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A B S T R A C T   

The consumer price index (CPI) is one of the most important macroeconomic indicators for 
determining inflation, and accurate predictions of CPI changes are important for a country’s 
economic development. This study uses multivariate linear regression (MLR), support vector 
regression (SVR), autoregressive distributed lag (ARDL), and multivariate adaptive regression 
splines (MARS) to predict the CPI of the United States. Data from January 2017 to February 2022 
were randomly selected and divided into two stages: 80 % for training and 20% for testing. The 
US CPI was modeled for the observed period and relied on a mix of elements, including crude oil 
price, world gold price, and federal fund effective rate. Evaluation metrics—mean absolute per-
centage value, mean absolute error, root mean square error, R-squared, and correlation of 
determination—were employed to estimate forecasted values. The MLR, SVR, ARDL, and MARS 
models attained high accuracy parameters, while the MARS algorithm generated higher accuracy 
in US CPI forecasts than the others in the testing phase. These outputs could support the US 
government in overseeing economic policies, sectors, and social security, thereby boosting na-
tional economic development.   

1. Introduction 

The consumer price index (CPI) plays a substantial role in a country’s economic price system. It depicts the change in the price of a 
household’s purchase of consumer commodities and services by measuring the relative prices of a collection of representative con-
sumer commodities and services in a certain period [1–3]. As a result, it is used to track the evolution of living costs over time: when 
the CPI rises, so does the average price level, and vice versa [4]. This variation in CPI results in inflation or deflation, leading to an 
economic breakdown. Inflation becomes hyperinflation when prices reach uncontrolled levels [5]; moreover, deflation originates from 
a fall in the CPI general price level due to a decrease in aggregate demand, which leads to economic depression and unemployment. 
Ultimately, the CPI will be the basis for governments to adjust prices and stabilize the market to avoid inflation, allowing governments 
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to promptly adjust decisions on welfare, social security, and salary increases [6]. 
The CPI details the prices of various goods and services in a nation to monitor inflation; however, in light of the current global 

economic volatility, the economies of several supposedly powerful countries are now threatened by excessive inflation. Therefore, 
accurately predicting the variation in the CPI is crucial to various parts of economics, including fiscal policy, productivity, and 
financial markets. More importantly, constructing an accurate national CPI predictive model greatly benefits the public and gov-
ernment. This study aims to compare classical econometric and machine-learning models for CPI prediction in the United States. 

This study attempts to leverage appropriate machine learning and classical econometric models for forecasting the US CPI from 
January 2017 to February 2022; hence, support vector regression (SVR), multivariate adaptive regression splines (MARS), multivariate 
linear regression (MLR), as well as autoregressive distributed lag (ARDL) algorithms were deployed to compare predictive outputs, 
while several main accuracy indicators, such as the root mean square error (RMSE), mean absolute percentage error (MAPE), R- 
squared (R2), and mean absolute error (MAE) were sequentially employed to estimate the accuracy of the forecast algorithms. 

An algorithm (Fig. 1) was proposed to examine the US CPI by using MLR, ARDL, MARS, and SVR models to analyze data. First, the 
database was preprocessed, tested by a statistical approach, and divided into training and testing phases. Subsequently, the MLR, 
ARDL, MARS, and SVR algorithms were employed to examine the training data and obtain the most accurate indicators. Finally, the 
performances of the four models were evaluated using metrics for estimating accuracy parameters, and the best estimate procedure for 
the study was found. 

The main contribution of this study is the evaluation of two multivariate (MLR and ARDL) classical econometric models and two 
machine learning models (SVR and MARS) for US CPI prediction. In addition, these approaches enable a comprehensive analysis and 
comparison between classical econometric and machine learning models, helping readers understand which models are best suited for 
US CPI prediction within the same context. It was found that the MLR, SVR, ARDL, and MARS models accurately forecasted the US CPI 
and could be important tools for policymakers, asset managers, and market participants missing component-specific price forecasts 
critical to the decision-making process. Table 1 summarizes the definitions of the abbreviations used in this study. 

This study’s evaluations suggest that the MARS, SVR, ARDL, and MLR models achieve high-accuracy parameters and forecast CPI 
more accurately than many current baselines. Moreover, the techniques and findings of this study provide policymakers and mar-
ketmakers with new insights into projecting price fluctuations from different perspectives. Moreover, the findings of this study could 
assist the US government in capturing the volatility of the CPI, allowing to minimize the national economy’s risks and impose fiscal 
policy to maintain national economic development. 

The remainder of this paper is organized as follows. Section 1 introduces the study, and Section 2 exhibits the related works. 
Section 3 describes the materials and methods of the MLR, SVR, ARDL, and MARS algorithms. Sections 4 and 5 delineate the results 
and discussion, respectively, and Section 6 presents the conclusions. 

2. Related works 

Many previous studies have focused on the factors affecting the CPI. More specifically, oil price, gold price, and the federal fund 

Fig. 1. First experimental steps of the study.  
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effective rate have substantial effects on the US CPI [7–9]. Global oil prices have a significant long-term impact on the CPI [10–12], and 
the surge in international oil prices positively correlated with the CPI in China from October 1999 to October 2008 [13]. Barakat, 
Elgazzar, and Hanafy [14] showed a causal relationship between the CPI, interest rate, and exchange rate in Egypt from January 1998 
to January 2014. Furthermore, the federal funds rate (FFR) substantially impacts the CPI [15–17], as do global gold prices, but it is also 
an important predictor of it [18–20]. These studies suggest that oil price, gold price, and the federal fund effective rate can be 
considered essential elements affecting the US CPI; hence, these factors can be used to model and analyze the prediction of US CPI 
accuracy using machine learning approaches. 

