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Abstract: Dietary patterns, representing global food supplies rather than specific nutrients or
food intakes, have been associated with cardiovascular disease (CVD) incidence and mortality.
The contribution of genetic factors in the determination of food intakes, preferences and dietary
patterns has been previously established. The current study aimed to identify novel genetic
factors associated with reported dietary pattern scores. Reported dietary patterns scores were
derived from reported dietary intakes for the preceding month and were obtained through a food
frequency questionnaire and genome-wide association study (GWAS) conducted in a study sample of
141 individuals. Reported Prudent and Western dietary patterns demonstrated nominal associations
(p < 1 × 10−5) with 78 and 27 single nucleotide polymorphisms (SNPs), respectively. Among these,
SNPs annotated to genes previously associated with neurological disorders, CVD risk factors and
obesity were identified. Further assessment of SNPs demonstrated an impact on gene expression
levels in blood for SNPs located within/near BCKDHB (p = 0.02) and the hypothalamic glucosensor
PFKFB3 (p = 0.0004) genes, potentially mediated through an impact on the binding of transcription
factors (TFs). Overrepresentations of glucose/energy homeostasis and hormone response TFs were
also observed from SNP-surrounding sequences. Results from the current GWAS study suggest
an interplay of genes involved in the metabolic response to dietary patterns on obesity, glucose
metabolism and food-induced response in the brain in the adoption of dietary patterns.
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1. Introduction

Millions of people in both developed and developing countries are affected by cardiovascular
diseases (CVDs), one of the world’s leading causes of morbidity and mortality [1]. Obesity is known to
increase the risk of CVD [2] and a combination of decreased levels of physical activity and an increase
in adverse eating behaviors contributes to the obesity pandemic [3]. There is also clear evidence
of individual variability in response, suggesting that genetic susceptibility may have an important
contribution to individual risk [4].

Single nutrients or food components have been studied to understand their impact on the
development of chronic diseases [5,6]. Accordingly, individual dietary components have been
associated with increased or decreased risk of diseases without consideration of the cumulative
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or synergistic effects of the consumption of multiple nutrients within a diet, a concept extensively
discussed [5–7]. An alternative method for estimating diet may be to measure global food supply,
thus taking into account the potential synergistic effects of multiple components within the diet [5].
One of the methods used to regroup foods that are consumed together involves factor analysis.
This ‘a posteriori’ hypothesis-free derivation method uses observed/reported dietary data in order
to extract dietary patterns [8]. Despite an ongoing debate on the validity of memory-based dietary
assessment methods (M-BMs; e.g., 24-h dietary recalls and food frequency questionnaires (FFQs)),
especially concerning their use in the formulation of national dietary guidelines [9,10], dietary
patterns have been demonstrated to be concurrently valid and reproducible in comparison to other
M-BMs [11], and are associated with CVD mortality [12] and risk factors such as diabetes, blood
pressure, obesity and dyslipidemia [13–15]. Multiple studies summarized in a meta-analysis and
in systematic reviews [16,17] identified the Prudent dietary pattern as a protective factor for CVD
and reported an opposite relationship for the Western dietary pattern. The Prudent dietary pattern
is mostly characterized by the consumption of vegetables, fruits, whole-grain products, fish and
non-hydrogenated fats, whereas the Western dietary pattern is characterized by higher intakes of red
meats, processed meats, refined grains, French fries and sweets/desserts [14,18].

Genetic variations in several genes were associated with macronutrient intakes such as protein, fat
and carbohydrate [19,20]. Expanding single nutrients or food components, food preferences and dietary
patterns were shown to be influenced by genetic variations [19,20]. Greater desirability for “unhealthy”
food items was associated with gene variation in the dopamine-related COMT gene [21] and the rare
allele of the rs9939609 single nucleotide polymorphism (SNP) in the fat mass and obesity-associated
(FTO) gene has been associated with food preference; carriers of the rare allele consumed more biscuits
and pastry and less soft drinks compared with TT carriers [20].

In line with abovementioned association of Prudent and Western dietary patterns with CVD
and CVD risk factors, potential contribution of genetic susceptibility to CVD risk, and taking into
account the debate on the validity of M-BM [9,10] combined with the lack of error-free, practical, and
affordable method to assess whole dietary pattern data [22–24], our group previously demonstrated
that gene expression profiles differed in individuals with high vs. low scores for both Prudent and
Western dietary patterns [25], and that expression profiles may potentially modulate the risk of chronic
diseases including CVD [25]. The current study aimed to assess the association of SNPs with the
reported Prudent and Western dietary patterns scores. We conducted unbiased genome-wide approach
and identified reported dietary pattern-related genetic variations. Further assessment of SNPs from
associations identified was carried out through gene expression level and in silico analyses, and
suggested interplay of genes involved in the metabolic response to dietary patterns in the adoption of
dietary patterns.

