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Abstract

Deficits in auditory processing are among the best documented endophenotypes in schizophrenia, possibly due to loss of
excitatory synaptic connections. Dendritic spines, the principal post-synaptic target of excitatory projections, are reduced in
schizophrenia. p21-activated kinase 1 (PAK1) regulates both the actin cytoskeleton and dendritic spine density, and is a
downstream effector of both kalirin and CDC42, both of which have altered expression in schizophrenia. This study sought
to determine if there is decreased auditory cortex PAK1 protein expression in schizophrenia through the use of quantitative
western blots of 25 schizophrenia subjects and matched controls. There was no significant change in PAK1 level detected in
the schizophrenia subjects in our cohort. PAK1 protein levels within subject pairs correlated positively with prior measures
of total kalirin protein in the same pairs. PAK1 level also correlated with levels of a marker of dendritic spines, spinophilin.
These latter two findings suggest that the lack of change in PAK1 level in schizophrenia is not due to limited sensitivity of
our assay to detect meaningful differences in PAK1 protein expression. Future studies are needed to evaluate whether
alterations in PAK1 phosphorylation states, or alterations in protein expression of other members of the PAK family, are
present in schizophrenia.
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Introduction

Recent studies have identified several electrophysiological,

morphological and molecular changes in the auditory cortex of

schizophrenia subjects. Individuals with schizophrenia have

reduced auditory cortex gray matter volume [1;2] and deficits in

auditory sensory processing. These deficits, evidenced by a

reduced ability to discriminate pure tones, correlate with core

negative symptoms of this illness such as impairments in detecting

spoken emotional tone, in phonologic processing and in reading

attainment [3;4]. Impaired tone discrimination is also correlated

with reduced magnitude of Mismatch Negativity (MMN), an

event-related potential arising after auditory stimuli that deviate

from a repetitive stimulus in one characteristic (e.g. pitch) [5;6].

Tone discrimination depends on the primary auditory cortex

(AI), contained within Heschel’s gyrus (HG), which sharpens the

frequency representations present at lower levels of auditory

processing [7;8]. Similarly tuned and reciprocally connected [9;10]

layer 3 pyramidal cells in AI excite each other, selectively

amplifying the thalamocortical signal [8]. MMN similarly reflects

activity within layer 3 circuits of AI, arising after the initial

thalamic volley, and is dependent on excitatory neurotransmission

[11]. A previous study identified a 27% reduction in density of a

marker of dendritic spines, post-synaptic components of excitatory

glutamatergic signaling, within deep layer 3 of AI in subjects with

schizophrenia [12]. Spine density was correlated with the density

of non-selectively labeled pre-synaptic axon boutons [12;13].

These findings likely contribute to the reduced auditory cortex

gray matter volume in subjects with schizophrenia and to an

impaired spread of activation within the layer 3 pyramidal cell

networks of AI. A reduction in dendritic spine density has also

been observed in the dorsolateral prefrontal cortex in post-mortem

studies of schizophrenia [14;15].

Dendritic spines remain plastic structures, with a proportion

arising and retracting into adulthood [16–18]. A net elimination of

spines will result from reduced spine emergence, persistence and/

or increased spine retraction. Formation and maintenance of

dendritic spines is dependent on the organization and stabilization
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of an actin cytoskeleton [19]. Hence, disturbances in molecular

pathways known to regulate actin stabilization may contribute to

abnormalities in dendritic spine number and morphology.

Of those proteins known to regulate actin stabilization, p21-

activated kinase 1 (PAK1) is a plausible point of dysregulation

contributing to a reduction in dendritic spines in schizophrenia, a

premise supported by multiple lines of evidence. First, PAK1, a

serine/threonine protein kinase, alters F-actin stabilization. PAK1

activates LIMK which phosphorylates cofilin, inactivating it so

that it cannot depolymerize f-actin [20]. Second, overexpression of

either dominant negative or kinase dead PAK1 constructs in

hippocampal neuron cultures reduced spine density [21;22].

