pushing snow posteriorly with both fore and hind

flippers. Using the fore flippers to grasp the substrate requires a strongly developed

musculus infraspinatus, to laterally rotate the humerus (Kuhn & Frey, 2012). Although the

reduced size of the greater tubercle reduces the energy efficiency of the musculus

infraspinatus compared to Otariidae, the strong development of the origin and insertion

of the musculus infraspinatus still indicates that this muscle is powerful in Phocinae.

The small size of the greater tubercle (not reaching the proximal level of the humeral

head) decreases the effort arm of the lever and increases the speed of the abduction of

the fore flipper. In Otariidae, the opposite is true: rapid and powerful adduction of the

fore flippers during swimming requires rapid action of a large musculus subscapularis

through a small effort arm (small lesser tubercle). With the fore flippers as the primary

organ of propulsion in Otariidae (Muizon, 1981; Berta & Ray, 1990; Bebej, 2009;

Kuhn & Frey, 2012), a swift abduction of the fore flipper follows each powerful backward

stroke that adducts the limb. In order to do so, the spinatus muscles of Otariidae are aided

by a large greater tubercle providing a large effort arm of the lever and, hence, rapid

abduction of the humerus.

Figure 28 Fore limb musculature of Nanophoca vitulinoides in lateral view. The origin and insertion

of selected muscles of the fore limb that are visible in lateral view. Muscles indicated in pink. Missing

bones or bone parts of Nanophoca vitulinoides indicated in gray. Dashed line visually completes the ulna.

This illustration focuses on the visualization of the origin and insertion of different muscles. Hence, the

actual shape of the muscles may differ from this illustration.
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In N. vitulinoides, the relative dimensions of the lesser and greater tubercle are

intermediate between the conditions observed in extant Phocidae and Otariidae +

Odobenidae. The moderate dimensions of the lesser tubercle (Fig. 31A), the greater

tubercle reaching the level of the humeral head proximally (Fig. 31B), and the well-

developed insertion for the spinatus muscles in N. vitulinoides point toward a moderately

powerful and moderately rapid adduction of the humerus, intermediate between extant

Phocidae and extant Otariidae, and powerful and moderately rapid abduction of the

humerus. Regarding terrestrial and aquatic locomotion, the strong development of a deep

pit for the insertion of musculus infraspinatus on the greater tubercle points toward a

relatively strong development of this muscle inN. vitulinoides and, hence, a more frequent

use of this fore flipper to crawl on land than extant Phocinae do.

In the water, the morphology of the proximal part of the humerus between Otariidae

and Phocidae suggests more frequent use of the fore flipper for aquatic propulsion

than extant Phocidae. However, the aforementioned reduced length of the cervical

vertebrae does not support any strong resemblance to either the terrestrial or the aquatic

locomotion of Otariidae, which use their fore flippers much more profoundly for

terrestrial locomotion and aquatic propulsion than Phocidae. A similar condition as

in N. vitulinoides can be seen in other extinct Phocidae (see, e.g., Muizon, 1981;

Koretsky, 2001; Koretsky & Rahmat, 2013; Koretsky, Peters & Rahmat, 2015), showing a

Figure 29 Fore limb musculature of Nanophoca vitulinoides in medial view. The origin and insertion

of selected muscles of the fore limb that are visible in medial view. Muscles indicated in pink. Missing

bones or bone parts of Nanophoca vitulinoides indicated in gray. Dashed line visually completes the ulna.

This illustration focuses on the visualization of the origin and insertion of different muscles. Hence, the

actual shape of the muscles may differ from this illustration.
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gradual increase in relative dimensions of the lesser tubercle through geologic time, as well

as a gradual decrease of the relative dimensions of the greater tubercle. The latter can be

considered a reversal, because it has been assumed that a reduced greater trochanter is

an ancestral pinnipedimorph trait (Furbish, 2015). The lesser tubercle is relatively small

in many stem phocines, such as L. proxima (Dewaele, Lambert & Louwye, 2017), of

intermediate dimensions in other extinct phocines (e.g., C. maeotica) and large in other

extinct and extant phocines (e.g., M. pontica). This points toward a significantly more

frequent use of the fore flipper for aquatic propulsion in those extinct phocines than in

living phocines, the latter heavily relying on hind flipper propulsion in the water and

holding their fore flippers firmly against their bodies during aquatic undulating of the

pelvis (Muizon, 1981; Berta & Ray, 1990; Bebej, 2009; Kuhn & Frey, 2012). Compared to

other phocines, the large size of the humeral head in N. vitulinoides and its rather strong

posterior protrusion from the body of the humerus may have allowed an increased

mobility of the scapulohumeral joint (see Muizon, 1981).

In N. vitulinoides, the deltopectoral crest projects anteriorly only to a moderate extent.

In extant pinnipeds, the deltopectoral crest is far better developed in Phocidae than in

Otariidae. In extinct pinnipeds and early pinnipedimorphs, the deltopectoral crest is

Figure 30 Comparison of pinnipedimorph fore and hindlimbs. Fore (A–G) and hindlimbs (H–N) of

selected pinnipedimorphs: Enaliarctos mealsi (A, H), Odobenus rosmarus (B, I), Otaria byronia (C, J),

Allodesmus kernensis (D, K), Monachus schauinslandi (E, L), Pusa sibirica (F, M), and Nanophoca vitu-

linoides (G, N). All illustrations rescaled to the same size. Illustrations of E. mealsi, M. schauinslandi,

O. rosmarus, and O. byronia are modified from Berta, Ray & Wyss (1989) and Berta & Ray (1990).
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always relatively poorly developed compared to their extant relatives (Fig. 30) (Mitchell,

1966; Repenning & Tedford, 1977; Berta & Ray, 1990). Extant Phocidae make extensive

use of the fore flippers for aquatic directional purposes as well as for stability and to a

very minor extent for terrestrial locomotion, while Otariidae use their fore flippers

predominantly for aquatic propulsion while using their posterior body for steering.