Because the CPI is considered an important macroeconomic factor for measuring inflation, machine learning models can be 
effective and beneficial for forecasting it. Several studies have employed advanced prediction models to address environmental and 
energy problems [21–25]. Nonetheless, selecting suitable machine learning models is primarily based on the data structure, with an 
enormous body of research employing renowned classical econometric and machine learning algorithms, such as MLR and MARS, for 
prediction [26–32]. Riofrío et al. [33] point out that the SVR technique best forecasts the Ecuadorian CPI, whereas Gjika, Puka, and 
Zaçaj [34] employed seasonal autoregressive integrated moving average (SARIMA) and artificial neural network (ANN) algorithms to 
predict the US CPI, covering the period from January 1980 to December 2013. Lidiema [35] deployed the Holt–Winters triple 
exponential smoothing and SARIMA models to predict the CPI in Kenya from November 2011 to October 2016, while Ülke, Sahin, and 
Subasi [36] used four machine learning algorithms, including the k-nearest neighbor (kNN), ANNs, SVR model, and an ARDL model to 
predict US inflation between 1984 and 2014. 

Similarly, various studies have deployed regression models to analyze economic growth and environmental quality [37–43]. 
Kalaycı, Özmen, and Weber [44] used MARS to explicitly analyze the relationship between the CPI and sentiment in the USA from 
2001 to 2012. MARS approaches were used to reveal the varying levels of sensitivity of the stock index to macroeconomic and psy-
chological factors from January 2012 to October 2020 [45]. Likewise, Chang [46] employed MARS models to examine the de-
terminants and their impacts on international air passenger flow among nation pairs in 20 countries of the Asia–Pacific Economic 
Cooperation (APEC) region from 2006 to 2007. MLR was used in the European Union to observe how the CPI, monetary aggregates, 
and discount rate exchange rates affected inflation [47], while Wang, Wang, and Zhang [48] used SVR to analyze the relationship 
between the composite index of financial indicators and future inflation in China from 2006 to 2010. On the other hand, Peirano, 
Kristjanpoller, and Minutolo [49] deployed ANNs, fuzzy inference systems (FISs), artificial neuro-FIS, and SARIMA-ANN as bench-
marks to compare the performance of the combined SARIMA–long short-term memory (LSTM) in predicting the inflation rate in five 
emerging Latin American economies. Likewise, Simionescu [50] employed ANNs and support vector machines (SVMs) to predict 

Table 1 
Abbreviations meaning.  

Abbreviations Meaning 

CPI Consumer Price Index 
SVR Support Vector Regression 
MARS Multivariate Adaptive Regression Splines 
MLR Multivariate Linear Regression 
ARDL Autoregressive Distributed Lag 
RMSE Root Mean Square Error 
MAPE Mean Absolute Percentage Error 
R2 R-squared 
MAE Mean Absolute Error 
SD Standard Deviation 
SHAP Shapley Additive Explanation Method 
FFER Federal Fund Effective Rate 
GP World Gold Price 
OP US Crude Oil First Purchase Price 
KW Kruskal–Wallis  

Fig. 2. Successive experimental steps of the study.  
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inflation in Romania from Q1 2008 to Q4 2021, while Maldeni and Mascrenghe [51] used a machine learning method that included 
random forest (RF), ANNs, extreme gradient boost (XGBoost), SVR, the kNN, and linear regression (LR) for inflation forecast, claiming 
that it is capable of competing with traditional approaches for prediction accuracy. Barkan et al. [52] applied the novel hierarchical 
recurrent neural network (HRNN) algorithm to forecast the disaggregated inflation components of the CPI, while Salisu and Isah [53] 
employed linear time-series algorithms such as the autoregressive integrated moving average (ARIMA) and fractionally integrated 
versions (ARFIMA) to forecast US inflation from 1957 to 2017. Özmen, Yılmaz, and Weber [54] deployed MARS and LR techniques to 
predict the natural gas consumption of residential users using daily data from 2009 to 2012. Consequently, these useful outputs offer 
helpful models and methods for applying the MLR, MARS, SVR, and ARDL algorithms to forecast the US CPI. 

3. Data collection and methods 

The sequence in Fig. 2 illustrates the steps of this study. Data were collected monthly from January 2017 to February 2022 and 
comprised 62 observations. The training stage was randomly chosen, contributing 80% of the dataset, and the rest was used for the 
testing stage. Subsequently, the MLR, SVR, ARDL, and MARS algorithms were applied to examine how the first purchase price of crude 
oil (OP), world gold price (GP), and federal fund effective rate (FFER) impact the US CPI. Finally, the implementations of the two 
algorithms are described as base functions and are compared by employing metrics from accuracy estimation parameters such as 
MAPE, MAE, R2, and RMSE. 

3.1. Statistical description 

The data paradigm searched for different data sources that could be used to build machine-learning models for the US CPI. The US 
Energy Information Administration is a reliable source for OP data, and GP data were gathered from Statista. Federal Reserve Eco-
nomic Data were used for the FFER and CPI. 