2. Materials and Methods

2.1. Subjects

One hundred and forty-one individuals were selected among the 210 participants who completed
the Fatty Acid Sensor (FAS) study, primarily aiming to understand how genes and environment
act together to define CVD risk profile [26]. Individuals recruited in the FAS study had to be
non-smokers and be free of any thyroid or metabolic disorders requiring treatment such as diabetes,
hypertension, severe dyslipidemia, and coronary heart disease. A concurrently validated FFQ was
administered by a registered dietician before omega-3 fatty acid supplementation [27]. Dietary patterns
were derived by factor analysis from dietary intakes reported in FFQ. Further details on FAS study
participants and recruitment criteria were published elsewhere [26]. This trial was registered at
clinicaltrials.gov as NCT01343342. The subset of 141 individuals was originally selected among the
FAS study participants based on DNA material availability and response to an n-3 polyunsaturated
fatty acid supplementation [28]. The experimental protocol was approved by the Ethics Committees
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of Laval University Hospital Research Center and Laval University. The study was conducted in
accordance with the Declaration of Helsinki and all participants provided written informed consent
before their inclusion.

2.2. Anthropometric Measurements and Biochemical Profiling

Body weight (kg), height (m) and waist circumference (cm) were measured according to
standardized methods [29]. Resting blood pressure (mm Hg) was measured in triplicate after a
10-min rest in a sitting position, phases I and V of Korotkoff sounds being respectively used for systolic
(SBP) and diastolic (DBP) blood pressures [30]. Blood samples were collected prior the supplementation
period from an antecubital vein into Vacutainer tubes (Becton, Dickinson and Company, Franklin
Lakes, NJ, USA) containing ethylenediaminetetraacetic acid after a 12-h overnight fast and 48-h
alcohol abstinence. Blood buffy coat and plasma were separated by centrifugation. Plasma total
cholesterol (total-C, mmol/L) and triglyceride (TG, mmol/L) concentrations were measured using
enzymatic assays [31] on an Olympus AU400e analyzer (Olympus America Inc., Melville, NY, USA).
The high-density lipoprotein cholesterol (HDL-C; mmol/L) fraction was obtained after precipitation of
very low-density lipoprotein cholesterol and low-density lipoprotein cholesterol (LDL-C) particles.
LDL-C (mmol/L) was calculated with the Friedewald formula [32]. Fasting insulinemia (pmol/L)
was measured by radioimmunoassay with polyethylene glycol separation [33] and fasting glucose
concentrations (mmol/L) were enzymatically measured [34].

2.3. Dietary Assessment and Food Pattern Derivation

Habitual dietary intake for the month preceding the study was determined by a 91-item FFQ
including 27 items with 1 to 3 sub-questions [27] and specifically based on food habits of Quebecers.
This FFQ was previously shown to be reproducible and concurrently valid based on comparisons with
a 3-day dietary record [27]. Participants had to answer to each question during a face-to-face interview
with a registered dietician and were asked to report how often they consumed each type of food: daily,
weekly, monthly or none at all during the last month. Examples of portion size were provided to
ensure that each participant estimated correctly the proportion eaten. Information was compiled and
the Nutrition Data System for Research software version 4.03 with Nutrient Database v2011 (Nutrition
Coordination Center, University of Minnesota, Minneapolis, MN, USA) was used to analyze FFQ data.
This database includes more than 16,000 food items with complete nutritional values for 112 nutrients.
Similar food items from the FFQ were grouped, as previously described [14], and based on similarity
of nutrient profiles, culinary usage and groups used in other studies [8]. Twenty-seven food groups
were then formed and used for factor analyses to generate reported dietary patterns. The FACTOR
procedure from Statistical Analysis Software (SAS) was used to derive factors from all participants
considering eigenvalue >1, values at Scree test and interpretability to determine the number of factors
to retain. Briefly, two main reported dietary patterns were derived. These patterns were similar to
Prudent and Western dietary patterns from the literature [18]. Each individual was given a score
for both reported dietary patterns. The SCORE procedure of SAS was used to calculate scores from
the sum of food groups multiplied by their respective factor loading. These scores reflect the degree
of each participant´s reported dietary intake conformance to a dietary pattern. Further details on
reported dietary assessment, food grouping, food pattern derivation and factor loadings were provided
elsewhere [25].

2.4. Genome-Wide Genotyping and Quality Control

DNA was isolated from blood buffy coats using the GenElute™ Blood Genomic DNA kit (Sigma,
St. Louis, MO, USA). Quantification and verification of DNA quality were conducted via NanoDrop
spectrophotometer (Thermo Scientific, Wilmington, DE, USA) and PicoGreen DNA methods. Illumina
HumanOmni-5-Quad BeadChip® (Illumina Inc., San Diego, CA, USA) were used to genotype more
than 4,300,000 SNPs at the genome-wide level in the 141 individuals. Samples were tested for
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call rate (>95%) and gender mismatch based on genotyping data. All 141 samples were used in
further analysis. Genotyping arrays were processed at the McGill University/Génome Québec
Innovation Center (Montreal, QC, Canada) according to manufacturer’s recommendations. SNP allele
frequencies and tests for Hardy–Weinberg equilibrium (HWE) were performed using PLINK [35]
(version 1.07). SNP quality control was conducted and SNPs failing one of the criteria were excluded
from analyses. Specifically, SNPs with insufficient call rate (<95%) or genotype distribution deviating
from Hardy–Weinberg equilibrium (p values < 1.87 × 10−8) were excluded. In addition, monomorphic
(non-variable) SNPs or with a minor allele frequency (MAF) < 0.01 were removed from analyses. Thus,
a total of 1,632,526 SNPs were excluded, leaving 2,668,805 SNPs for statistical analyses.