Hence, extant Phocidae generally require a powerful but not necessarily rapid extension

Figure 31 Fore and hindlimb character acquisition and loss in pinnipedimorphs. Selected characters

and character states of fore (A–C) and hindlimbs (D–F) in Pinnipedimorpha. (A) Lesser tubercle of

humerus lower than head (black), higher than head (orange), or equal in height (red). (B) Greater tubercle

of humerus lower than head (black), equal (red), or higher than height head (orange). (C) Deltopectoral

crest of humerus limited to the proximal half of the bone (blue) or not limited to the proximal half of the

bone (black). (D) Lateral eversion of the ilium weak (black), moderate (blue), or prominent (green).

(E) Height of greater trochanter of femur lower than height of head (black), equal (red), or higher than

height of head (orange). (F) Suprapatellar fossa of femur absent (black) or present (red).
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(musculus atlantoscapularis and musculus humerotrapezius) and abduction (musculus

deltoideus) of the humerus (Muizon, 1981). The strongly developed deltopectoral

crest provides a long effort arm for the lever of the appropriate muscles, indeed resulting

in a powerful but relatively slow extension and abduction of the fore flipper. Fore flipper

propulsion in Otariidae, on the other hand, requires rapid strokes and a smaller effort

arm for the extension and abduction of the fore flippers. Similarly, the shape of the

deltopectoral crest in N. vitulinoides can be regarded as functionally intermediate between

extant Phocidae and Otariidae, suggesting a combined use of the fore flippers for aquatic

direction purposes and propulsion. The degree of anterior projection of the deltopectoral

crest in N. vitulinoides is intermediate between extant Phocidae and other pinnipeds +

early pinnipedimorphs, a hypothesis supported by the phylogenetic analysis (Fig. 31C).

The bicipital groove of the humerus is narrow in N. vitulinoides. Among extant

Phocidae, the relative dimensions of the bicipital groove take two forms: in Monachinae,

the bicipital groove is generally very wide and shallow (wider than deep), while it is rather

deep and narrow in extant Phocinae (deeper than wide). Comparing N. vitulinoides to

extant phocines, the bicipital groove of the former is still proportionally narrower but

not particularly deeper than the latter. No muscles originate from or insert on the

bicipital groove (Howell, 1929; Muizon, 1981). However, this groove serves to guide

musculus biceps brachii. Moreover, some monachines (e.g., L. carcinophaga) have a

transverse bar within the bicipital groove to act as a pulley and increase the effort arm for

musculus biceps brachii. Muizon (1981) discusses that musculus biceps brachii is

predominantly used for braking in Phocidae. A wider bicipital groove accommodates a

larger musculus biceps brachii and a transverse bar further aids in braking by increasing

the effort arm, hence increasing strength of the muscle. Contrastingly, a narrow bicipital

groove implies a reduced use of the fore flipper for braking or a less powerful brake. The

proportionally narrow bicipital groove in N. vitulinoides, which is deeper than wide,

implies the existence of a relatively small musculus biceps brachii and, thus, most likely

a subordinate flexion of the elbow and subordinate use of the fore flipper for braking in

N. vitulinoides.

The reduced olecranon fossa on the humerus limits the extension of the elbow during

swimming. This last observation supports the assumption that the fore flipper could not

be used for propulsion in N. vitulinoides as extensively as in Otariidae, in which the

olecranon fossa is much deeper (Muizon, 1981).

In comparison with other phocines, the distal epiphysis of the humerus ofN. vitulinoides

bears a similarly well-developed lateral epicondylar crest, but a rather weakly developed

medial epicondyle. When comparing the medial prominence of the medial epicondyle to

the mediolateral width of the trochlea + medial epicondyle in posterior view, the ratio

of the medial epicondyle versus the trochlea + medial epicondyle is equal to or smaller

than 0.25. The musculus pronator teres and musculus supinator have their origins on the

medial and lateral epicondyles, respectively, and most manual flexors and extensors have

their origin on the medial and lateral epicondyle, respectively, as well (Howell, 1929;

Bryden, 1971; Pi�erard, 1971; Pi�erard & Bisaillon, 1975; Muizon, 1981; Evans &

de Lahunta, 2013). Hence, in N. vitulinoides musculus supinator and the extensors
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were probably well developed while the actions of the flexors and musculus pronator teres

were less intense than it is in closely related extant phocines. The action of musculus

supinator will be treated below. This implied decreased pronation of the fore flipper and

decreased use of the manual flexors. The latter allows assuming that pronation of the fore

flipper probably did not play an important role in providing forward thrust during aquatic

locomotion. On the other hand, an extended wrist joint and extended digits (manual

extensors) enabled the animal to push back a larger amount of water with each stroke, but

also may have facilitated changes in direction during swimming, because of the larger

surface the extended wrist and digits provide. This points toward a roughly similar use of

the wrist during aquatic locomotion (propulsion and direction changes) to extant Phocidae.

Ulna

On the ulna of N. vitulinoides, the proximal margin of the olecranon process is oriented

more perpendicular to the long axis of the ulna than it is in other phocines. The

presumably powerful musculus triceps brachii inserts on the proximal margin of the

olecranon. The triceps muscle is one of the few first class levers within the vertebrate body,

with the elbow joint acting as the fulcrum and the load (forearm) and effort (insertion of

triceps on olecranon of ulna) on opposite sides of it. Compared to other phocines, the

increased length of the effort arm at the olecranon in N. vitulinoides implies a more

powerful action of themusculus triceps brachii and thus a stronger but slower extension of

the elbow. This would have enabledN. vitulinoides to perform powerful propulsive strokes

with its fore flippers. In contrast, during terrestrial locomotion, the action of themusculus

triceps brachii is small: when gripping the substratum with the fore flippers, the latters flex

during the forward projection of the body (Thewissen & Taylor, 2007). Therefore, a

stronger development of the musculus biceps brachii may also have enabled greater

terrestrial mobility in N. vitulinoides compared to many extant phocids. However, this

contradicts the apparently poor development of musculus biceps brachii.