The statistical results in Table 2 show that the standard deviation and mean of the CPI, GP, OP, and FFER are approximately 10.22 
and 257.19, 256.32 and 1441.84 US dollars, 13.65 and 55.42 US dollars, and 0.88% and 1.05%, respectively. Additionally, significant 
differences were observed between the lower 25th, median, and 75th percentiles, indicating strong fluctuations across the four var-
iables. Moreover, the kurtosis and skewness of the independent and dependent variables fluctuate around 0, demonstrating that the 
data are normally distributed [55]. 

Pearson’s coefficient is numerically equivalent to the correlation coefficient used in linear regression, ranging from − 1 to +1. 
Pearson’s correlation coefficient matrix was used to obtain the correlation coefficient between the four variables. Fig. 3 shows that the 
correlation of OP, GP, and FFER with the CPI equals 0.49, 0.8, and − 0.53, respectively, indicating their relatively strong impact on the 
US CPI. Meanwhile, an incredibly small correlation was observed between the OP, GP, and FFER, except for the correlation between GP 
and FFER, with a coefficient of − 0.78. 

The CPI displays statistically significant correlations with other variables. Hence, the coefficient testing result may confirm that CPI 
is the dependent variable, and the others are independent variables. Table 3 presents the notation and definitions of the variables. 

Table 3 summarizes the independent and dependent variables. Furthermore, the availability of data is extremely important for the 
creation and use of machine-learning models. However, gathering data is not an easy task; therefore, it is crucial to find the best 
locations for data collection. This presents a potentially useful source for machine-learning modeling. 

3.2. Unit root test 

The unit root test aims to define whether the data are stationary or not; however, non-stationarity in a time series makes it un-
predictable and difficult to model, indicating that the Augmented Dickey-Fuller (ADF) [56] and Phillip–Perron (PP) [57] approaches 
are regarded as prominent formal tests for determining stationarity [58,59] and are an extension of the DF test that includes an 
additional lagged term of the dependent variable to remove autocorrelation. 

Table 2 
Descriptive statistics.  

Statistical Parameter CPI GP OP FFER 

Units Index 1984 = 100 US dollars per troy ounce US dollars % 
Standard Deviation 10.219 256.324 13.648 0.879 
1st Quartile 250.304 1281.653 47.185 0.090 
Median 255.922 1441.840 55.420 1.150 
Mean 257.196 1507.968 54.442 1.056 
3rd Quartile 260.629 1783.173 62.800 1.828 
Min 243.618 1192.100 15.180 0.050 
Max 284.182 1968.630 89.410 2.420 
Kurtosis 0.319 − 1.586 0.992 − 1.500 
Skewness 0.902 0.320 − 0.350 0.157 
Coefficient of variation 0.004 0.17 0.25 0.82  
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ΔYt =C0 + α1Yt− 1 + α2t +
∑z

i=1
riΔYt− i + εt (1)  

ΔYt =C0 + α1Yt− 1 + α2t + εt (2)  

where Y represents a time series, t symbolizes a linear time trend, Δ denotes the first difference operator, C0 is a constant, z is the 
optimal lag of the ADF equation, and ε represents a random error term in Equations (1) and (2). The hypotheses of the ADF and PP tests 
are as follows: 

H0. The series is not stationary (obtains the unit root). 

H1. The series is stationary (no unit root). 
H0 is rejected if the p-values of the series of observations are significant at the 1%, 5%, or 10% level. 

3.3. The Johansen Co-integration test 

The series are integrated because the unit root tests show that they are stationary at the first level; however, even when they are 
integrated, it does not guarantee that they will behave consistently over time. Cointegration analysis can be used to identify long-term 
relationships between two nonstationary series, and it can be conducted using certain tests. A Johansen cointegration test is used to 
examine the long-term relationship between the co-integrated series, indicating that this study can determine the number of co- 
integration relationships and the parameters deploying the Johansen co-integration test [60]. Furthermore, the trace test examines 
the null hypothesis of r co-integrating vectors against the alternative hypothesis of w co-integrating vectors, where w symbolizes the 
number of endogenous variables and r (rank of the data matrix) = 0,1,2, …, w-1 [61]. 

3.4. Multivariate linear regression (MLR) 

MLR is a statistical method for predicting the output variable based on a set of explanatory variables, and it is used to define the 
linear relationship between the independent variable x and the dependent variable y being estimated. It has the key benefit of ease of 

Fig. 3. Pearson’s correlation coefficient matrix.  

Table 3 
List of independent and dependent variables in the dataset.  

Kind Variable Definition Data Source 

Independent Variables x1 US Crude Oil First Purchase Price US Energy Information Administration  
x2 World Gold Price Statista  
x3 Federal Fund Effective Rate Federal Reserve Economic Data 

Dependent Variable y US Consumer Price Index Federal Reserve Economic Data  
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use [62]. The fundamental MLR model [63] is 

yi = β0 + β1xi1 + β2xi2 + … + βkxik + εi, i = 1, 2, 3…, n (3) 

This model can be represented in matrix notation as [64,65]. 

y=Xβ + ε  

where 

y =

⎡

⎢
⎢
⎣

y1
y2
⋮
yn

⎤

⎥
⎥
⎦, X =

⎡

⎢
⎢
⎣

1
1
⋮
1

x11
x21
⋮

xn1

x12
x22
⋮

xn2

…
…
⋮
…

x1k
x2k
⋮

xnk

⎤

⎥
⎥
⎦, β =

⎡

⎢
⎢
⎣

β0
β1
⋮
βk

⎤

⎥
⎥
⎦, and ε =

⎡

⎢
⎢
⎣

ε0
ε1
⋮
εn

⎤

⎥
⎥
⎦.

yi is the real value response for the ith observation; β0 is the bias term (regression intercept); βi(i= 1, ..k) values are coefficients (the 
prediction’s regression slope); xik is the kth estimation for the ith observation, and εiiid N(0, σ2) is the Gaussian error term in Equation 
(3). 

