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Abstract 

Introduction: Abnormal status of gene expression plays an important role in tumorigenesis, 
progression and metastasis of breast cancer. Mechanisms of gene silence or activation were varied. 
Methylation of genes may contribute to alteration of gene expression. This study aimed to identify 
differentially expressed hub genes which may be regulated by DNA methylation and evaluate their 
prognostic value in breast cancer by bioinformatic analysis.  
Methods: GEO2R was used to obtain expression microarray data from GSE54002, GSE65194 and 
methylation microarray data from GSE20713, GSE32393. Differentially expressed-aberrantly methylated 
genes were identified by FunRich. Biological function and pathway enrichment analysis were conducted by 
DAVID. PPI network was constructed by STRING and hub genes was sorted by Cytoscape. Expression 
and DNA methylation of hub genes was validated by UALCAN and MethHC. Clinical outcome analysis of 
hub genes was performed by Kaplan Meier-plotter database for breast cancer. IHC was performed to 
analyze protein levels of EXO1 and Kaplan–Meier was used for survival analysis.  
Results: 677 upregulated-hypomethylated and 361 downregulated-hypermethylated genes were 
obtained from GSE54002, GSE65194, GSE20713 and GSE32393 by GEO2R and FunRich. The most 
significant biological process, cellular component, molecular function enriched and pathway for 
upregulated-hypomethylated genes were viral process, cytoplasm, protein binding and cell cycle 
respectively. For downregulated-hypermethylated genes, the result was peptidyl-tyrosine 
phosphorylation, plasma membrane, transmembrane receptor protein tyrosine kinase activity and Rap1 
signaling pathway (All p< 0.05). 12 hub genes (TOP2A, MAD2L1, FEN1, EPRS, EXO1, MCM4, PTTG1, 
RRM2, PSMD14, CDKN3, H2AFZ, CCNE2) were sorted from 677 upregulated-hypomethylated genes. 4 
hub genes (EGFR, FGF2, BCL2, PIK3R1) were sorted from 361 downregulated-hypermethylated genes. 
Differential expression of 16 hub genes was validated in UALCAN database (p<0.05). 7 in 12 
upregulated-hypomethylated and 2 in 4 downregulated-hypermethylated hub genes were confirmed to 
be significantly hypomethylated or hypermethylated in breast cancer using MethHC database (p<0.05). 
Finally, 12 upregulated hub genes (TOP2A, MAD2L1, FEN1, EPRS, EXO1, MCM4, PTTG1, RRM2, 
PSMD14, CDKN3, H2AFZ, CCNE2) and 3 downregulated genes (FGF2, BCL2, PIK3R1) contributed to 
significant unfavorable clinical outcome in breast cancer (p<0.05). High expression level of EXO1 protein 
was significantly associated with poor OS in breast cancer patients (p=0.03).  
Conclusion: Overexpression of TOP2A, MAD2L1, FEN1, EPRS, EXO1, MCM4, PTTG1, RRM2, 
PSMD14, CDKN3, H2AFZ, CCNE2 and downregulation of FGF2, BCL2, PIK3R1 might serve as diagnosis 
and poor prognosis biomarkers in breast cancer by more research validation. EXO1 was identified as an 

 
Ivyspring  

International Publisher 



 Journal of Cancer 2019, Vol. 10 

 
http://www.jcancer.org 

6619 

individual unfavorable prognostic factor. Methylation might be one of the major causes leading to 
abnormal expression of those genes. Functional analysis and pathway enrichment analysis of those genes 
would provide novel ideas for breast cancer research. 
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Introduction 
Breast cancer is the most frequently diagnosed 