Radius

The insertion surfaces for musculus supinator, musculus pronator teres, and musculus

brachioradialis correspond to that of other Phocidae (except extant Lobodontini) and

Otariidae: musculus supinator and musculus brachioradialis were most likely strongly

developed and musculus pronator teres was relatively weakly developed in N. vitulinoides

(see also Muizon, 1981). These similarities of N. vitulinoides with most other phocids

suggest that supination of the forearm was relatively strong, whereas pronation was

relatively weak. The relatively proximal position of the insertion area for musculus

brachioradialis indicates a shortened load arm and more powerful use of this muscle in

comparison to extant Phocidae. Hence, supination of the forearm is relatively strong,

while pronation is relatively weak. This points toward a roughly similar use of the fore

flipper for steering and braking as extant Phocidae (except extant Lobodontini) and

Otariidae. This does not contradict the presumed improved use of the fore flipper for

propulsion, as stated above. Neither does it a priori contradict the relatively modest use

of the fore flipper for aquatic braking proposed in this study. Kuhn & Frey (2012)
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implicitly state that active braking in phocids may have been very limited and that the

animals just cease propulsion and use drag or turn around.

Pelvic girdle

Sacrum

Strongly developed sacral wings, joined by their strong ventral projection, further

distinguish N. vitulinoides from extant Phocidae (Figs. 32 and 33). Having large sacral

wings is an apomorphic trait shared by the Phocidae as it is not found in other Carnivora.

Muizon (1981) noted that, in extant Phocidae, these sacral wings are consistently larger in

Phocinae than in Monachinae. As noted earlier in this paper, our preliminary

measurements do not support such a clear distinction between both subfamilies (see also

Dewaele, Lambert & Louwye, 2017). Nevertheless, the sacral wings of N. vitulinoides are

relatively large, reaching the upper portion of the range of observed ratios, hence of typical

phocine disposition. Muizon (1981) proposed that the musculus erector spinae

originated on the anterior surfaces of the sacral wings of A. longirostris. Contrastingly,

Howell (1929) found that the musculus erector spinae originated on the anterior border

of the iliac crest in the ringed seal, Pusa hispida. However, Howell (1929) noted the

strong development of the erector spinae muscles in Pusa hispida compared to the

Californian sea lion, Zalophus californianus, the latter having much smaller sacral wings

(Howell, 1929); King (1964) observed the strong development of musculus iliocostalis

lumborum (one of the erector spinae muscles) in phocids, and Bryden (1971) observed

the insertion of the musculus longissimus lumborum (also one of the erector spinae

muscles) in the southern elephant seal, Mirounga leonina. Hence, the development of

the sacral wings may tentatively be linked to the development of the powerful erector

spinae muscles and the ability to flex, extend and rotate the dorsum during horizontal

aquatic pelvic undulations. However, iliac wings that are strongly everted laterally reduce

the effort arm of this third class lever. With the lumbar region acting as the fulcrum,

the effort arm (insertion area on sacrum) is located between the fulcrum and the load

arm (hindlimbs and pelvis). The decreased length of the effort arm implies an increased

speed and slightly reduced power of the action. Hence, having both a strongly enlarged

insertion area for the erector spinae muscles and the reduced effort arm of the lever,

both aquatic and terrestrial flexion and extension of the pelvis were powerful and fast

in N. vitulinoides. On the other hand, it can be tentatively assumed that the strong

anterior projection of the sacral wings in N. vitulinoides strongly physically reduced

the amplitude of the lateral oscillations of the pelvis compared to extant seals. In addition,

the sacral wings generally serve to attach the ventral sacroiliac ligament and to connect the

sacrum with the innominate (for the domestic dog, see Evans & de Lahunta, 2013). Larger

sacral wings may have supported a larger ventral sacroiliac ligament and may, hence,

tentatively correlate to a stronger contact between sacrum and innominate. Such a

stronger contact may be required to keep the pelvis stable during the quick and powerful

use of it during terrestrial locomotion (vertical undulation) and aquatic locomotion

(horizontal movement).
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The spinous processes of the sacrum are high and fused in N. vitulinoides. No such

condition has been observed in any extant species of Phocidae. Hence, comparison with

extant relatives is excluded. However, the extant sea otter, Enhydra lutris Fleming, 1828 has

high but separate sacral spinous processes (see Howard, 1975) and the extinct early

pinnipedimorph genus Enaliarctos Mitchell & Tedford, 1973 has fused sacral spinous

processes (Berta & Ray, 1990). Inferences on the musculature of different taxa are not

straightforward. Evans & de Lahunta (2013) showed that parts of musculus multifidus, a

fixator of the vertebral column inserts on the lateral side of the separate sacral spinous

processes of the domestic dog. For Enhydra lutris, Howard (1975) noted that the origin

of musculus piriformis, a rotator of the thigh has its origin on the separate, first sacral

spinous process. For Enaliarctos spp., Berta & Ray (1990) did not infer the musculature of

the sacrum.

Because it has been shown that musculus piriformis does not originate on the sacral

spinous processes in Phocidae (Howell, 1929; Muizon, 1981), we tentatively assume

that the fused and dorsally elongated sacral spinous processes provided a physically

stronger insertion area for the multifidus muscles (origin on lumbar vertebrae), hence

allowing to assume that the multifidus muscles in N. vitulinoides was more strongly

developed than in extant Phocidae. This allows strong fixation of the vertebral column

at the level of the lumbar region and the pelvis in N. vitulinoides. Hence, it can tentatively

be assumed that the rapid and powerful motion of the pelvis ofN. vitulinoides and lumbar

Figure 32 Hindlimb musculature of Nanophoca vitulinoides in anterior view. The origin and

insertion of selected muscles of the hindlimb that are visible in anterior view. Muscles indicated in pink.