3.5. Multivariate adaptive regression splines (MARS) 

Initially introduced by Yıldız and Özdemir [45], the MARS method is considered a versatile approach for modeling additive re-
lationships or interactions with fewer variables, and it is a highly accurate method for modeling systems based on datasets. The 
computational space is divided into sub-ranges of input observations, and the correlation between input and output observations is 
identified. This approach can also reveal the connection between dependent and independent variables for each anticipated phe-
nomenon by matching a simple regression to each input value to forecast the output. The MARS method divides the input value space 
into several units and then matches a spline function on these units while relying on a divide-and-conquer strategy, providing a 
training dataset in different sections, each with its own regression line [66,67]. The key benefit of the MARS technique is that it 
highlights input factors that have a significant impact on output parameters; therefore, this approach can be applied to small and large 
datasets. Moreover, the MARS algorithm uses backward and forward stepwise processes to explain and regulate the intricate nonlinear 
mapping between input and output variables. The input variable x and new output y are predicted using one of the two fundamental 
functions and applying a value or knot of variables, indicating the inflection point along the input range [68]. Furthermore, the 
primary benefit of the MARS model is its capacity to provide precise details regarding the internal procedures performed during the 
model development process [69]. The overall structure of the MARS method [45] is presented by the following Equation (4): 

y= f(x) = β0 +
∑P

j=1
αjβj (4)  

where y denotes the dependent variable forecasted by the function f(x); β0 is the constant parameter; P denotes the number of terms, 
each of which is established by a coefficient αj, j ϵ {1,…,P}; βj symbolizes an individual basis function, and xj is considered a predictor 
variable. In addition, the fundamental functions Max(0,H − x) and Max(0, x − H) are univariate and do not have to each be present if 
their β coefficients are 0. Notably, H is called “knots” or “hinges,” and x denotes the independent variable. 

The backward stepwise function eliminates the original functions one at a time until the criterion of “lack of fit” is at its lowest 
point. To avoid overly weighty equations in the next step, less applicable basis functions are pruned by employing generalized cross- 
validation (GCV) [70]: 

GCV =A ∗
∑

i
(yi − f̂ (x)) /N (5)  

where A =
[
1 −

C(M)

N

]− 2 
as well as C(M) = (M+1) + dM symbolize the complexity function [71], and d implies a penalty for each basis 

function. In addition, ̂f (x) denotes the fitted response value; N is the number of data points, and M is the number of basis functions in 
Equation (5). The GCV criterion is the average of residual error multiplied by a penalty for modifying the variability associated with 
more parameter evaluations in the model [72]. 

3.6. Support vector regression (SVR) 

The SVR algorithm is applied to find a suitable hyperplane in higher dimensions to be appropriate for the data with an acceptable 
threshold error 2ε [73], and it is a technique that has been widely used in regression assignments. Moreover, a hyperplane is a line 
separating two data classes in a dimension higher than the real dimension; therefore, it is described in SVR as a line that aids in 
forecasting the target value. Likewise, boundary lines are deployed to generate a margin among the data points and are drawn around 
the hyperplane at a distance of ε (epsilon). The acceptable threshold error is 2ε, and this value is the distance from the hyperplane to 
the boundary line (details in Fig. 4) [74,75]. In this study, the value of ε is selected as 0.01. The primary benefit of SVR is that its 
optimization process relies on the structural risk minimization concept, which seeks to reduce the upper bound of the general error 
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containing the sum of the training errors [76]. 
Where 12‖w‖

2 is the confidence interval; and as the application of ε is insensitive, w is the weight vector, where ‖w‖ denotes the 
magnitude of the normal vector with respect to the surface ; yi represents the dependent variables; ŷi denotes the dependent output 
variables, x represents the independent input variables; and b implies the threshold value [77]. To simplify the mathematical notation 
for multidimensional data, x is increased by 1, and b is added to the w vector to achieve multivariate regression [78]. 

3.7. Autoregressive distributed lag (ARDL) 

This study also deploys the ARDL model to identify long-run relationships over the existing traditional cointegration test because 
this technique is appropriate in a mixed order of integration of variables; whether variables are stationary at a level I (0) or I (1) does 
not affect the results. A key advantage of the ARDL model is that it can be applied to a small sample [79]. It was developed by Pesaran 
and Shin [80] and Pesaran, Shin, and Smith [81], and it is defined as follows [82]: 

ΔCPIt,i =α1 +
∑m

i=1
θ1iΔCPIt− i +

∑n

i=0
θ2iΔGPt− i +

∑k

i=0
θ3iΔOPt− i +

∑r

i=0
θ4iΔFFERt− i + π1CPIt− 1 + π2GPt− 1 + π3OPt− 1 + π3FFERt− 1

+ ωt

(6)  

where θ symbolizes the short-run coefficients; π is the long-run coefficients; Δ represents the first differences of the variables; and m, n, 
k, r denotes the lags of the variables in Equation (6). 