cancer among females worldwide following lung 
cancer [1]. Aberrant gene expression plays an 
important role in tumorigenesis, progression and 
metastasis of breast cancer and it is considered to be 
the consequence of not only genetic defects (such as 
TP53, PIK3CA mutation, BRCA1/BRCA2 
inactivation, Cyclin D1 amplification [2]) but also 
epigenetic modifications [3]. Epigenetic alterations in 
breast cancer consist of DNA methylation, RNA 
methylation, histone modification , non-coding RNAs 
(especially miRNA and lncRNA) regulation and so no 
[4]. This study focused on DNA methylation, one of 
the most widely studied epigenetic modifications. 
DNA methylation occurs with the addition of a 
methyl (CH3) group from S-adenosylmethionine 
(SAM) into cytosine residues of the DNA template [5], 
mostly located on cytosine-phosphate-guanine 
(CpGs) dinucleotides. Both DNA hypermethylation 
and hypomethylation can be involved in diverse 
processes of breast cancer development and prognosis 
[6].  

In clinical practice, though breast cancer is 
classified into three subtypes according to hormone 
receptor status, growth factor receptor status and 
Ki-67 which reflected partial prognostic information. 
And serum CA 15-3, CEA level, BRCA1/2 mutation 
status, PALB2 mutation status and circulating tumor 
DNA methylation might provide additional 
information for prognosis. However, heterogeneity of 
prognosis still exists. Therefore, more biomarkers are 
still urgently needed for more accurate prognosis. To 
date, there are many public databases for gene 
expression and methylation whose data was provided 
by published researches. Among them, plenty of 
researches have demonstrated the correlation 
between DNA methylation and prognosis of breast 
cancer, but the comprehensive profile and the 
interaction network of these aberrantly-expressed 
methylated genes still remain elusive. This study was 
aimed to identify aberrantly expressed hub genes that 
might be regulated by DNA methylation in breast 
cancer and to evaluate the prognostic value of these 
genes by using public databases. Several accessible 
software, databases, simple operations and basic 
bioinformatic knowledge were needed to complete 
this study and results might provide directions for 
further research.  

Materials and Methods 
Microarray and RNASeq data 

In the initiation of present study, we screened 
the breast cancer expression microarray and 
methylation microarray datasets in GEO DataSets of 
NCBI (https://www.ncbi.nlm.nih.gov/gds/),sorted 
by sample number (From high to low). Study type 
was restricted to expression profiling by array and 
methylation profiling by array, and datasets both 
including breast cancer and normal breast samples 
were utilized. Finally, expression microarray datasets 
GSE54002, GSE65194 and methylation microarray 
datasets GSE20713, GSE32393 were included. 16 
normal breast tissues and 200 primary breast cancer 
tissues were selected in GSE54002. 11 normal breast 
tissues and 130 primary breast cancer tissues were 
enrolled in GSE65194 (Platform: GPL570, Affymetrix 
Human Genome U133 Plus 2.0 Array). For 
methylation microarray dataset, GSE20713 enrolled 12 
normal breast tissues and 234 primary breast cancer 
tissues. GSE32393 enrolled 23 normal breast tissues 
and 114 invasive breast tumor tissues. (Platform: 
GPL8490, Illumina HumanMethylation27 Bead Chip. 
HumanMethylation27_270596_v.1.2). For prognostic 
evaluation, GSE 65194 and GSE43568 datasets were 
included. 104 primary breast cancer tissues were 
enrolled in GSE43568 (Platform: GPL570, Affymetrix 
Human Genome U133 Plus 2.0 Array). As for 
RNASeq data, all normal and matched breast tumor 
level 3 mRNA expression HiSeq data sets 
(RNASeqV2) was obtained from The Cancer Genome 
Atlas (TCGA) (October 2015). 