2.5. Gene Expression Analyses

Pre-supplementation gene expression data were retrieved from previously published data [36]
for 30 of the 141 individuals. Briefly, gene expression profiling was performed on RNA extracted
from peripheral blood mononuclear cells using the Illumina Human-6 v3 Expression BeadChip and
carried out at the McGill University/Génome Québec Innovation Center (Montreal, QC, Canada).
The microarray data re-analysis was performed using the FlexArray software [37] and the Lumi
algorithm. Robust multiarray average background adjustment was applied followed by log2 variance
stabilization and quartile normalization. Transcripts were considered as expressed if they were detected
in 25% of the samples.

2.6. Functional Analyses

Potential impacts of reported dietary patterns associated-SNPs herein identified on amino acid (aa)
sequence and at protein level were analyzed using Variant Effect Predictor (VEP) [38]. Potential impacts
of these SNPs on transcription factor (TF) binding sites and prediction of TF binding affinities based
on DNA sequences were conducted using TRAP [39] an online tool comparing SNP surrounding
sequences with known TF recognition sequences. TRAP has the capacity to identify TF binding
sites among a SNP-surrounding sequence and to estimate TF affinity to the common and rare alleles.
It also offers the possibility to identify overrepresented/enriched TFs among a group of sequences
submitted, thus highlighting potential disruption of global regulators of biological mechanisms and
providing biological insights for the associations identified. Sequences overlapping SNPs of interest
(30 bp upstream and downstream) were submitted for analysis as input sequences. The Transfac
vertebrates 2010.1 database was used as TF matrix file and human promoter sequences were introduced
as background model.

2.7. Statistical Analysis

Clinical data were expressed as mean ± standard deviation for the full cohort and according
to sex. Differences in clinical data between men and women were tested using Student’s t-test
for continuous variables and Chi-square test for categorical variables. The general linear model
(type III sum of squares) with adjustments for the effects of age, sex and body mass index (BMI)
was used to test the associations of SNPs with CVD risk factors (fasting plasma lipids, glucose,
insulin, SBP and DBP) as well as the associations of prudent and Western reported dietary pattern
scores with these CVD risk factors. Transformations were applied for TG (logarithmic transformation;
log10) and insulin levels (negative inverse transformation; 1/(-1*X)) to meet the criteria for normality.
Partial Pearson correlations were computed to assess the relation between reported dietary pattern
scores and associated CVD risk factors. Associations between SNPs and scores for prudent and
Western reported dietary patterns were tested under linear regression using PLINK including age, sex
and BMI as covariates. Nominal genome-wide association threshold of p < 1.0 × 10−5 was used to
identify SNPs associated to reported dietary patterns. This significance threshold was used in order
to avoid discounting true positive association based on the fact that statistical tests in genome-wide
association studies (GWASs) are not independent due to linkage disequilibrium (LD) between SNPs
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and therefore the traditional method to adjust significance thresholds for multiple testing overcorrects
when used in GWASs [40,41]. To evaluate the contribution of SNPs to the variance of reported dietary
pattern scores, stepwise regression analysis was conducted. Differences in gene expression levels
between genotype groups for reported dietary pattern-associated SNPs were tested using analysis
of variance (general linear model, type III sum of squares) with adjustments for the effects of age,
sex and BMI. LD (r2) between SNPs demonstrating significant associations was calculated from our
data and from the 1000 Genomes Project phase 1v3 data [42] using Haploview [43] and LD calculator
(https://caprica.genetics.kcl.ac.uk/~ilori/ld_calculator.php), respectively. SAS software version 9.3
(SAS Institute Inc., Cary, NC, USA) was used to test for differences in clinical data, associations and
correlation of reported dietary pattern scores with CVD risk factors, and differences in gene expression
levels according to genotype groups.

3. Results

3.1. Subjects’ Description

The current study included 141 individuals from a previously described supplementation study
aimed at assessing gene–environment interactions on CVD risk profile [26]. Individuals included
here were overweight, middle-aged men and women (68 men and 73 women; Table 1). Men and
women had similar BMI, while men had higher SBP (p < 0.0001) and lower HDL-C levels than women
(p < 0.0001). Comparing reported dietary pattern scores derived from dietary intakes reported for the
month preceding the study, women were characterized by higher Prudent and lower Western scores
than men (p = 0.04 and 0.01, respectively). When categorizing individuals with high (>0) vs. low (<0)
scores for both reported dietary patterns, men were more prone to showing a high score for Western
reported dietary pattern (p = 0.0006) while no difference between sex was identified for the Prudent
reported dietary pattern score (p = 0.11).