3.8. Evaluation metrics 

This study used four metrics to discuss the performance attainment of the machine-learning models. These accuracy measurement 
parameter metrics consist of MAPE [83] in Equation (7), MAE [84] in Equation (8), RMSE [85] in Equation (9), and R2 [86] in Equation 
(10), which were deployed to estimate the predicted values. 

MAPE=
1
n
∑n

i=1

|yi − ŷi|

|yi|
(7)  

MAE=

∑n

i=1
|yi − ŷi|

n
(8)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − ŷi)

2

n

√
√
√
√
√

(9)  

R2 = 1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − y)2

(10)  

where n is the total number of collected values; and yi, ŷi, and y represent the actual value, predicted output, and arithmetic mean of 
the data estimated at period i, respectively. 

Fig. 4. Graphical representation of the SVR model.  
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4. Results 

4.1. Testing stationary results 

The results in Table 4 demonstrate that the time series is not stationary at the chosen level since the p-value for the Augmented 
Dickey–Fuller and Phillips-Perron tests is higher than 0.01 for all lags. However, at the first difference, all observable variables achieve 
stationarity, indicating that the time series of these variables is predictable and thus easy to model [87]. 

4.2. Johansen Co-integration test results 

The Johansen co-integration trace test results in Table 5 reject the null hypothesis (H0: no co-integration). Hence, these results also 
indicate unique cointegrating equations at the 0.05% significance level between variables such as CPI, OP, GP, and FFER. Additionally, 
these outputs imply a long-run relationship among the observed variables [52]. 

4.3. Decomposition technique of the CPI, GP, OP, and FFER time series 

The CPI predictive graphics aim to define the most appropriate forecasting algorithm. Therefore, Fig. 5 shows that time-series 
decomposition considers a series as a combination of level, trend, seasonality, and noise components; hence, it also supplies a valu-
able abstract algorithm for a deeper understanding of problems during time-series examination and prediction. Regarding the trend 
component, the line graph shows that most variables were stable during this period except for GP. Regarding seasonality, the lines for 
GP (red line) and OP (purple line) are highly seasonal, while the CPI (blue line) and fund rate (black line) indicate low seasonality from 
January 2017 to February 2022. The residual component represents the random variation in the time series. 

4.4. Output function 

The output function of the MLR and MARS of the US CPI is defined as follows: 

MARSCPI = 359.72 + 0.62 F1 – 0.2F2 + 7.01F3 – 0.08F4 + 0.02F5 – 0.05 ∗ x2  

where F1 = max (0, x1-60.67), F2 = max (0, 60.67-x1), F3 = max (0, x3 − 1.58), F4 = max (0, 1790.43-x2), and F5 = max (0, x2-1331.3). 
F1, F2, F3, F4, and F5 are fundamental functions. F1 is considered the maximum of 0 and x1-60.67. A negative sign before the 

maximum value represents the minimum value. 

MLRCPI = 183.02 + 0.37 ∗ x1 + 0.04 ∗ x2 + 1.12 ∗ x3  

in addition, in MLR forecasting, a t-test was conducted to determine the MLR independent variables that were significant [88]; the 
findings show that OP, GP, and FFER have a positive and significant impact on the US CPI, as shown in Table 6. 

4.5. MLR, MARS, ARDL, and SVR algorithm estimation results 

The scatter graphs from the different models in Fig. 6(a) and (b) imply that the predicted values generated by the MLR, SVR, ARDL, 
and MARS models are also moderately close to the actual US CPI. Similarly, the scatter plot for the MARS algorithm is more fitted to the 
actual line in the testing stage, and the line for the SVR model more closely matches the actual line in the training phase. 

When it comes to the testing and training phases (shown in Tables 7 and 8), the MAE parameters of the two algorithms vary from 

Table 4 
Unit root test.  

Variable ADF Statistics PP Statistics 

At Level  
None Intercept Trend and Intercept None Intercept Trend and Intercept 

CPI 2.772 (0.998) 2.909 (1.000) 1.692 (1.000) 4.288 (1.000) 3.993 (1.000) 2.946 (1.000) 
OP 0.692 (0.862) − 0.903 (0.780) − 1.049 (0.929) 0.630 (0.849) − 1.032 (0.736) − 1.141 (0.913) 
GP 1.116 (0.929) − 0.766 (0.821) − 1.983 (0.599) 1.498 (0.966) − 0.704 (0.838) − 1.635 (0.767) 
FFER − 0.811 (0.361) − 0.941 (0.768) − 2.019 (0.579) − 0.709 (0.405) − 0.721 (0.833) − 1.788 (0.698) 
At First Difference  

None Intercept Trend and Intercept None Intercept Trend and Intercept 
CPI − 1.068 (0.255) − 2.159 (0.223) − 4.194*** (0.008) − 1.776* (0.07) − 2.753* (0.07) − 3.482** (0.049) 
OP − 5.847*** (0.000) − 5.901*** (0.000) − 5.955*** (0.000) − 4.576*** (0.000) − 4.524*** (0.000) − 4.512*** (0.000) 
GP − 5.828*** (0.000) − 5.992*** (0.000) − 5.941*** (0.000) − 5.771*** (0.000) − 5.903*** (0.000) − 5.848*** (0.000) 
FFER − 4.801*** (0.000) − 4.771*** (0.000) − 4.933*** (0.000) − 4.709*** (0.000) − 4.676*** (0.000) − 4.841*** (0.000) 