Missing bones or bone parts of Nanophoca vitulinoides indicated in gray. This illustration focuses on the

visualization of the origin and insertion of different muscles. Hence, the actual shape of the muscles may

differ from this illustration. Note that musculus erector spinae (A) has its origin on the lumbar vertebrae

and is not illustrated and that musculus articularis genus (B) inserts on soft tissues and is also not

indicated in this illustration.
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vertebrae (through the action of the erector spinaemuscles) during terrestrial and aquatic

locomotion required profound stabilization through the multifidus muscles.

Innominate

The gluteal fossa on the ilium is relatively weakly developed (i.e., little concave) in

N. vitulinoides. Among extant Phocidae, Monachinae lack a gluteal fossa, while extant

Phocinae have a well-developed fossa, with the exception of C. cristata and E. barbatus

displaying a very shallow fossa. Compared to pinnipedimorphs in general, the gluteal

fossa of N. vitulinoides is still well developed. Aweakly developed gluteal fossa implies less

powerful gluteus muscles, and hence a relatively weak external rotation and extension of

the hip joint.

On the other hand, the strong development of the lateral eversion of the innominate in

extinct and extant phocines expands the insertion area for the erector spinae muscles

anterior to it (Fig. 31D). Hence, increased lateral eversion of the innominate, in Phocidae

in general, but even more in Phocinae, implies more strongly developed erector spinae

muscles in these taxa and, thus, increasedly powerful lateral movements of the pelvis for

Figure 33 Hindlimb musculature of Nanophoca vitulinoides in posterior view. The origin and

insertion of selected muscles of the hindlimb that are visible in posterior view. Muscles indicated in pink.

Missing bones or bone parts of Nanophoca vitulinoides indicated in gray. This illustration focuses on the

visualization of the origin and insertion of different muscles. Hence, the actual shape of the muscles may

differ noticeably from this illustration.
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aquatic locomotion (see, Berta, Sumich & Kovacs, 2015; Kuhn & Frey, 2012). As shown

in Fig. 31D, earlier branching Phocinae had slightly less laterally everted innominates

than later branching taxa, an observation suggesting that Phocinae gradually adapted to

aquatic pelvic locomotion through their evolutionary history.

The femur of N. vitulinoides has a greater trochanter that is proximally raised over the

femoral head, increasing the effort distance to the fulcrum (coxo-femoral joint) and hence

increasing power and energy efficiency of the extension of the hip and lateral rotation of

the thigh. Among extinct Phocinae, the moderately strong development of the gluteal

fossa, the lateral eversion of the ilium, and the high greater trochanter reaching proximal

to the level of the head are not uncommon (Figs. 31D and 31E). However, an enlarged

greater trochanter physically decreases the amplitude of the actions on the coxo-femoral

joint (Muizon, 1981). An energy-efficient extension and external rotation of the hip

joint during aquatic locomotion helps in preserving energy for the powerful flexion in

N. vitulinoides (i.e., swim stroke), when water is pushed backwards to produce the aquatic

thrust (see Muizon, 1981; Kuhn & Frey, 2012).

Nanophoca vitulinoides also has a strongly marked fossa on the dorsolateral side of the

anterior portion of the iliac branch of the pubis. This fossa serves as an origin for part of

musculus obturatorius externus, an adductor of the thigh, and it is generally either absent

or only weakly developed in extant Phocidae. Although the strong development of this

fossa in N. vitulinoides cannot be easily compared to extant Phocidae, it can be assumed

that musculus obturatorius externus was a relatively powerful muscle in N. vitulinoides,

providing powerful adduction of the thigh. A lateral adduction of the thigh has been

predicted above when assuming a powerful “swimming stroke” of the hind flipper

opposing the energy-efficient extension and abduction of the hind flipper at the

coxo-femoral joint.

A weak depression is present anteroventral to the acetabulum of N. vitulinoides.

A similar facet is present in extant Phocinae, but missing in extant Monachinae; in the

former it marks the origin of musculus rectus femoris on the ilium, which is relatively

strongly developed in extant Phocinae, compared to extant Monachinae, and acts to

extend the knee joint. Hence, a relatively deep origin of musculus rectus femoris

implies that the extension of the knee joint is more powerful in extant Phocinae and

N. vitulinoides than in Monachinae.

Nanophoca vitulinoides also has the unique characteristic of a hook-like strongly

developed ischiatic spine. Koretsky & Peters (2008) describe an innominate attributed to

B. neerlandica with a well-developed ischiatic spine. However, this innominate had been

found isolated from other specimens of B. neerlandica and cannot be assigned to the

species in the absence of an innominate associated with other bones. Hence, no other

extant or extinct phocid species has an ischiatic spine similar to N. vitulinoides and

most taxa only have a marked rugosity or a blunt process on the ischium (L. Dewaele,

2015, personal observation). The skeletally archaic P. rousseaui has a sharp, elongated,

ridge-like tubercle (Dewaele, Lambert & Louwye, 2017). Based on the analogy to the

domestic dog (Evans & de Lahunta, 2013), this ischiatic spine may have served to

attach and guide the dorsal sacroiliac ligament. Hence, strong development of this
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tubercle in N. vitulinoides may indicate a strong ligament uniting the sacrum and the

innominate. This interpretation is in accordance with the presumed large ventral

sacroiliac ligament proposed in this species based on the enlargement of the sacral wings,

as compared to most extant phocids (see above).