Table 1. Description of the genotyping cohort.

Characteristics All Men Women

Number 141 68 73
Age (years) 31.6 ± 8.8 31.1 ± 8.0 32.0 ± 9.6
BMI (kg/m2) 28.4 ± 3.8 28.1 ± 3.7 28.7 ± 3.8
Waist girth (cm) 94.5 ± 11.0 96.3 ± 11.2 92.9 ± 10.7
Lipid profile
Total-C (mmol/L) 4.90 ± 0.97 4.88 ± 1.03 4.92 ± 0.92
LDL-C (mmol/L) 2.88 ± 0.88 3.01 ± 0.95 2.75 ± 0.80
HDL-C (mmol/L) 1.42 ± 0.38 b 1.25 ± 0.29 1.58 ± 0.39
TG (mmol/L) 1.32 ± 0.68 1.37 ± 0.72 1.27 ± 0.65
Total-C/HDL-C 3.66 ± 1.10 b 4.10 ± 1.16 3.25 ± 0.88
Blood pressure (mm Hg)
SBP 113.0 ± 12.3 b 118.5 ± 12.9 107.8 ± 9.1
DBP 68.5 ± 8.4 68.7 ± 8.6 68.3 ± 8.3
Fasting glucose (mmol/L) 5.00 ± 0.46 5.06 ± 0.47 4.94 ± 0.44
Insulin (pmol/L) 93.2 ± 87.5 100.6 ± 119.2 86.4 ± 39.6
Self-reported diet scores
Prudent −0.022 ± 1.012 a −0.207 ± 1.041 0.150 ± 0.960
High/low scores (>0) 70/71 29/39 41/32
Western −0.009 ± 0.980 a 0.202 ± 1.087 −0.207 ± 0.829
High/low score (>0) 70/712 44/24 26/47

Values presented (means ± standard deviation) are untransformed and unadjusted. Sex differences are identified.
a p value < 0.05. b p value < 0.0001 Abbreviations: BMI, body mass index; Total-C, total cholesterol; LDL-C,
low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglycerides; SBP, systolic
blood pressure; DBP, diastolic blood pressure.

3.2. Dietary Scores and CVD Risk Factors

Reported dietary pattern, characterized by high intakes of vegetables, fruits, whole grain products,
non-hydrogenated fats for the Prudent and by high intakes of refined grain products, desserts, sweets
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and processed meats for the Western were tested for associations with CVD risk factors. Although
limited by our sample size, the respective SNP frequency and their potential effect size, assessment
of associations of Prudent score with CVD risk factors using correlation analysis revealed that DBP
(r = −0.259, p = 0.002) and fasting insulin levels (r =−0.282, p = 0.0008), both showed inverse correlation
with the Prudent score following adjustments for age, sex and BMI.

3.3. Association between SNPs and Reported Dietary Patterns

Associations were tested between 2,668,805 SNPs and each reported dietary pattern including age,
sex and BMI as covariates. A total of 78 and 27 SNPs was associated with the Prudent and Western
reported dietary pattern scores, respectively (p < 1 × 10−5; Figure 1, Tables S1 and S2). Associations
identified were unique; none of the SNPs showed an association with both Prudent and Western scores.
Low LD was generally observed in our study sample between Prudent-associated SNPs considering
SNPs on the same chromosome, with few exceptions of large regions on chromosomes 2 (5 SNPs;
250 kb), 19 (3 SNPs; 118 kb) and 20 (12 SNPs; 476 kb) demonstrating strong LD (r2 ≥ 0.8). LD calculation
from the 1000 Genomes Project data revealed moderate LD (r2 ≥ 0.6) between SNPs located within
these regions. No such large region with strong LD was observed between SNPs associated with
Western score with a mean LD of 0.23 in the present study sample.