Table 4 represents values of t-statistics and p-values in parentheses. 
***/**/* imply significance at 1%, 5%, and 10% levels. 
None, Intercept, and Trend and Intercept are unit root test conditions. 
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0.1 to 3.2, and the RMSE values range from 0.1 to 3.9. The MAPE values of the testing and training phases for both models fluctuate 
from 0.001 to 0.013. However, the MAPE value of the MARS algorithm achieve the highest accuracy in predicting the US CPI, with a 
value of 0.004 for the testing stage. Meanwhile, the SVR model attains the highest accuracy in forecasting the US CPI, with a parameter 
approximately equal to 0.001 for the training phase. Nevertheless, the MLR model also achieves high-accuracy parameters, and the 
MAPE values of the MLR model are higher than those of the MARS model by 0.006 for the training phase and 0.009 for the testing 

Table 5 
The Johansen co-integration test result with CPI, OP, GP, and FFER.  

Hypothesized No. of CE(s) Eigenvalue Trace Statistics 0.05 Critical Value Probability 

None (r = 0) 0.288 50.029 47.856 0.03 
At most 1 (r ≤ 1) 0.242 29.948 29.797 0.05 
At most 2 (r ≤ 2) 0.155 13.571 15.494 0.09 
At most 3 (r ≤ 3) 0.06 3.614 3.841 0.06 

Note: r is a rank of the data matrix. 

Fig. 5. The calibrating vector decomposition of the time series of the four analyzed variables.  

Table 6 
Multiple linear regression results.  

Variable Coefficient t-Statistic Probability 

C 183.02 33.439 0.000 
x1 (OP) 0.37 11.323 0.000 
x2 (GP) 0.035 11.483 0.000 
x3 (FFER) 1.12 1.348 0.049  
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phase; this implies that the MARS model yields a more accurate forecast than the MLR model. For the testing stage of this study, the 
MAPE of the MLR model, 0.013 is higher than that of the SVR and MARS models by nearly 0.001 and 0.009, respectively, showing that 
the MARS model outperforms the SVR and MLR algorithms. More importantly, the ARDL model also attains high accuracy values, and 
the MLR model’s MAPE values are higher than the ARDL model’s MAPE parameter by 0.007 for the training phase and 0.008 for the 
testing phase. 

Additionally, the Kruskal–Wallis (KW) test was applied to compare the distribution of the computed and estimated US CPI values 
indicated in Tables 9 and 10; this is regarded as a nonparametric technique to analyze the variance and examines the null hypothesis by 
which the predictions among the groups show no significant differences. The parametric equivalent of the KW test is the one-way 
analysis of variance (ANOVA), assuming the data’s normal distribution [89]; as a result, the KW test results for the MLR, MARS, 
SVR, and ARDL models in both training and testing phases confirm that we cannot reject the null hypothesis at the 5% significance 
level. 

The Taylor diagrams analyze forecast performance and actual values, employing the standard deviation (SD) and correlation used 
in estimating the models. They allow to compare different model predictions based on their standard deviation and correlation with 
observations [90], and they have been generally employed to compare the performances of different regression models [91]. 

Fig. 6. The actual and forecast CPI based on ARDL, SVR, MLR, and MARS algorithms for (a) the training phase and (b) the testing phase.  

Table 7 
Accuracy parameters for US CPI forecast during the training period.   

MLR MARS SVR ARDL 

MAPE 0.009 0.004 0.001 0.002 
MAE 2.400 0.961 0.100 0.735 
(Index 1984 = 100) 
RMSE 3.199 1.170 0.100 1.084 
(Index 1984 = 100) 
R2 0.899 0.988 0.998 0.989  

Table 8 
Accuracy parameters for US CPI forecast during the testing period.   

MLR MARS SVR ARDL 

MAPE 0.013 0.004 0.009 0.005 
MAE 3.219 0.933 2.400 1.29 
(Index 1984 = 100) 
RMSE 4.046 1.200 3.199 1.688 
(Index 1984 = 100) 
R2 0.755 0.976 0.500 0.958  

Table 9 
Results of the KW test with a 0.05 level of significance for the training stage.  

Model P value H0
a 

MLR 0.482 accept 
MARS 0.481 accept 
SVR 0.480 accept 
ARDL 0.481 accept  
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Thereafter, the Taylor chart indicates the standard deviation and correlation between the real and predicted values for the four al-
gorithms and general consistency between observed and predicted values when the correlation value approaches 1, as shown in Fig. 7. 
The MLR, MARS, ARDL, and SVR models for testing, with SD = 8.172, 7.809, 7.550, and 5.486, respectively, are close to the actual CPI 
(SD = 7.799). With regard to the standard deviation of the training phase, the SVR model’s standard deviation (SD = 10.577) is closest 
to the actual values (SD = 10.693); consequently, the Taylor diagram’s scatter plots prove that the MARS, SVR, ARDL, and MLR models 
are the four most appropriate methods for forecasting the US CPI. 