Dominant negative PAK1 also altered spine morphology [21].

Overexpression of wild type PAK1 or constitutively active PAK1

resulted in increased spine density [21;22]. In vivo models of

reduced PAK1 expression also provide evidence of altered spine

function and morphology, although less consistent evidence of

reduced spine density are present. PAK1 knockout mice have been

shown to have deficient long term-potentiation in hippocampal

region CA1, with reduced f-actin in spines, although reductions in

spine density were not present [23]. In contrast, PAK1/PAK3

double knockouts show a decrease in synaptic density and

bidirectional synaptic plasticity [24]. PAK1/PAK3 double knock-

out was also associated with reduced numbers of spines with

mature morphologies, although there was not a change in overall

spine density due to increases in spines with immature morphol-

ogies [24]. Third, PAK1 is dually regulated by both kalirin (via

Rac1) and CDC42. Kalirin has been shown to influence dendritic

spine number and morphology [25;26], while CDC42 has been

demonstrated to be involved with filopodia formation and actin

stabilization [27]. mRNA for the kalirin-7 isoform and for CDC42

have been reported to be reduced in schizophrenia [28]. More

recently we examined protein levels of kalirin isoforms in the

auditory cortex of subjects with schizophrenia, finding increased

levels of the kalirin-9 isoform, while the more abundant kalirin-5,

kalirin-7, and kalirin-12 isoforms were unchanged [29].

We hypothesized that altered PAK1 protein expression may

contribute to the reduction in dendritic spine density in the

auditory cortex of schizophrenia subjects. We utilized quantitative

western blotting to measure PAK1 levels in post mortem auditory

cortex gray matter samples from 25 schizophrenia subjects and

matched controls in whom we had previously measured kalirin

isoform levels [28].

Results

PAK1 protein expression is not altered in schizophrenia
PAK1 protein level was not significantly different between the

schizophrenia subjects and matched controls in our cohort

(t22.7 = 20.79, p = 0.44). The distribution of PAK1 level was

evenly distributed among schizophrenia and control subjects with

48% of schizophrenia subjects and 52% of control subjects having

higher PAK1 levels (Figure 1 A–C).

There was no significant interaction between PMI group (High,

Medium and Low) and diagnosis (F2, 28.1 = 1.30, p = 0.29). The

95% nominal confidence intervals for the diagnostic difference in

the High, Medium and Low PMI groups were (20.19, 0.38),

(20.18, 0.28) and (20.51, 0.11), indicating no effect of diagnosis in

any of these subgroups.

We further examined whether PAK1 level (log scale) was

selectively altered in additional subgroups of subjects (Figure 2).

There was no difference in PAK1 levels between subject pairs

when separated by sex (t23 = 21.15, p = 0.26), diagnosis of

schizoaffective disorder (t23 = 20.66, p = 0.52), death by suicide

(t22.9 = 0.56, p = 0.58), history of substance use disorder (t23 = 0.49,

p = 0.63), or antipsychotic use at time of death (t22.8 = 1.02,

p = 0.32). There was no significant correlation of the pairwise

change in PAK1 levels with age of onset (t23.1 = 20.17, p = 0.87)

or duration of schizophrenia (t23 = 0.33, p = 0.74).

We had previously determined relative protein levels of kalirin

isoforms within auditory cortex gray matter from these subject

pairs; the within subject-pair differences in log of PAK1 protein

levels and log of total kalirin protein levels were positively

correlated (r = 0.55, p = 0.004, Figure 1), although neither PAK1

nor total kalirin protein level (unpublished observation) signifi-

cantly differed between schizophrenia and control subjects.

We similarly evaluated whether PAK1 protein levels were

correlated with protein levels of spinophilin, a marker of dendritic

spines,[30;31] sensitive to changes in spine density.[12;32]

Spinophilin protein levels were obtained in the same individuals.