SNPs associated with Prudent reported dietary pattern score were mainly located in gene regions,
with 44 of the 78 Prudent score-associated-SNPs being located in gene regions. Most of these SNPs
were intronic, while 5 were exonic, one was located in promoter and another in the 3’near gene
region. Prudent-associated intergenic SNP rs13042507 is located near the CTCFL gene previously
associated with type 2 diabetes (T2D) [44]. SNPs annotated to genes previously associated to obesity
traits (LINGO2 [45], NELL1 [46]) and neurological disorders (schizophrenia (ACSM1 [47], KIF26B [48],
NALCN [49])), and alcohol and nicotine dependence (LINGO [50], SH3BP5 [51]) were found among
Prudent reported dietary pattern score associated-SNPs. SNPs associated to Western reported dietary
pattern score were mostly intergenic; 19 of the 27 significant SNPs being intergenic while 7 were
intronic and another was located in 3′ near gene region. SNPs from genes associated with alcohol
dependence (ESR1) and obesity traits (RGS7, NRG3 and ESR1) were observed among Western reported
dietary pattern score-associated SNPs.
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covariates. Suggestive (p < 1.0 × 10−5) and conventional (p < 5.0 × 10−8) genome-wide association 
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and to identify potential leading SNPs for regions demonstrating multiple significant associations, 
stepwise regression was performed from Prudent- and Western-associated SNPs. Among Prudent-
associated SNPs, 14 SNPs contributed to explaining 76.2% of the Prudent reported dietary pattern 
score variability, while sex and BMI explained 2.0% and 1.0% of variability, respectively. From the 27 
Western-associated SNPs, 9 explained 63.6% of variability in the Western reported dietary pattern 
score while confounding factors (age, sex, BMI) did not seem to contribute to variability. Potential 
leading SNPs revealed by stepwise regression analysis are highlighted in Tables S1 and S2. 
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In order to test the potential implication of reported dietary pattern-associated SNPs in the 
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dietary pattern-associated SNPs for associations with CVD risk factors. In line with associations 
identified here between Prudent reported dietary pattern scores and CVD risk factors (DBP and 
insulin), a total of three significant associations were identified with insulin levels (Table 2). Among 
these, the rs6499924 SNP located within CNGB1, showed the most significant association with insulin 
levels (p = 0.0005). Significant associations between SNPs located in the gluconeogenesis-regulating 
PCK1 gene region and fasting glucose levels were also found although the Prudent reported dietary 
pattern score was not associated with fasting glucose levels in our previous analysis. Regarding 
Western-associated SNPs, five significant associations were identified between Western reported 
dietary pattern score-associated SNPs and total-C, including SNPs located within or near RGS7, 
TET2, ARID1B and PFKFB3.

Figure 1. Manhattan plot showing p values obtained from genome-wide association studies between
single nucleotide polymorphisms and reported dietary pattern scores: (A) Prudent; (B) Western
reported dietary patterns. p values obtained using linear regression model with age, sex and BMI as
covariates. Suggestive (p < 1.0 × 10−5) and conventional (p < 5.0 × 10−8) genome-wide association
thresholds are represented by blue and red lines, respectively.

To get further insights on the contribution of SNPs in variability of reported dietary patterns, and
to identify potential leading SNPs for regions demonstrating multiple significant associations, stepwise
regression was performed from Prudent- and Western-associated SNPs. Among Prudent-associated
SNPs, 14 SNPs contributed to explaining 76.2% of the Prudent reported dietary pattern score variability,
while sex and BMI explained 2.0% and 1.0% of variability, respectively. From the 27 Western-associated
SNPs, 9 explained 63.6% of variability in the Western reported dietary pattern score while confounding
factors (age, sex, BMI) did not seem to contribute to variability. Potential leading SNPs revealed by
stepwise regression analysis are highlighted in Tables S1 and S2.

3.4. Impact of SNPs on CVD Risk Factors

In order to test the potential implication of reported dietary pattern-associated SNPs in the
associations between reported dietary patterns and CVD risk factors, we further tested reported dietary
pattern-associated SNPs for associations with CVD risk factors. In line with associations identified here
between Prudent reported dietary pattern scores and CVD risk factors (DBP and insulin), a total of
three significant associations were identified with insulin levels (Table 2). Among these, the rs6499924
SNP located within CNGB1, showed the most significant association with insulin levels (p = 0.0005).
Significant associations between SNPs located in the gluconeogenesis-regulating PCK1 gene region
and fasting glucose levels were also found although the Prudent reported dietary pattern score was not
associated with fasting glucose levels in our previous analysis. Regarding Western-associated SNPs,
five significant associations were identified between Western reported dietary pattern score-associated
SNPs and total-C, including SNPs located within or near RGS7, TET2, ARID1B and PFKFB3.
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Table 2. Significant associations identified between reported dietary pattern-associated SNPs and cardiometabolic risk factors.

SNP ID a rs Number Gene Associated Pattern Total-C LDL-C HDL-C Total-C/HDL-C SBP Fasting Glucose Insulin