4.6. Feature analysis with shapley additive explanation method (SHAP) 

The Shapley additive explanation (SHAP) method indicates that each feature is given a relevance value by SHAP for a specific 
prediction. Specifically, a positive SHAP value implies that the input has a positive impact on the output, whereas a negative SHAP 
value implies that the input has a negative impact on the output [92]. As shown in Figs. 8–11, the SHAP values for the ARDL, SVR, 
MLR, and MARS models are obtained by ordering the features by the sum of the magnitudes of the SHAP values during both the 
training and testing phases, while applying the SHAP values to point out the distribution of the impacts of each feature on the 
technique output. The color represents the feature’s value (high red or low blue). More importantly, GP and OP are the two most 
significant features of the four proposed models, contributing to a positive prediction of the US CPI, while the FFER seems to be a less 
significant feature for both the training and testing stages. Additionally, high GP, OP, and FFER make a significant positive contri-
bution to US CPI prediction. 

5. Discussion 

In this study, the MLR, SVR, ARDL, and MARS algorithms were deployed to predict the CPI in the US, relying on monthly data 
collected from January 2017 to February 2022. For the testing stage, the MLR’s MAPE value was the highest, with a coefficient of 
3.219, whereas the MARS algorithm had the lowest value, with a coefficient of 0.933, indicating a gap of nearly 2.286 between the two 
model outputs. Furthermore, the MAPE values for the MLR, ARDL, and MARS models were higher than the MAPE parameter of the SVR 
model by 0.008, 0.001, and 0.003, respectively, confirming that the SVR model produces a more accurate forecast than the MLR, 
ARDL, and MARS models during the training phase. Furthermore, the MAPE of the MARS model, 0.004, was lower than that of the 
MLR, ARDL, and SVR algorithms by 0.027, 0.001, and 0.028, respectively, indicating that the MARS algorithm provides a more ac-
curate forecast than the others for the testing stage. 

Regarding research associated with MARS, MLR, ARDL, and SVR models, Sahraei et al. [93] applied the MARS algorithm to forecast 
transport energy demand, relying on a combination of elements containing gross domestic product (GDP), population, ton-km, 
vehicle-km, passenger-km, and OP from 1975 to 2019. The third MARS model had the lowest RMSE index of 669.18 and the high-
est R2 index of 0.988. Haouraji et al. [94] deployed MLR to predict Morocco’s residential energy needs by collecting data monthly from 
July 2017 to February 2021; these results also showed that the attained RMSE and MAPE parameters for the MLR algorithm were 20.11 
and 3.77%, performing well in prediction, being significantly higher by 16.891 and 2.47% for the MLR model, 18.91 and 3.37% for the 
MARS model, and 16.911 and 2.87% for the SVR in this study’s testing phases. Wang, Wang, and Zhang [48] used SVR to analyze 
future inflation in China from 2006 to 2010, and the results showed that the achieved RMSE value for the SVR model was approxi-
mately 0.16, which is considerably higher than the RMSE of this study’s SVR model (0.1) in the training stage. Last, Ülke, Sahin, and 
Subasi [36] demonstrated that the prediction of ARDL and SVR was highly accurate, with RMSE values of 2.66 and 3.11, respectively. 
Hence, these outputs showed that the k-NN outperformed the ARDL and SVR models, and the RMSE value of the ARDL model was also 
considerably higher than that of the ARDL model in this study, with an RMSE parameter of 1.69 in the testing phase. To compare 
advanced prediction models, Zhu et al. [25] applied a back propagation neural network (BPNN) time-series long-term predicting 
algorithm; the R2 values of MLR, ARDL, MARS, and SVR achieved higher parameters than the attained R2 values of the BPNN model in 
daily temperature time-series prediction horizons: 6, 19, and 165. Regarding the granular computing method, Enke and Mehdiyev [95] 
applied a hybrid neuro-fuzzy model to forecast the US CPI and obtained an RMSE of 0.829 in their proposed hybrid model, which was 
significantly higher than the RMSE value of the SVR model in the training stage of this study. 

As far as the studies related to CPI prediction are concerned, Ali and Mohamed [87] used autoregressive integrated moving average 
errors (ARIMAX) to predict the CPI in Puntland State from July 2017 to February 2021. Hence, the MAPE of the ARIMAX model 
(2.679) was higher than those of the MLR and MARS models by nearly 0.01 in this study’s testing and training stages. In addition, Yang 
and Guo [96] employed a deep learning model with recurrent neural networks and a gated recurrent unit (GRU-RNN) to train and 
estimate the CPI from April 2005 to June 2021 in China. The MAPE of the proposed model (0.004) exactly matched that of this study’s 
MARS model (0.004) in both the testing and training stages. Kalaycı, Özmen, and Weber [44] found that MARS forecasting performed 

Table 10 
Results of the KW test with a 0.05 level of significance for the testing stage.  

Model P value H0
a 

MLR 0.462 accept 
MARS 0.463 accept 
SVR 0.461 accept 
ARDL 0.471 accept  
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well, with RMSE being close to 1, and obtained the same accuracy parameter as the MARS model used in the training and testing stages 
of this investigation. Additionally, the study of Groeneveld and Meeden [55] revealed that the MAPE of the SVR and ANN algorithms in 
predicting inflation in Romania fluctuated between 0.02 and 0.07, indicating that the SVR algorithm outperformed the ANN algorithm. 
Similarly, these output parameters were much higher than the MLR, SVR, and MARS accuracy values in this study, with MAPE values 
of 0.01, 0.01, and 0.004, respectively. Riofrío et al. [33] obtained a MAPE of 0.001 in their SVR model, which is significantly close to 
the MAPE value of the SVR model in the training stage of this study. Although the observed period is associated with significant events 
that substantially impact US inflation, such as the COVID-19 pandemic and US tariff policies on US imports from China, the SVR, 
MARS, ARDL, and MLR models proposed in this study still attain more accurate CPI forecasts than most of the studies described above. 