Screening for upregulated-hypomethylated 
and downregulated-hypermethylated genes 

GEO2R, an online analyzing tool of GEO 
DataSets, was utilized to analyze differentially 
expressed genes (DEG) between breast cancer tissues 
and normal tissues in expression microarray datasets 
and differential methylation in methylation 
microarray datasets. P value < 0.05 and |t| >2 were 
used as cutoff criteria to identify differential 
expression and methylation genes. Next, FunRich 
software (Functional Enrichment analysis tool, latest 
version 3.1.3 was download from http://www.fun 
rich.org/) [7] was used to identify overlapping genes 



 Journal of Cancer 2019, Vol. 10 

 
http://www.jcancer.org 

6620 

from GSE54002, GSE65194, GSE20713 and GSE32393. 
Finally, the overlapping genes were identified as 
upregulated-hypomethylated and downregulated- 
hypermethylated genes in breast cancer from the 
previous four datasets. 

GO and KEGG pathway enrichment analysis 
DAVID (The Database for Annotation, 

Visualization and Integrated Discovery, https:// 
david.ncifcrf.gov/), an online analysis tool box 
consists of an integrated biological knowledgebase 
and analytic tools aimed at systematically extracting 
biological meaning from large gene/protein lists [8], 
was used for gene functional and pathway 
enrichment analysis. The gene ontology (GO) analysis 
[9] consisted of analysis of biological process (BP), 
cellular component (CC), molecular function (MF) 
and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis [10] were 
performed for the identified downregulated- 
promotor hypermethylated genes. The top 5 GO 
analysis terms and top 10 KEGG pathways were 
visualized in the result. P value < 0.05 was used as 
statistical significance.  

Construction of protein-protein interaction 
(PPI) network and identification of hub genes  

STRING (Search Tool for the Retrieval of 
Interacting Genes, https://string-db.org/), an online 
protein interaction analysis tool, was performed to 
construct PPI network of the previous identified 
downregulated-promotor hypermethylated genes. 
Homo sapiens were selected as the organism for 
subsequent analysis. Medium confidence 0.4 of 
Interaction score was regarded as the cut-off criterion 
for network visualization and disconnected nodes 
was hidden. Subsequently, Cytoscape software (latest 
version 3.7.0, download from http://www.cytoscape. 
org/), a network data integration, analysis and 
visualization tool, was conducted to identify hub 
genes and modules within PPI network. Degree >25 
was used as cutoff criteria for hub gene identification. 
MCODE score >3 and number of nodes >4 were 
utilized as cutoff criteria for module identification. 

Validation of gene expression in UALCAN 
database 

UALCAN (http://ualcan.path.uab.edu/), an 
online cancer transcriptome database, is designed to 
provide easy access to publicly available cancer 
transcriptome data (TCGA and MET500 transcrip-
tome sequencing) [11]. This database was used to 
compare expression level of hub genes between 
normal breast tissue and primary invasive breast 
carcinoma. 

Validation of gene methylation in MethHC 
database 

MethHC (http://MethHC.mbc.nctu.edu.tw), a 
database of DNA Methylation and gene expression in 
Human Cancer, integrates data from TCGA (The 
Cancer Genome Atlas), which includes 18 human 
cancers in more than 6000 samples, 6548 microarrays 
and 12 567 RNA sequencing data. Differential DNA 
methylation was compared by average beta value in 
tumor sample and matched normal samples in 
different genes [12]. 

Survival analysis of genes in Kaplan 
Meier-plotter database 

Clinical outcome analysis of hub genes in breast 
cancer was performed by Kaplan Meier-plotter 
database [13] whose background database was 
established using gene expression data and survival 
information of 1,809 patients downloaded from GEO 
(Affymetrix HGU133A and HGU133+2 microarrays). 
Overall survival analysis of 16 hub genes was 
performed separately in its default settings with 300 
months follow-up. 