However, because of evidence for loss of spinophilin immunore-

activity when postmortem intervals were greater than 24 hours in

an animal model (Figure S1) we restricted these analyses to the 20

pairs of subjects with observed postmortem intervals#24 hours

(Table 1). Spinophiln protein levels, like PAK1 levels, were

unchanged in subjects with schizophrenia (t18 = 0.58, p = 0.57).

Nevertheless, PAK1 protein levels and spinophilin protein levels

were positively correlated among all subjects (Figure S2, r = 0.37,

p = 0.02). A stronger correlation was seen for the within subject-

pair differences in log PAK1 protein levels and differences in log

spinophilin protein levels (Figure 1, r = 0.61, p = 0.004).

Post mortem interval does not affect PAK1 protein
expression

Failure to detect differences between groups in postmortem

studies can occur because the measured protein, although

detectable, is present at such a reduced level in comparison to

the in vivo state that identifying further reduction is not possible, i.e.

a ‘‘floor effect’’. We thus examined the effect of post mortem

interval on PAK1 level in cortical grey matter in a mouse model

(Figure 3). We found that the effects of post mortem interval on

PAK1 level (F7,24 = 0.35, p = 0.92) were minimal in the PMI range

utilized in this study (PMI#30 hours). There was a small, but

statistically significant effect of PMI on b tubulin level (F7,24 = 9.56,

p#0.01), however, this is readily accounted for by subject

matching which includes PMI. In the human study there were

no significant effects of PMI on PAK1 level (F1,31.9 = 0.76,

p = 0.39), although we did detect the previously mentioned

nominally significant interaction between PMI and diagnosis.

Discussion

The emergence and persistence of dendritic spines is likely

regulated by numerous molecular pathways with complex

interactions. Strong potential candidates contributing to dendritic

spine abnormalities in schizophrenia will demonstrate regulatory

effects on the actin cytoskeleton, dendritic spine number and spine

morphology, as well as interactions with regulatory proteins whose

expression are known to be altered in the disease state. While

PAK1 fulfills all of these criteria and is stable in postmortem tissue,

this study demonstrated that there is no change in PAK1 protein

expression in whole grey matter extracted from the auditory cortex

of schizophrenia subjects in our cohort.

This study has several strengths of that enhance confidence in

the results. We evaluated a moderately large human tissue cohort,

with sudden causes of death and indices of excellent tissue

preservation. Initial studies established the linearity of our assay

conditions allowing interpretation of the relative change in

PAK1 in Schizophrenia
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Figure 1. PAK1 Expression in schizophrenia. A) Detection of PAK1 in human gray matter extracts. Bands corresponding to the predicted
molecular weights of PAK1 and Tubulin are readily detected in human gray matter extracts from subjects with schizophrenia (S) and matched control
subjects (C). MW, Molecular Weight Markers. B) Comparison of PAK1 expression (normalized to tubulin expression) for the 25 pairs of subjects. Each
point represents a pair of subjects. The diagonal reference line represents a control: schizophrenia ratio of one. Points above the line indicate
increased expression in schizophrenia subjects, points below the line indicate decreased expression in schizophrenia subjects. C) Mean (SD)

PAK1 in Schizophrenia
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fluorescence intensities. Subjects with schizophrenia and matched

control subjects were processed in pairs through all stages of the

assay, including tissue harvesting, protein extraction and mea-

surement, and western blotting. Since gel effects in western

blotting can be substantial, this latter design element in which pairs

of subjects were present in adjacent lanes, with replicates of each

pair both within and across gels, was essential to reduce variability

in our diagnostic comparison. Moreover, we used analytic models

that explicitly addressed these nested repeated comparisons,

enhancing the precision of our estimate of the diagnosis effect.

Using this approach in these subjects, we had previously found an

increased protein level of kalirin-9, indicating that our approach is

sufficiently sensitive to detect protein changes.