kgp4289407 rs114123656 LINC01246 b Prudent — — — — — — 0.02
kgp6444538 rs115510004 LOC645949 b Prudent — — 0.008 — — — —
rs10097298 rs10097298 LOC100130298 b Prudent — — — — — 0.03 —
kgp2826446 rs76838052 C10orf142 b Prudent — 0.02 — — — — —
kgp9480999 rs74842138 GDF10 b Prudent 0.04 — — — 0.03 — —
rs7144547 rs7144547 STON2 Prudent — — 0.004 0.03 — — —
rs163269 rs163269 ACSM1 Prudent — — — — — — 0.02
rs6499924 rs6499924 CNGB1 Prudent — — — — 0.04 — 0.0005
kgp5504930 rs13042507 CTCFL b Prudent — — — — — 0.02 —
kgp6972810 rs73180793 PCK1 b Prudent — — 0.02 — — 0.02 —
kgp12008054 rs6070157 PCK1 Prudent — — 0.02 — — 0.02 —
kgp10614850 rs11552145 PCK1 Prudent — — 0.04 — — 0.01 —
kgp9374426 rs116812750 RGS7 Western 0.02 0.009 — — 0.01 — —
kgp8978882 rs112040989 LOC101929468 b Western 0.03 — — — 0.02 — —
kgp9399667 rs112764838 TET2 b Western 0.03 — — — 0.02 — —
kgp9469075 rs72736220 LOC100996286 b Western — — — — 0.03 — —
kgp29240591 rs148696004 TLL1 b Western — — — — — 0.01 —
kgp9282379 rs200247 TFAP2D b Western — — — — 0.04 — —
kgp9033598 rs79041188 ESR1 Western — — — — 0.05 — —
kgp26148321 rs141382233 ARID1B b Western 0.02 0.01 — — — — —
kgp4441528 rs2535974 ACTR3B b Western — — — — 0.008 — —
kgp1054774 rs113152482 PFKFB3 Western 0.03 — — — — — —
rs1348307 rs1348307 LINC00706 b Western — — — — — 0.006 0.0008
rs7911681 rs7911681 NRG3 Western — — — — — 0.03 —
kgp6498073 rs112633616 LOC101928441 b Western — 0.03 — — — — —
kgp27660318 rs140957346 EEA1 Western — — — — — 0.03 —
kgp25610618 rs140552175 LOC101928880 Western — 0.05 — — 0.02 0.002 —

a SNP ID and annotated genes according to Illumina® HumanOmni5-Quad BeadChip. b Nearest gene according to Illumina® HumanOmni5-Quad BeadChip annotations. Significant p
values are shown while non-significant ones are represented by dashes (—). No significant associations between SNPs and BMI, triglyceride levels or DBP were found. Abbreviations: SNP,
single nucleotide polymorphism; Total-C, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SBP, systolic blood pressure; DBP,
diastolic blood pressure.
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3.5. Impact of SNPs on Gene Expression Level

To assess the physiological impact of reported dietary pattern-associated SNPs and to provide
potential molecular mechanisms underlying associations identified, we tested the association of
SNPs with gene expression levels using gene expression data retrieved from a previous study [36]
conducted on 30 individuals from our study sample (Table S3). Corresponding gene expression data
were obtained for SNPs located in the gene region while expression levels of the nearest gene were
retrieved for intergenic SNPs. Among genes annotated to diet associated-SNPs, 55 were found on
gene expression array and 21 were detected in peripheral blood mononuclear cells. Despite few
of the SNPs tested being associated with gene expression levels in this small study sample of 30
individuals, two intergenic SNPs associated with the Prudent reported dietary pattern (rs1454469,
rs976145) were associated with expression levels (p = 0.02 for both) of BCKDHB (NM_183050). Rare
allele carriers of these SNPs had higher expression levels (Figure 2A,B). These two SNPs demonstrated
strong LD (r2 = 1.0) in our sample as well as in data from the 1000 Genomes Project. Testing Western
reported dietary pattern-associated SNPs for association with expression levels, rs113152482 rare allele
carriers showed higher PFKFB3 (NM_004566) expression levels following adjustments for the effect
of age, sex and BMI (p = 0.0004; Figure 2C). It is interesting to note that this SNP was highlighted by
stepwise regression analysis as it contributed to 1.3% of the variability of the Western reported dietary
pattern score.
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significant association with the presence of single nucleotide polymorphisms in blood. Expression
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(C) Expression level of PFKFB3 (NM_004566) according to rs113152482 genotype groups. Normalized
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and third quartiles are represented by box borders. Whiskers represent first and third quartiles ±1.5
interquartile ranges.

3.6. Functional Analysis of SNPs

To provide further mechanistic insights for associations identified between SNPs, Prudent and
Western reported dietary pattern scores, CVD risk factors and expression levels, we conducted
TF analysis from SNP-surrounding sequences. Considering all Prudent-associated SNPs, FOXM1,
glucocorticoid receptor (GR), CEBP and CEBPB were found among the most overrepresented TF
binding sites. STAT family members and HMGA1 TFs were overrepresented from SNP-surrounding
sequences for SNP associated with either Prudent or Western reported dietary patterns (Tables S4
and S5). IRF8 and PDX1 TFs were also overrepresented among surrounding sequences from SNPs
associated with either the Prudent or the Western reported dietary pattern. Focusing on SNPs
associated to CVD risk factors identified here, SNP rs6499924 associated with fasting insulin levels
showed creation of potential GABP-alpha and ATF5 binding sites in the presence of the rare allele.
Among glucose level-associated SNPs located in the PCK1 gene region, rs6070157 resulted in aa change
that was predicted to be tolerated or benign. For SNPs associated with gene expression, the rs976145
SNP associated to BCKDHB gene expression levels showed creation of HIF2A binding site while
the presence of the rare allele of rs1454469 SNP, also located within the BCKDHB gene region, was
predicted to disrupt IRX2 and IRX3 binding sites and to create a MEF2 binding site. Western reported
dietary pattern-associated rs113152482 SNP, found to be associated with PFKFB3 gene expression,
showed the creation of a potential NFAT1 binding site.