COX regression analysis and Kaplan 
Meier-plotter construction 

IBM SPSS statistics 22 was used for cox 
regression analysis. Relative ratio (RR) and 95% CI 
were used for statistical analysis. After univariable 
analysis, hub genes were enrolled in multivariable 
analysis whose p value <0.1. Backward regression 
was used for multivariable regression analysis. 
Finally, hub genes included in the last step was 
selected as combined genes for prognostic analysis. 
Next, the upper 50% gene expression patient was 
defined as high expression group and lower 50% gene 
expression was defined as low expression group. 
Exp(B) from multivariable analysis was saved for the 
following classification. The upper 50% RR was 
defined as high risk group and lower 50% was 
defined as low risk group. ROC curve analysis was 
performed for single gene and combine genes group 
for predicting 5-year overall survival. Kaplan 
Meier-plotter analysis was performed for specific 
group identified previously. Log Rank (Mantel-Cox) 
was used for statistical analysis. 

Tissue microarrays (TMAs) and IHC staining 
TMAs were purchased from Outdo Biotech 

(Shanghai, China), and contained 140 breast cancer 
samples. But 7 samples were missing after we finished 
IHC staining. Clinicopathological characteristics of 
these 133 samples are listed in Table S2. This 
experiment was approved by the Ethics Committee of 
the Second Affiliated Hospital, Zhejiang University 
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School of Medicine. Primary antibodies against EXO1 
(Huabio, ER1908-42, China) (1:200) was used for IHC 
staining.  

EXO1 expression scores were blindly evaluated 
by two pathologists using the immunoreactivity score 
(IRS), based on the percentage of positive cells and the 
intensity of staining. When the two pathologists had a 
very different score, we asked a third pathologist to 
evaluate the slide. The percentage of positive cells was 
graded as follows: 0 (negative), 1 (<10%), 2 (10%–
50%), 3 (51%–80%), 4 (>80%). The intensity of staining 
was graded as follows: 0 (no color reaction), 1 (mild 
reaction), 2 (moderate reaction), 3 (intense reaction). 
IRS was multiplied by the two scores. In this study, 
EXO1 expression was defined as low (IRS ≤6) or high 
(IRS >6). 

Results 
Identification of abnormal 
expressed-methylated genes in breast cancer  

GEO2R, an online analyzing tool of GEO 
DataSets, was utilized to screen differentially 

expressed genes in expression microarray (GSE54002, 
GSE65194), and differentially methylated genes in 
methylation microarray (GSE20713, GSE32393), 
separately. As a result, 9945 upregulated, 4857 
downregulated genes from GSE54002 and 6074 
upregulated, 8714 downregulated genes from 
GSE65194 were identified. For methylation 
microarray data, 2075 hypermethylation, 8282 
hypomethylation genes from GSE20713 and 3752 
hypermethylation, 2750 hypomethylation genes from 
GSE32393 were identified. 677 upregulated- 
hypomethylation genes (Fig. 1A) and 361 
downregulated-hypermethylation genes (Fig. 1B) 
were sorted out by overlapping genes from four GSE 
datasets using FunRich software. These 1038 genes 
were identified as aberrantly expressed-methylated 
genes in breast cancer. 

GO functional enrichment analysis 
Functional enrichment analysis of 677 

upregulated-hypomethylation genes and 361 
downregulated-hypermethylation genes was 
performed by GO analysis. The result was listed in 

 

 
Figure 1. Screening of upregulated-hypomethylated and downregulated-hypermethylated genes in four GSE datasets (Expression microarray datasets GSE54002, GSE65194 and 
methylation datasets GSE20713, GSE32393). 
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Table 1. The top 5 terms of analytical result including 
biological process, cellular component and molecular 
function, were visualized in the table ranking by 
P-value from low to high (p<0.05). The most 
significant biological process, cellular component and 
molecular function enriched in the 677 upregulated- 
hypomethylation genes was viral process, cytoplasm 
and protein binding, separately. For downregulated- 
hypermethylated genes, the result was peptidyl- 
tyrosine phosphorylation, plasma membrane, 
transmembrane receptor and protein tyrosine kinase 
activity, separately.  