Although there was no overall change in mean PAK1 protein

levels in our subjects with schizophrenia, within pair differences in

PAK1 levels were correlated with those of an upstream effector,

total kalirin, and with levels of a dendritic spine marker,

spinophilin. Detection of these correlated changes further suggests

that our approach was sufficient to detect potential biologic effects.

Similarly, evaluation of postmortem effects on PAK1 levels in a

mouse model showed minimal impact for the intervals represented

within our cohort, indicating that the failure to find a change in

PAK1 was not likely an artifact of ‘‘floor effects’’ in the human

postmortem cohort. One potential limitation of our study is the

lack of evaluation of the potential influences of antipsychotic use

on PAK1 levels in a model system, however, our analysis did not

show an effect of antipsychotic use at the time of death in our

human cohort.

Our finding of no change in PAK1 protein expression in the

auditory cortex in combination with a recent study that found no

change in PAK1 levels in the anterior cingulate cortex, but

increased PAK1 levels in the dorsolateral prefrontal cortex, in

subjects with schizophrenia, suggests there may be regional

differences in disease-related PAK1 expression.[33] Alternatively,

the significant correlation of within pair reductions in PAK1 and

spinophilin raises the possibility that it is a subset of subjects with

schizophrenia that have deficits in signaling via PAK1 to dendritic

spines. Figure 4 summarizes the major PAK1 signaling pathway

regulating actin dynamics and dendritic spines. PAK1 activity is

regulated by the Rho GTPases, Rac1 and CDC42, which in their

active GTP bound state bind to PAK1 dimers inducing a

conformational change which removes the autoinhibitory domain

from the kinase active site [34]. These conformational changes

promote autophosphorylation at threonine 423 in the active site,

which is required to maintain the uninhibited state and to promote

full catalytic activity. In addition at least two other phosphoryla-

tion sites exist which promote and maintain catalytic activity

regulated by numerous additional mediators (ie. Cdk-5, PDK1),

thus creating a number of possible differentially phosphorylated,

catalytically active states [34]. Prior studies have demonstrated

enrichment of the phospho-threonine 423 PAK1 in the post-

synaptic density of mouse cortical neurons [35;36]. It is plausible

that while PAK1 protein expression is not changed, the fraction of

PAK1 in its active phosphorylated state is altered. Measurement of

levels of these specific phosphorylation states, through the use of

phospho-specific antibodies, may provide more biologically

relevant indications of dysregulation of this molecular cascade.

However, phosphorylation states vary with postmortem time and

conditions, making determination of individual phosphorylation

states in post-mortem samples challenging [37]. Nevertheless, one

recent study identified reduced levels of phospho-threonine 423

PAK1 in the dorsolateral prefrontal cortex and anterior cingulate

cortex of subjects with schizophrenia [33].

Additional consideration must be given to the use of protein

extracted from whole gray matter in this study, which does not

allow for differentiation of PAK1 levels in individual layers or

specific cellular compartments. Prior findings of altered kalirin

protein levels and kalirin and Cdc42 mRNA expression in

schizophrenia were not layer specific [28;29], leading us to

evaluate whole gray matter. Nevertheless, it remains possible a

selective decrease in PAK1 protein level within specific layers may

contribute to spine loss. Such a specific change may not be

detectable in the overall background of PAK1 protein expression

and would require separate studies to detect changes confined to

individual layers. Similarly, PAK1 levels may be selectively altered

in the spine compartment, and may require measurement

expression PAK1:tubulin in schizophrenia and control subjects. D) Correlation of within pair differences in log PAK1 expression with the
corresponding measure of log total kalirin protein expression (r = 0.55, p = 0.004). E) Correlation of within pair differences in PAK1 expression with the
corresponding measure of spinophilin protein expression (r = 0.61, p = 0.004).
doi:10.1371/journal.pone.0059458.g001