4. Discussion

Using factor analysis from reported dietary intakes obtained from a concurrently validated
FFQ [27], we first derived dietary patterns corresponding to Prudent and Western dietary
patterns [14,18] previously reported to be associated respectively with protective and deleterious
effects on CVD [16,17]. We thereafter tested associations between SNPs and reported dietary pattern
scores using a nominal threshold of p < 1.0 × 10−5. This genome-wide association threshold was
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used to account the non-independency of statistical tests conducted [40,41] and combined with
functional analyses to provide potential mechanistic insights for the associations identified. Although
not reaching the conventional p < 5.0 × 10−8 GWAS significance threshold or Bonferroni corrected
threshold, it provides clues for the discovery of biologically relevant associations. Identification of
associations between reported dietary pattern-associated SNPs, CVD risk factors and gene expression
levels argued for such biological importance of SNPs identified. Nonetheless, the most significant
association observed here, between rs13212846 and the Western score (p = 4.16 × 10−8), reached a
conventional p < 5.0 × 10−8 GWAS significance threshold. This SNP is located ~285 kb upstream
the DEFB112 gene encoding an antimicrobial and cytotoxic peptides made by neutrophils [52].
Another SNP located upstream of the DEFB112 gene (~259 kb) was previously associated with BMI [53].
However, very low LD is observed between the BMI-associated rs17665162 SNP and the Western
score-associated rs13212846 SNP herein identified. Globally, low LD observed between reported dietary
pattern-associated SNPs and subsequent regression analysis demonstrated that a limited number of
SNPs explains a large proportion of the variability in reported dietary pattern scores. These results
suggest that: (1) some of the SNPs identified herein may act under an additive model; and (2) some
other SNPs may act through common functional mechanisms with major SNPs potentially alleviating
the impact of certain SNPs in common biological mechanism.

In line with the relationship between dietary patterns and CVD risk factors, the current study
identified the rs13042507 SNP, near the CTCFL gene previously associated with T2D [44]. This SNP,
herein associated with the Prudent reported dietary pattern, shows very low LD (0.008; 1000 Genomes
Project data) with the rs328506 SNP associated with decreased risk of T2D [44], thus not allowing
a potential biological link between Prudent dietary pattern and T2D-associated risk previously
reported [54]. Nonetheless, association of reported dietary pattern-associated SNPs with CVD risk
factors were also identified in the current study. Three SNPs (rs73180793, rs11552145, rs6070157)
located within the gluconeogenesis-regulating PCK1 gene region were found to be associated with
fasting glucose levels. Although subjects recruited had to be non-diabetics, these associations are
coherent with a potential association between PCK1 SNPs and T2D [44], and between Prudent-like
dietary patterns and decreased risk of T2D [54]. Testing Western reported dietary pattern -associated
SNPs with CVD risk factors, the most significant association found involved the rs1348307 SNP
located within the long intergenic non-protein coding RNA 706 (LINC00706) and fasting insulin levels
(p = 0.0008). Although association between Western reported dietary pattern score and insulin levels
was not observed in our cohort of overweight/obese men and women, such association of Western
reported dietary pattern-associated SNPs with insulin level is coherent with a correlation of the Western
score with insulin levels, as previously reported in men [55].

Mechanistic insights for the associations identified are provided herein through analysis of
gene expression levels in blood and TF analysis. Increased expression levels of the BCKDHB gene
(NM_183050) were observed in the presence of rare allele of Prudent reported dietary pattern-associated
SNPs rs1454469 and rs976145, both SNPs demonstrating perfect LD in our study sample. Mutations in
the BCKDHB gene are known to be responsible for the maple syrup urine disease (Online Mendelian
Inheritance in Man #248600) characterized by mental and physical retardation, feeding problems,
and a maple syrup odor of the urine. Specifically, the presence of SNP rs1454469 was predicted to
create an MEF2 binding site. In Caenorhabditis elegans chemosensory neurons, MEF2 TF was recently
found to be involved in sensory neuron–gut interaction, linking feeding state conditions to the
regulation of chemoreceptor genes via insulin signaling [56]. An association between the Western diet
associated-SNP rs113152482 and gene expression of PFKFB3 in blood was also identified. PFKFB3
encodes inducible 6-phosphofructo-2-kinase and is expressed in the brain [57]. It was shown to
act as an essential glucosensor in hypothalamic neurons, linking glycolysis, AMP-activated protein
kinase signaling and neuropeptide expression in mouse [58]. The rs113152482 SNP, highlighted
by stepwise regression and explaining 1.3% of Western score variability, was predicted to disrupt
the NFAT1 binding site. NFAT signaling plays critical roles in the development of multiple organ
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systems, including pancreas [59] and nervous system [60], and was reported to play a role in glucose
homeostasis in pancreatic β-cells cellular models [61].