Femur

The trochanteric fossa on the femur is proportionally deep in N. vitulinoides as well as

in other extinct phocines (see Koretsky, 2001; L. Dewaele, 2015, personal observation)

and the extant Pusa species compared to other, extant, phocines, whereas it is either absent

or strongly reduced in extant and extinct Monachinae. Because the trochanteric fossa

serves as the insertion area for musculus obturatorius externus, the great depth of the fossa

in Praepusa further supports the hypothetic presence of a powerful musculus obturatorius

externus as proposed above.

The femoral head of N. vitulinoides forms much more than a hemisphere (i.e., it is

more spherical), with a clearly outlined neck. The width of the neck is less than 90%

the height of the head (Table S6). In extant Phocidae, the shape and dimensions of the

femoral head differ slightly among different species, with varying degrees of sphericity.

In extant Monachinae the femoral head is hemispherical, with an ill-defined neck, while

in extant Phocinae this head forms more than a hemisphere and the neck is better

pronounced. Muizon (1981) suggested that this differentiation between extant

Monachinae and Phocinae indicates greater amplitude in the motion of the coxo-femoral

joint in Phocinae than in Monachinae. Similarities in the shape of the femoral head and

neck between extant Phocinae and N. vitulinoides allows to assume that the latter showed

a rather great amplitude in the motion of the coxo-femoral joint as well. This assumption

contrasts with the presumed reduced mobility of the coxo-femoral joint due to the

enlarged greater trochanter in N. vitulinoides (see above).

Moreover, most specimens of N. vitulinoides have a noticeable pit on the femoral head.

Although this feature is only very weakly developed in extant Phocidae, if developed at

all, the primitive pinnipedimorph Enaliarctos spp. also display a strongly marked pit

on the femoral head, interpreted as an attachment site for the teres femoris ligament

(Berta & Ray, 1990). The authors suggest that this marked pit—and the associated strong

development of the teres femoris ligament—in Enaliarctos spp. indicates strong fixation

of the femoral head during terrestrial locomotion as well as a relatively high degree of

maneuverability of the hindlimb on land for Enaliarctos spp., compared to extant

Phocidae. A similar reasoning may be applied to N. vitulinoides, with a greater terrestrial

maneuverability of the hindlimb relative to extant Phocidae. Extending this reasoning

to N. vitulinoides and many other extinct phocines, such as Praepusa vindobonensis, it can

be assumed that these taxa spent much more time on land than most extant phocids.

A prominent adductor tubercle located on the medial epicondyle of the femur, as

described in N. vitulinoides is not uncommon among extant and extinct Phocinae (e.g.,

C. maeotica (Koretsky, 2001), H. fasciata, and P. groenlandicus). Nevertheless, its strong

development in N. vitulinoides corroborates the hypothesis of a strong development of
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the hip adductor muscles in the latter and, hence, the probable great performance of

powerful backwards swimming strokes of the hind flippers.

Just proximal to the medial condyle of the femur of N. vitulinoides, a small but

clearly visible ridge contrasts with the indistinct elevation observed in extant Phocidae.

In the latter, this area is the site of origin of the lateral and medial heads of musculus

gastrocnemius, a flexor of the knee and plantar-flexor of the ankle. Thus, the ridge

observed in N. vitulinoides is interpreted as a marked separation between both muscle

heads, suggesting their strong development. The lateral side of the lateral condyle of

the femur of N. vitulinoides bears a deep pit, approximately 1 mm deep. This pit serves

as the origin of musculus popliteus, a flexor and lateral rotator of the knee joint. Hence,

with a powerful musculus gastrocnemius and a powerful musculus popliteus, flexion of

the knee may have been more intensively performed in N. vitulinoides than in extant

phocids. This hypothesis corroborates the foregoing assumption that the hindlimb is

highly involved in aquatic propulsion in this extinct species, while in extant Phocidae

the aquatic propulsion is mainly performed by the lumbar and pelvic regions, with

the hind flippers being used more passively (Kuhn & Frey, 2012). Yet, Tarasoff et al.

(1972) observed rotation of the hindlimb and knee of P. groenlandicus during aquatic

locomotion. The increasingly powerful lateral rotation of the knee in N. vitulinoides

may also be linked to a more extensive use of the hind flippers during terrestrial

locomotion, compared to extant Phocidae. In extant phocids, Antarctic seals have been

observed to use their hind flippers for pushing away snow during “sinuous” locomotion

on firm snow and ice, but not on rocky and sandy beaches, where all phocids appear to

perform an undulatory terrestrial locomotion with only very limited aid of the hind

flippers (O’Gorman, 1963). Whereas the patellar facet is a deep concave surface in

N. vitulinoides, with a marked suprapatellar fossa proximal to it, extant Phocidae, lack a

pronounced suprapatellar fossa (Fig. 31F). However, the patellar facet attains different

shapes in different taxa: extant Phocinae have slightly concave suprapatellar fossae,

while the patellar fossae in extant Monachinae is only very faintly concave, if not flat.

According toMuizon (1981), this difference may point toward an increased mobility of the

knee joint and thus more frequent use of the knee in extant Phocinae compared to

Monachinae. As the patellar facet is more strongly concave inN. vitulinoides than in extant

Phocinae, an even greater mobility of the knee joint can be proposed in N. vitulinoides.

Contrasting with the very weakly developed (i.e., very little concave or flat) suprapatellar

fossa in extant Phocinae, a number of extinct Phocinae have a marked fossa (e.g.,

Phocanella pumila, N. vitulinoides, and P. rousseaui). Although the functional significance

of such a suprapatellar fossa for both aquatic and terrestrial locomotion in these extinct

seals is difficult to elucidate, comparisons with the domestic dog (Evans & de Lahunta,

2013) suggests that the site serves as the origin of musculus articularis genus, an extensor

of the so-called stifle joint, i.e., the knee joint. The depth of the suprapatellar fossa

also increases the accommodation space for an increased flexibility of the knee joint in

N. vitulinoides, further supporting the presumed enhanced mobility and flexibility of the

knee joint in this species over extant Phocinae.