Figure 2. Effect of subject variables on PAK1 expression in schizophrenia. Each point represents the mean within pair difference in log
PAK1 expression. Horizontal bars are group means. No differences were significant.
doi:10.1371/journal.pone.0059458.g002
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specifically in this compartment. Finally, other members of the

PAK family may be relevant to spine density. For instance, a rare

chromosomal deletion including the PAK2 gene has recently been

associated with schizophrenia [38]. Also of note, mutations in the

PAK3 gene, discovered to be associated with nonsyndromic mental

retardation, have been noted to alter spine number through a

CDC42 mediated pathway [39]. Recent data indicate that PAK1

protein and PAK3 protein colocalize within dendritic spines where

they heterodimerize, regulating PAK3 signaling. Of interest, this

dimerization is inhibited by mutations in PAK3 that lead to

mental retardation, suggesting that PAK1 levels may contribute to

spine reductions through this mechanism [40]. Thus, while we

found no change in overall PAK1 protein expression in

schizophrenia, further exploration of possible changes in both

biochemical properties and compartmental localization of mem-

bers of the PAK family of proteins will be required to fully evaluate

whether they play a role in dendritic pathology in schizophrenia.

Materials and Methods

Ethics Statement
All brain specimens were obtained during autopsy after

obtaining a witnessed verbal consent from the next of kin, using

a procedure reviewed and approved by the University of

Pittsburgh Committee for Oversight of Research and Clinical

Training Involving Decedents. Verbal consent was audiotaped

Figure 3. Effects of postmortem interval on PAK1 expression. A) Example western blot of PAK1 and Tubulin in mice in which the interval
from sacrifice to brain harvesting was experimentally varied between 0 and 48 hours. MW, Molecular Weight Markers. B) Optical densities for PAK1
and Tubulin in mice in which the interval from sacrifice to brain harvesting was experimentally varied between 0 and 48 hours. Two sets of mice
(each set containing one mouse for each PMI) were tested. Sets were run concurrently on separate gels, and the run was repeated. Mean (SEM) values
for the four observations at each time point are shown. Time points sharing the same superscript letter differ significantly.
doi:10.1371/journal.pone.0059458.g003
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and a written document summarizing the consent process was

generated and signed by the individual obtaining consent and an

independent witness. Family members of decedents provided

written consent to participate in a postmortem research diagnostic

interview as approved by the University of Pittsburgh Institutional

Review Board. All data were analyzed anonymously. Animal

studies were approved by the University of Pittsburgh Institutional

Animal Care and Use Committee.

Human Subjects
A total of 25 subjects with a diagnosis of either schizophrenia or

schizoaffective disorder were each matched to a control subject for

sex, as closely as possible for age and post-mortem interval (PMI),

and to the extent possible, for handedness (Table 1). All brain

specimens were obtained during autopsy at the Allegheny County

Medical Examiner’s Office after obtaining consent from the next

of kin. An independent panel of experienced clinicians made

consensus DSM-IV diagnoses using a previously described method

[14] approved by the University of Pittsburgh Institutional Review

Board. The right hemisphere was blocked coronally at 1–2 cm

intervals and the resultant slabs snap frozen in 2-methyl butane on

dry ice, and stored at 280uC.

Sample Preparation
Tissue slabs containing the superior temporal gyrus (STG) with

an evident Heschl’s Gyrus (HG) located medial to the planum

temporal were identified and matched on rostral-caudal level

within pairs [41;42]. From these slabs, the STG was removed as a

single block (Figure 5 A–C) and the area of HG gray matter was

estimated using Image J [43]. After undercutting the gray matter,

a total of 30 mm3 (approximating 30 mg) of grey matter was

collected from HG by taking 40 mm sections, and frozen at 280C.

Total protein was extracted using SDS extraction buffer (0.125 M

Tris-HCl (pH 7), 2% SDS, and 10% glycerol) at 70 uC. Protein

concentration was estimated using a bicotinic acid assay (BCATM

Protein Assay Pierce # 23225). Pairs were run together, and

assayed in triplicate. The final protein concentration utilized for

each sample was the mean of the triplicate runs.