Having a global look at TF overrepresentation from surrounding sequences of reported dietary
pattern-associated SNPs, overrepresentation of FOXM1 and GR TF were observed from Prudent
reported dietary pattern-associated SNPs. FOXM1 is involved in cell proliferation, is necessary for the
maintenance of adult beta-cell mass, beta-cell proliferation and glucose homeostasis, and was shown
to be up-regulated in obesity [62]. Glucocorticoids (GCs) are known to mobilize the endocannabinoid
system which is essential for negative feedback regulation of the hypothalamic–pituitary–adrenal
axis [63]. In addition, a recent study using Cushing’s syndrome patients as a unique model of chronic
GCs exposure demonstrated a negative correlation of urine cortisone with food-related choice thus
implying a potential role of GR in food-choice behavior [64]. STAT family members and PDX1 TF
were found to be overrepresented from SNP-surrounding sequences from both Prudent and Western
reported dietary pattern-associated SNPs (Tables S5 and S6). STAT TFs were shown to be involved
in energy homeostasis through an activation of the JAK-STAT pathway by leptin and their role in
leptin-mediated satiety [65]. Specifically, STAT5 TF herein overrepresented is recruited by many
hormones and cytokines that regulate food intake [66] whereas the PDX1 TF is involved in pancreatic
development and glucose metabolism [67].

Results presented here tend to highlight a potential involvement of obesity-related and glucose
metabolism genes in the adoption of dietary patterns concordant with a potential involvement of
obesity genes in nutrient-specific food preference proposed following the analysis of obesity-associated
loci revealed through genome-wide association study [19]. Notably, variants associated with
body weight and BMI were previously reported to be associated with appetite, energy intake
and eating behaviors [20,68], and several obesity genes were reported to be expressed in the
hypothalamus, a center for energy balance and regulation of food intake. Specifically, interplay
exists between food-induced brain responses and eating behaviour [69], and hypothalamus is a brain
area specifically involved in food reward [70] thus potentially influencing food choice and the adoption
of dietary patterns.

The current study used unbiased genome-wide approach to assess the genetics of the adoption of
Prudent and Western reported dietary pattern scores. Results from the 91-items FFQ administered
in the current study are based on reported data known to be biased by omissions, false memories,
intentional misreporting and gross misestimation [9], and face-to-face interviews may have affected
participants’ responses due to social desirability bias [71]. While these biases cannot be measured in
the current study, the use of a population-specific FFQ [27] combined with an extensive database of
food items with nutritional values available for 112 nutrients may partially alleviate the impact
of self-reported nutritional assessment method on the derivation of reported dietary patterns.
Despite subject to the imperfection of self-reported data and the ongoing debate on the validity
of the memory-based dietary assessment methods [9,10], the concurrent validity and reproducibility of
the FFQ used here were previously reported using a home- and self-completed 3-day food record [27],
a dietary assessment method subject to recall bias, thus arguing for concurrent validity of the FFQ
administered although validation was not performed in the current study and actual dietary intakes
were not measured. Interactions between genetic and dietary factors as well as the impact of
developmental processes on CVD risk factors were not analyzed, the main objective of the study
being to identify associations between SNPs and reported dietary patterns to provide novel potential
targets and biological mechanisms for CVD prevention. Since differences in reported dietary pattern
scores between men and women have been identified herein from reported dietary intakes, sex has
been included as a covariate in genome-wide analyses. However, analyses have not been conducted
separately in men and women. BMI was also included as a covariate in our analysis, suggesting that
association identified are BMI independent. However, we acknowledge that other CVD risk-associated
confounding factors, e.g., developmental programming [72,73] and physical activity [74], were not
taken into account for testing associations between reported dietary pattern-associated SNPs and CVD
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risk factors. Further generalization of conclusions at the population level merits further validation
in general population, our cohort being composed of overweight individuals. An impact of SNPs on
blood cell expression levels was observed here for a limited number SNPs. Nonetheless, we cannot
rule out the possibility that they may exert their effect in other tissues.

Collectively, the association of SNPs with reported dietary pattern scores, CVD risk factors and
expression levels argues for an impact of genetic variations on the determination of the adoption of
Prudent and Western dietary patterns. Integration of association, expression and transcription factor
data tends to reveal the involvement of obesity, glucose metabolism and neurological genes in the
adoption of dietary patterns. As proposed herein, reported dietary pattern-associated SNPs may
potentially act through an impact on glucose metabolism and food- and energy-sensing pathways.

Supplementary Materials: The following are available online at www.mdpi.com/2072-6643/9/7/649/s1,
Table S1: Associations identified between SNPs and Prudent dietary pattern, Table S2: Associations identified
between SNPs and Western dietary pattern, Table S3: Description of gene expression cohort, Table S4: Transcription
factors overrepresented in surrounding regions (60 bp) of Prudent dietary pattern-associated SNPs, Table S5:
Transcription factors overrepresented in surrounding regions (60 bp) of Western dietary pattern-associated SNPs.
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