Dewaele et al. (2017), PeerJ, DOI 10.7717/peerj.3316 67/79

http://dx.doi.org/10.7717/peerj.3316
https://peerj.com/


Tibia

The well-defined fossa marking the proximal portion of the posterior side of the tibia

of Praepusa vitulinoides is absent in extant Phocidae. However, some extant species do

have a slightly concave surface at the site (e.g., Pusa spp.), serving for the insertion of

musculus popliteus. This supports the aforementioned presumed strong development of

musculus popliteus—a flexor and rotator of the knee—in N. vitulinoides. In Enaliarctos

spp., Berta & Ray (1990) assume that the possibility of powerful rotation of the hindlimb

suggests active use of the hind flippers during terrestrial locomotion. Analogous to

Enaliarctos, the possibility of a powerful rotation of the hindlimb of N. vitulinoides may

also suggest active use of the species’ hind flippers during terrestrial locomotion.

Overall functional anatomy
The functional anatomical interpretations of the axial skeleton and the pectoral and pelvic

girdles of N. vitulinoides indicate a lifestyle that markedly differs from that of extant

Phocidae. Although the axial skeleton of N. vitulinoides does not differ strongly from that

in extant species, the anatomy of both the pectoral and the pelvic girdles in the former

points toward and increased mobility of the fore and hind flippers, compared to all

extant phocids. Hence, although it would be presumptuous to draw firm conclusions

about the locomotion strategies in N. vitulinoides, it can be proposed that it used more

actively the fore and hind flippers during both aquatic and terrestrial locomotion,

compared to extant phocid species. Nevertheless, the overall postcranial anatomy of

N. vitulinoides is typically phocine, and the inferred more active use of its fore and hind

flippers should be considered with care, certainly not implying a terrestrial locomotion

mode as performed by Otariidae. N. vitulinoides presumably rather used its fore and

hind flippers for grasping and crawling on the substratum. In the water, N. vitulinoides

most likely relied more on its fore flippers for swimming than extant Phocidae (that

use more predominantly their lumbus and pelvis to perform in pelvic oscillations).

An alternative hypothesis that may explain the more active use of fore flippers in

N. vitulinoides than in living Phocidae may relate to a more prominent use during prey

capture and manipulation. As shown byHocking et al. (2017), feeding strategies of aquatic

mammals follow an evolutionary sequence, going from terrestrial feeding, via semi-

aquatic feeding, raptorial feeding, suction feeding, and suction filter feeding, to ram filter

feeding. While the extant H. leptonyx is capable of performing semi-aquatic feeding,

raptorial feeding, suction feeding, and suction filter feeding, it can be argued that more

ancient phocids may have been restricted to feeding strategies that fall early in the

evolutionary feeding sequence (semi-aquatic and raptorial feeding). Consequently, the

role of the forelimbs in prey capture, prey manipulation, and prey processing may have

been more predominant than in extant Phocidae. However, this hypothesis remains

difficult to test in the absence of more complete specimens ofN. vitulinoides and given the

small body of scientific studies of feeding strategies in Phocidae (see Hocking, Evans &

Fitzgerald, 2013). Table 2 presents the presumable relative importance of selected muscles

of N. vitulinoides in relation to extant relatives (including Phocidae as well as Otariidae).

Overall, it can be assumed that N. vitulinoides was functionally very close to extant
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Table 2 Systematic overview of skeletal differences between Nanophoca vitulinoides and extant Phocinae. Skeletal differences between

Nanophoca vitulinoides and extant Phocinae are provided, together with their myological and locomotive implications.

Bone Character Development

compared

to extant

Phocinae

Muscle Implications for Nanophoca vitulinoides

Cervical

vertebra

Small with small spinous process† = Epaxial muscles (musculus

multifidus lumborum, musculus

longisimus thoracics)

Limited use of fore flippers during aquatic

and terrestrial locomotion

Lumbar

vertebra

Robust with well developed

spinous process*†
= Hypaxial muscles (musculus

quadratus lumborum, musculus

longissimus thoracis, musculus

iliocaudalis)

Strong horizontal ambulation posterior end

body during aquatic locomotion

Humerus Height greater tubercle (insertion

spinatus muscles)*†
+ Musculus supraspinatus,

musculus infraspinatus

Decreased speed but increased power

abduction foreflipper

Height lesser tubercle*† - Musculus subscapularis Increased speed and decreased power medial

rotation and adduction foreflipper

Anterior projection deltopectoral

crest*†
- Musculus atlantoscapularis

(extension), musculus

humerotrapezius (extension),

musculus deltoideus

(abduction)

Increased speed and decreased power

extension and abduction foreflipper

Width bicipital groove* - Musculus biceps brachii Weakly developed flexion of foreflipper

Development lateral epicondylar

crest*
= Most manual extensors and

musculus pronator teres

Similarly frequent use of manual extensors

and pronation of fore flipper

Development medial epicondyle* - Most manual flexors Less intense use of manual flexors

Ulna Development olecranon process*† + Musculus. triceps brachii More powerful extension fore flipper