Western Blotting
This study consists of 25 matched pairs of control and

schizophrenia subjects examined in 13 runs, with 2 pairs per run

for 12 runs and 1 pair for 1 run with each run consisting of 4 gels.

For the 12 runs with 2 pairs in each run, each gel contained two

different pairs loaded using a total of 8 lanes so that the control

member of each pair appears on 2 lanes and the schizophrenia

member of each pair appears on 2 lanes, with members of a pair

run in adjacent lanes. For the run with 1 pair, each gel was loaded

using a total of 4 lanes so that the control and schizophrenia

member of that pair appears on 2 adjacent lanes. The

experimenter was blind to diagnosis during experimentation and

quantification of blots. Pilot studies were used to establish

conditions providing for linear detection of all target proteins

(Figure 5 E). Based on these studies, 20 mg of protein was

aliquoted in 16 LI-COR Protein Loading Buffer (Licor Inc.

Lincoln, Nebraska, USA), loaded on 4–20% SDS-PAGE gradient

gels (Thermo Scientific, Rockford, Illinois, USA), and separated

for 2 hours at room temperature in 16SDS running buffer (Pierce

206 Tris Hepes SDS Buffer) at 75 V. Samples were then

transferred to 0.45 mm PVDF (Millipore, Billerica, Massachusetts,

USA)] in 16Tris Glycine Blotting Buffer (Pierce) at 85 V for 50

minutes at 4uC. Membranes were incubated for 1 hour in Odyssey

LiCor Blocking Buffer diluted 1:1 in 16TBS. The membrane was

incubated overnight in PAK1 primary antibody (rabbit anti-

PAK1, Invitrogen, 71–9300, Camarillo, Ca 93012) diluted 1:1000

and mouse anti-b tubulin (Millipore# 05–661) diluted 1:60,000, in

Pierce SuperBlock blocking buffer with 0.1% Tween 20 (Sigma-

Aldrich, St. Louis, Missouri, USA). The anti-PAK1 antibody did

not detect PAK2 or PAK3 (Figure 5 F). Membranes were then

incubated in LiCor IRDye secondary antibodies (goat anti-rabbit

800 nm; goat anti-mouse 680 nm) 1:10,000 in Odyssey Licor

Blocking Buffer diluted 1:1 with TBS (0.1% Tween 20+0.02%

SDS). Blots were scanned dry and bands detected using a Li-Cor

Odyssey Infrared Scanner set at a resolution of 42 mm and the

highest image quality. Procedures for spinophilin (detected using

rabbit anti-spinophilin, Millipore # AB5669, Millipore, Billerica,

Massachusetts, USA) diluted 1:2000 were identical, with the

exception that 10 mg of protein was loaded based on pilot studies

to determine conditions providing for linear detection of

spinophilin (Figure S1).

Quantification of Western Blots
Images were quantified using MCID Core Version 7.0

(InterFocus Imaging Ltd., Linton, Cambridge, UK). The peaks

for PAK1, spinophilin, and b tubulin on the histogram were

independently aligned to a single point for all lanes from all blots

by translating each lane along the distance axis. Once aligned, a

band definition encompassing the full range of each band was

applied uniformly to all lanes from all blots in the study on the

histogram for each protein (Figure 5 D). The integrated intensity

(mean intensity 6mm2) and maximum intensity was acquired for

each protein.