Subsequently, economists could use the MLR, SVR, ARDL, and MARS models to predict the CPI in the US and forecast other 
macroeconomic variables. More importantly, although the MARS, SVR, ARDL, and MLR algorithms are considered classical methods, 
they still generate excellent predictions of the US CPI. Therefore, these models can be applied to predict the CPI of other nations around 
the globe. 

Fig. 7. Taylor diagram demonstrating a statistical comparison of model performance for (a) the testing phase and (b) the training phase.  

Fig. 8. Feature importance based on the ARDL model for (a) the training phase and (b) the testing phase.  
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6. Conclusion 

Although the four proposed models accurately forecasted the US CPI, the MARS algorithm outperformed the MLR, ARDL, and SVR 
algorithms in the testing phase. Moreover, a strong relationship existed between GP, FFER, and OP in the US during the observed 
period. More accurate US CPI predictions that rely on these four forecasting techniques have numerous direct implications. By 
establishing accurate CPI expectations, policymakers can create optimum strategies to lessen the negative consequences of this 
phenomenon with fewer detrimental effects on the population. Moreover, this study provides investors with a broad picture of changes 
in the US CPI, allowing suitable investment decisions. Maintaining pricing stability assists in raising living standards and relieving 
social tensions. Furthermore, machine-learning algorithms can examine historical economic and financial data to predict future price 
changes. Machine-learning models can process and analyze large volumes of historical financial and economic data, enabling them to 

Fig. 9. Feature importance based on the SVR model for (a) the training phase and (b) the testing phase.  

Fig. 10. Feature importance based on the MLR model for (a) the training phase and (b) the testing phase.  
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identify trends and correlations that might not be apparent through traditional analysis. These predictions can be used to anticipate 
market trends, asset price fluctuations, and the state of the economy; at the same time, machine-learning and classical econometric 
models can be deployed to estimate the efficiency of current economic policy by comparing the actual and predicted values, 
contributing to the fact that policymakers and market makers can evaluate whether their policies attained the desired economic 
stability and development, and make wise monetary and fiscal policy choices to maintain and expand the national economy. Sub-
sequently, these models can be considered good tools for forecasting, helping market makers and policymakers predict price fluctu-
ations and effectively mitigate national economic risks. 

This study had limitations as the number of independent variables did not meet the study’s original expectations. Additionally, the 
predictions were based on the data period, allowing for the potential for concept drift under many circumstances. In machine learning, 
the term “concept drift” refers to the alteration of relationships between input and output data over time [97]. This may occur when the 
training algorithm depends primarily on data series with downward tendencies that overpower upward tendencies. Testing is per-
formed on data dominated by upward trends. More importantly, using machine learning algorithms requires substantial time to 
perform numerous experiments to find the optimal hyperparameters for current and future research. In addition, this study has not 
fully explored the potential economic factors affecting the US CPI and used small input data that have not achieved the most optimal 
results from these proposed models. 

The CPI is not only considered an important macroeconomic factor in forecasting the possible inflation or deflation of a nation, but 
the government can also follow changes in it to adjust economic policies, economic sectors, salaries, and social security, thereby 
ramping up economic development. Machine-learning models play a key role in forecasting and determining the influence of other 
factors on the US CPI. Consequently, future studies could apply the MARS, SVR, ARDL, and MLR models with these independent 
variables to predict the CPI of other nations. Furthermore, subsequent studies should consider more significant variables with a larger 
number of samples, and other machine-learning models should be deployed for the predictive analysis of CPIs in other developed 
countries to provide an overview of the global economy in terms of improving the accuracy of CPI forecasting. Simultaneously, other 
appropriate multivariate techniques with accurate forecasting could be enhanced and deployed in future studies to project inflation. 
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[54] A. Özmen, Y. Yılmaz, G.W. Weber, Natural gas consumption forecast with MARS and CMARS models for residential users, Energy Econ. 70 (2018) 357–381, 
https://doi.org/10.1016/j.eneco.2018.01.022. 

[55] R.A. Groeneveld, G. Meeden, Measuring skewness and kurtosis, J. Roy. Stat. Soc.: Series D (The Statistician) 33 (4) (1984) 391–399, https://doi.org/10.2307/ 
2987742. 

[56] D.A. Dickey, W.A. Fuller, Likelihood ratio statistics for autoregressive time series with a unit root, Econometrica: J. Econom. Soc. (1981) 1057–1072, https:// 
doi.org/10.2307/1912517. 

[57] P.C. Phillips, P. Perron, Testing for a unit root in time series regression, Biometrika 75 (2) (1988) 335–346, https://doi.org/10.1093/biomet/75.2.335. 
[58] M.H. Pesaran, A simple panel unit root test in the presence of cross-section dependence, J. Appl. Econom. 22 (2) (2007) 265–312, https://doi.org/10.1002/ 

jae.951. 
[59] A. Levin, C.F. Lin, C.S.J. Chu, Unit root tests in panel data: asymptotic and finite-sample properties, J. Econom. 108 (1) (2002) 1–24, https://doi.org/10.1016/ 

S0304-4076(01)00098-7. 
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