Radius Insertion surfaces musculus

supinator, musculus pronator

teres, and musculus

brachioradialis*

= Musculus supinator, musculus

pronator teres, musculus

brachioradialis

Supination and pronation of foreflipper

about equally strong and weak,

respectively, as in extant Phocinae

Proximal position of insertion

surface musculsu brachioradialis*
+ Musculus brachioradialis Increased power (and reduced speed of)

supination of the foreflipper

Sacrum Size sacral wings*† =/+ musculus erector spinae, ventral

sacroiliac ligament

Flexion, extension and rotation of dorsum

during horizontal aquatic pelvic

undulations with firm contact of sacrum to

innominate, similar to extant Phocinae

Anterior projection sacral wings + Musculus erector spinae Increased speed of flexion, extension and

rotation of dorsum during aquatic

locomotion but reduced amplitude

Spinous processes + (incl. fusion) ?Musculus multifidus ?Increased stability lumbus during pelvic

oscillations

Innominate Depth gluteal fossa*† =/- Gluteus muscles Relatively weak external rotation and

extension hip joint (contra greater

trochanter femur, see below)

Development origin surface

musculus obturatorius externus*
+ Musculus obturatorius externus Relatively powerful adduction thigh

Development origin fossamusculus

rectus femoris

= Musculus rectus femoris Relatively strong extension knee joint, as in

extant Phocinae

Hook-like ischiatic spine N/A Dorsal sacroiliac ligament Strong contact innominate and sacrum

(Continued)
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Phocidae but retained a certain number of anatomical characteristics that indicate an

increased use of the fore flipper for aquatic propulsion and a more prominent use of both

fore and hind flippers during terrestrial locomotion.

The middle Miocene was a time of increased temperatures and with much less sea ice in

the Northern Hemisphere (MMCO; e.g., Miller & Fairbanks, 1983; Thiede et al., 2011).

Hence, in the absence of much sea ice, N. vitulinoides may have used its hind flippers

during undulatory terrestrial locomotion or may even have employed modes of terrestrial

locomotion not observed in extant phocids with a more active use of both fore and

hind flippers, rendering it practically impossible to determine the precise cycle of aquatic

and terrestrial locomotion in the species. Moreover, an extremely osteosclerotic inner

bone structure suggests an ecology that may differ from extant seals (L. Dewaele, 2015,

personal observation; work in progress).

Implications of the new phylogenetic analysis
The extinct Phocinae and Devinophocinae included in the current analysis all return

as stem phocines. The phylogenetic relationships among the extant Phocinae in the

crown group of the most parsimonious tree (Fig. 25) corresponds relatively well with

Table 2 (continued).

Bone Character Development

compared

to extant

Phocinae

Muscle Implications for Nanophoca vitulinoides

Femur Height greater trochanter* + Gluteus muscles Relatively strong external rotation and

extension hip joint (contra gluteal fossa

ilium, see above)

Depth trochanteric fossa* =/+ Musculus obturatorius externus Relatively powerful adduction thigh

Sphericity femoral head

(dimensions neck compared to

head)*

+ (-) N/A Increased mobility coxo-femoral joint

Development pit femoral head* + Teres major ligament Increased fixation femoral head during

terrestrial locomotion and increased

maneuverability

Adductor tubercle medial

epicondyle

+ Hip adductors Powerful adduction hip

Ridge above medial condyle N/A Musculus gastrocnemius ?More powerful flexion knee and foot

Pit on lateral side lateral condyle + Musculus popliteus More powerful flexion and lateral rotation

knee joint

Presence suprapatellar fossa N/A ?Musculus articularis genus ?Powerful extension knee joint and

providing space for the extension of the

knee joint

Tibia Concavity proximal portion

posterior margin of tibia

+ Musculus popliteus More powerful flexion and lateral rotation

knee joint

Notes:
For the comparison with extant Phocinae: “=” approximately equal, “+” better developed, “-” less developed. Muizon (1981) was the first to discuss the functional
anatomy of the axial and appendicular skeleton of Phocidae.
In the “Character” column, an asterisk (*) indicates referral toMuizon (1981), a cross (†) indicates referral to Berta, Sumich & Kovacs (2015; and references therein), while
no sign indicates an interpretation reported here for the first time. These observations may have been observed in other publications as well, but without connecting
character observations with musculature implications.
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previously published trees (Bininda-Emonds & Russell, 1996; Higdon et al., 2007; Fulton &

Strobeck, 2010), with C. cristata and E. barbatus found as the first two extant members

of the subfamily to branch off. Also in our most parsimonious tree, H. fasciata and

P. groenlandicus group together as the Histriophocini c, 1955.H. grypus and Phoca vitulina

group together in a clade that is sister group to Pusa.

Given the relatively short calculated time interval between the divergence of

Monachinae and Phocinae and the divergence of crown Phocinae (Higdon et al., 2007), it

appears that the Phocinae witnessed rapid diversification during their early evolutionary

history, as indicated by the high number of stem phocines. Because no middle Miocene

phocines other than L. proxima are known from the east coast of North America, and

because the diversity of middle and late Miocene Phocinae is high in the North Sea Basin

and the Paratethys (Van Beneden, 1876, 1877; Koretsky, 2001; Koretsky & Peters, 2008;

Dewaele, Lambert & Louwye, 2017), it can be argued that crown Phocinae originated in

Europe during the middle to early late Miocene. Although the current analysis is the first

to determine the phylogenetic position of N. vitulinoides as the last stem phocine to

branch off before the crown group (Fig. 25), other extinct Phocinae considered in the

current phylogenetic study have been analysed previously. An analysis by Koretsky (2001)

included L. proxima (as Leptophoca lenis) and Praepusa vindobonensis, and returned

both species as stem phocines: lineages to extant Phocinae appear to branch off before

L. proxima and Praepusa vindobonensis, introducing long ghost lineages for all extant

phocine taxa included. A more recent phylogenetic analysis by Koretsky & Rahmat (2013)

shows different results, but L. proxima was also recovered as a stem phocine. A more

recent phylogenetic study by Berta et al. (2015) considered L. proxima a stem monachine,

instead of a stem phocine. However, Berta et al. (2015) explicitly doubted this outcome,

which is indeed supported by the comprehensive phylogenetic analysis by Dewaele,

Lambert & Louwye (2017), which returned both L. proxima and K. benegasorum as

stem phocines, forming a polytomy with crown phocines. The only two other previous

phylogenetic analysis including K. benegasorum were carried out by Cozzuol (2001) and