Statistical Analyses
The response variable for the analysis was the natural logarithm

of the ratio of PAK1 protein integrated intensity to the integrated

Figure 4. PAK1 Signaling Pathway. PAK1 resides in inactive homo-
or heterodimers. Binding of the Rho-GTPase, RAC1 (or CDC42) causes
dissociation of the dimers and activation of PAK1. PAK1 activates LIMK1,
which inhibits cofilin-mediated f-actin depolymerization. PAK1 may be
subject to activation by non-GTPase mechanisms, and can activate
other effector pathways, some of which (e.g. MLCK and MLC) may also
impact spine dynamics. Blue indicates promotion of dendritic spine
persistence, red indicates promotion of spine elimination.
doi:10.1371/journal.pone.0059458.g004
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intensity of tubulin, a normalizing protein that does not differ

between diagnostic groups (t22.5 = 1.16, p = 0.26). For each subject,

up to 8 measurements of this log ratio were made after excluding

any measurements with gel artifacts. Each analysis used two linear

mixed models, in which subject and gel were treated as random

effects due to the fact that the log ratio measurements are repeated

within each subject and within each gel. The primary model

treated diagnosis, pair nested in run, and run as fixed effects, while

Figure 5. Processing of human tissue for PAK1. A–C) show an example of a frozen coronal slab through the right temporal lobe from which a
block containing the STG and Heschl’s gyrus (located between the arrows in C) has been excised and mounted for cryostat sectioning. The boundary
between the gray and white matter of Heschl’s gyrus (dotted line) was undercut so that only gray matter was collected for protein extraction. D)
Demonstrates our approach to quantification of PAK1 and tubulin. Lanes from all blots were simultaneously imported into the analysis software, and
for quantification of each protein the peaks were aligned, and then a single band definition applied to all blots concurrently, indicated by the black
horizontal lines. E) PAK1 optical density as a function of micrograms of protein loaded per lane. The mean (SD) of 3 human subjects, assayed together
in duplicate runs is shown. It can be seen that the protein loading used in the comparison of schizophrenia and control subjects (20 mg) sits within
the linear detection range. F) Western blot demonstrating isoform specificity of anti-PAK1 antibody. Lanes were loaded with 0.5 mg of each full length
GST-tagged recombinant protein (ProQinase # 0357-0000-1, 0304-0000-1, 0422-0000-1, Freiburg, Germany), and detected with Coomassie Blue (top)
or with anti-PAK1 antibody (bottom) as described for human and mouse studies.
doi:10.1371/journal.pone.0059458.g005
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tissue storage time and brain PH were treated as covariates. The

secondary model ignored subject pairings and instead replaced the

fixed effect of pair nested in run by the covariates gender, age, and

PMI with tissue storage time and brain PH as additional

covariates. (For the primary model, run*diagnosis interaction

was not significant (F12, 10.1 = 0.31, p = 0.97), thus not included in

the model. For the secondary model, there were no significant

interactions between diagnosis and age (F1, 30.4 = 0.06, P = 0.80) or

diagnosis and sex (F1, 30.9 = 0.86, P = 0.36), thus neither of them

was included in the model). We did however identify a marginally

significant interaction between diagnosis and PMI (F1, 30 = 3.31,

P = 0.079). To further evaluate this we categorized the PMIs into

Low (,14), Medium (14–23) and High (.23) and then examined

the PMI*diagnosis interaction in the secondary model, now

treating PMI as a categorical variable, and estimated the

diagnostic effects in the three PMI groups.

To guard against bias in our band definitions, we also evaluated

an alternate response variable, the natural logarithm of the ratio of

the maximum intensities of PAK1 and tubulin. Similar primary

and secondary analyses were done for this alternate variable and

provided results consistent with the analysis utilizing the integrated

intensity level so are not reported further.

The relationship of the natural logarithm of the tubulin

normalized PAK1 ratios within each pair to each of the following

confounds was also examined: schizoaffective diagnosis (yes/no),

suicide as cause of death (yes/no), antipsychotic use at time of

death (yes/no), history of substance use disorder (yes/no), age of

onset, and duration of schizophrenia. Log tubulin normalized

ratios for PAK1 on each gel were obtained by averaging PAK1

and Tubulin levels of Schizophrenia subject and Control subject

over the gel separately, getting two Tubulin normalized PAK1

values, [PAK1SCHZ/TubulinSCHZ] and [PAK1CNTL/Tubu-

linCNTL], and then getting the log ratio of the two Tubulin

normalized PAK1 values. In computing the log tubulin normal-

ized ratios for a subject, if a PAK1 (or tubulin) measurement was

missing on one lane, the corresponding tubulin (or PAK1)

measurement was also treated as missing on that lane. The

analyses used linear mixed models to model the log tubulin

normalized PAK1 ratio, where each of the confounds was treated

as a fixed effect, and where gel and pair were treated as random

effects in order to account for the four gels per pair and the two

pairs per gel.

We examined the correlation of the pairwise differences (the

differences of averaged log tubulin normalized ratios between

Schizophrenia subject and Control subject within a pair where the

average is over the four gels) for PAK1 with similarly calculated

pairwise difference for total kalirin protein levels (as all 4 kalirin

isoforms present in human cortex have Rac1 guanine nucleotide

exchange factor activity and thus are likely to be upstream of

PAK1 [44]). The log tubulin normalized ratios were computed for

spinophilin using the same method. Furthermore, we evaluated

the correlation of the pairwise difference in PAK1 values with the

pairwise difference in spinophilin values, and also the correlation

between corresponding PAK1 and spinophilin values among all

subjects.

All tests were two-sided and conducted at the 0.05 significance

level. The p-values for diagnostic group effect are based on the

contrast of control effect minus schizophrenia effect. All analyses

were implemented in SAS PROC MIXED (Version 9.2, SAS

Institute Inc., Cary, NC).

Animals
For examination of effects of PMI on PAK1, spinophilin, and b

tubulin, 16 week old male C57Bl/6J mice (Jackson Laboratory,

Bar Harbor, ME) were euthanized by CO2 inhalation and cervical

dislocation. PMI in our human cases consists of two temperature

components. From death until the time of discovery and transport

to the medical examiner, cases are typically at room temperature.

After arrival at the morgue they are stored under refrigeration

until the time of autopsy (commonly the next morning). To model

these components in mice we chose a fixed room temperature

incubation followed by a variable period of refrigeration, as this

most closely resembles the situation for our human tissue. After

sacrifice, for 0 hr PMI mice brains were immediately extracted.

All other animals were stored until brain extraction at room

temperature for 4 hrs, then at 4uC. For all PMI time points, at the

time of extraction brains were first bisected mid-sagittally with the

left half fixed for 48 hrs in 4% paraformaldehyde and the right

half cut in 1 mm coronal slabs and frozen at 280C. Total protein

was extracted and assayed, and PAK1, spinophilin, and b tubulin

quantified by western blot as described above.

Supporting Information

Figure S1 Spinophilin Western Blot Characterization
and Validation. A) Spinophilin immunoreactivity in human,

wild type mouse (+/+) and spinophilin knockout mouse (2/2)

demonstrate specificity of spinophilin detection. B) Spinophilin

optical density as a function of micrograms of protein loaded per

lane. The mean (SD) of a eight repeated assays of a human subject

is shown. It can be seen that the protein loading used in the

comparison of schizophrenia and control subjects (10 mg) sits

within the linear detection range. C) Optical densities for

spinophilin in mice (N = 2) in which the interval from sacrifice

to brain harvesting was experimentally varied between 0 and

48 hours. Mean (SEM) value at each time point is shown. Time

points sharing the same superscript letter differ significantly. D)

Detection of spinophilin in auditory cortex gray matter extracts

from two subject pairs. S, subjects with schizophrenia, C, matched

control subjects.

(TIF)

Figure S2 Correlation of PAK1 and Spinophilin Protein
Levels within Subjects. Filled circles represent subjects with

schizophrenia, open circles represent normal control subjects.

Black line is the regression line for schizophrenia subjects (r = 0.43,

p = 0.057). Dashed line is the regression line for control subjects

(r = 0.30, p = 0.19). Gray line is the regression line for both groups

combined (r = 0.37, p = 0.02).

(TIF)
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