Dewaele, Lambert & Louwye (2017), and considered K. benegasorum and L. proxima as

stem phocines. The phylogenetic position of the Devinophocinae was examined by

Koretsky & Holec (2002), Koretsky & Rahmat (2013), and Koretsky & Rahmat, 2015; in

these analyses they returned as a distinct subfamily forming a polytomy with Phocinae

and Monachinae (and Cystophorinae). Therefore, the nesting in our analysis of both

devinophocine species among stem Phocinae allows questioning the validity of the

Devinophocinae as a separate subfamily. We argue that the Devinophocinae subfamily

may indeed be a junior synonym to the Phocinae, but a detailed reinvestigation of

Devinophoca claytoni and Devinophoca emryi is beyond the scope of the current study.

CONCLUSION
Originally considered to belong to the genus Phoca, the generic assignment of the extinct

North Sea species “Phoca” vitulinoides has recently been contested (Koretsky & Ray, 2008).

With the addition of new specimens, the study presented here assigns the species to the new

genus Nanophoca. New biostratigraphic and lithostratigraphic data point to a middle to
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early late Miocene age (late Langhian to late Serravallian or possible early Tortonian)

for this species, although a younger age cannot be ruled out for a few specimens.

Our phylogenetic analysis suggests (1) that all included extinct Phocinae, Devinophoca,

K. benegasorum, L. proxima,N. vitulinoides, and Praepusa vindobonensis, are stem Phocinae,

and (2) that N. vitulinoides is the sister taxon to crown Phocinae. This points toward a

strong early diversification of stem Phocinae prior to the evolution of the crown group.

Although aquatic and terrestrial locomotion strategies of N. vitulinoides were clearly

reminiscent of that of extant phocids, the skeletal anatomy of the species and a

comparison with modern pinnipeds point toward an increased use of the fore flippers and

an enhanced flexibility of the hind flipper. We argue that N. vitulinoides is functionally

intermediate between extant Phocidae and a hypothetical terrestrial ancestor, and that it

had an increased terrestrial maneuverability and enhanced contribution of the fore flipper

during aquatic locomotion compared to extant Phocinae. The increased mobility and

strength of the fore flipper in N. vitulinoides may alternatively be correlated to an

increased use of the paws for prey capture, manipulation, and processing compared to

extant phocids, but this remains difficult to test. Body length estimates of N. vitulinoides

indicate that the species reached an overall length averaging around one meter, making it

one of the smallest known pinnipeds.
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southern Hungary. In: Petrulescu IA, Ştiuc�a E, eds. Advances in Vertebrate Paleontology

“Hen to Panta”. Bucharest, 63–70.

Dewaele et al. (2017), PeerJ, DOI 10.7717/peerj.3316 76/79

http://dx.doi.org/10.1098/rspb.2009.1783
http://dx.doi.org/10.1080/0035919X.2012.724471
http://dx.doi.org/10.1890/06-0624.1
http://dx.doi.org/10.1186/1471-2148-7-216
http://dx.doi.org/10.1007/s00300-012-1253-9
http://dx.doi.org/10.1098/rspb.2016.2750
http://dx.doi.org/10.5479/si.00963801.73-2736.1
http://dx.doi.org/10.1111/j.1469-7998.1966.tb02958.x
https://peerj.com/
http://dx.doi.org/10.7717/peerj.3316


Koretsky IA, Grigorescu D. 2002. The fossil monk seal Pontophoca sarmatica (Alekseev)

(Mammalia: Phocidae: Monachinae) from the Miocene of eastern Europe. Smithsonian

Contributions to Paleobiology 93:149–162.

Koretsky IA, Holec P. 2002. A primitive seal (Mammalia: Phocidae) from the early middle Miocene

of Central Paratethys. Smithsonian Contributions to Paleobiology 93:163–178.

Koretsky IA, Peters N. 2008. Batavipusa (Carnivora, Phocidae, Phocinae): a new genus from

the eastern shore of the North Atlantic Ocean (Miocene seals of the Netherlands, part II).

Deinsea 12(1):53–62.

Koretsky IA, Peters N, Rahmat SJ. 2015. New species of Praepusa (Carnivora, Phocidae,

Phocinae) from the Netherlands supports east to west Neogene dispersal of true seals.

Vestnik Zoologii 49(1):57–66.

Koretsky IA, Rahmat SJ. 2013. First record of fossil Cystophorinae (Carnivora, Phocidae):

middle Miocene seals from the northern Paratethys. Rivista Italiana di Paleontologia e

Stratigrafia 119:325–350.

Koretsky IA, Rahmat SJ. 2015. A new species of the subfamily Devinophocinae (Carnivora,

Phocidae) from the Central Paratethys. Rivista Italiana di Paleontologia e Stratigrafia

121(1):31–47.

Koretsky IA, Rahmat SJ, Peters N. 2014. Rare late Miocene seal taxa (Carnivora, Phocidae) from

the North Sea Basin. Vestnik Zoologii 48(5):419–432 DOI 10.2478/vzoo-2014-0050.

Koretsky IA, Ray CE. 2008. Phocidae of the Pliocene of Eastern North America. Virginia

Museum of Natural History, Special Publication 14:81–40.

Koretsky IA, Ray CE, Peters N. 2012. A new species of Leptophoca (Carnivora, Phocidae,

Phocinae) from both sides of the North Atlantic Ocean (Miocene seals of the Netherlands,

part I). Deinsea 15:1–12.

Kretzoi M. 1941. Seehond-Reste aus dem Sarmat von Érd bei Budapest. Földtani Közlöny
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