KEGG pathway enrichment analysis 
The top 10 KEGG pathways enriched by DAVID 

were demonstrated in Table 2 by P-value from low to 
high (p<0.05). The most significant pathway enriched 
in 677 upregulated-hypomethylation genes was 
Pathways in cell cycle, including 16 genes (YWHAZ, 
E2F5, ANAPC13, DBF4, TTK, CDK6, PTTG1, CDC27, 
MCM4, MCM5, CCNE2, CCND1, CDKN2A, MCM7, 
MAD2L1, BUB3). For 361 downregulated- 
hypermethylation genes, the most significant 
pathway enriched was Rap1 signaling pathway, 
including 16 genes (EGFR, FGFR1, MAGI2, FGF7, 

FLT1, PGF, MRAS, GRIN2A, KIT, CALML3, 
PDGFRA, RAP1A, GNAS, FGF2, INSR, PIK3R1). 
Famous pathways P53, PI3K-Akt, and Ras signaling 
pathway which play important roles in life process 
were also enriched in KEGG pathway analysis. 

PPI network construction and hub gene 
validation 

PPI network was constructed by STRING 
database and hub gene validation was identified by 
Cytoscape software. Module analysis was performed 
by MCODE, an application in Cytoscape software. 
PPI network was displayed in Fig. S1 and Fig.S2. 
Different color of nodes and edges meat for different 
known status for proteins and different 
protein-protein association strength. Five modules for 
upregulated-hypomethylated genes (Fig. S1B-F) and 3 
modules for downregulated-hypermethylated genes 
(Fig. S2B-D) were identified in the PPI network 
according to the cutoff of MCODE score >3 and 
number of nodes >4. 16 hub gene were identified by 
the cutoff criteria of degree >25 (Table. 3), 12 genes for 
upregulated-hypomethylated and 4 genes for 
downregulated-hypermethylated genes group.  

 
 

Table 1. GO functional analysis of biological process, cell component and molecular function of differentially expressed-methylated 
genes. 

Category GO Analysis Term Count % P Value 
Hypomethylation and high expression GOTERM_BP_DIRECT GO:0016032~viral process 32 0.03  4.25E-07 
  GO:0009615~response to virus 16 0.01  1.75E-05 
  GO:0032508~DNA duplex unwinding 10 0.01  3.36E-05 
  GO:0032727~positive regulation of interferon-alpha production 6 0.01  4.94E-05 
  GO:0006281~DNA repair 23 0.02  9.42E-05 
 GOTERM_CC_DIRECT GO:0005737~cytoplasm 278 0.26  1.27E-13 
  GO:0005829~cytosol 196 0.18  4.83E-13 
  GO:0016020~membrane 139 0.13  5.21E-11 
  GO:0005654~nucleoplasm 163 0.15  2.50E-10 
  GO:0070062~extracellular exosome 152 0.14  2.54E-07 
 GOTERM_MF_DIRECT GO:0005515~protein binding 451 0.41  3.08E-23 
  GO:0004003~ATP-dependent DNA helicase activity 11 0.01  1.61E-07 
  GO:0005524~ATP binding 89 0.08  1.51E-05 
  GO:0044822~poly(A) RNA binding 68 0.06  1.35E-04 
  GO:0042802~identical protein binding 47 0.04  7.65E-04 
Hypermethylation and low expression GOTERM_BP_DIRECT GO:0018108~peptidyl-tyrosine phosphorylation 17 0.03  8.05E-08 
  GO:0010863~positive regulation of phospholipase C activity 5 0.01  1.88E-05 
  GO:0030335~positive regulation of cell migration 15 0.03  2.22E-05 
  GO:0007568~aging 13 0.02  1.31E-04 
  GO:0007155~cell adhesion 23 0.04  1.64E-04 
 GOTERM_CC_DIRECT GO:0005886~plasma membrane 119 0.21  7.89E-07 
  GO:0005615~extracellular space 52 0.09  1.98E-06 
  GO:0005829~cytosol 92 0.16  1.29E-04 
  GO:0005925~focal adhesion 20 0.04  2.00E-04 
  GO:0042383~sarcolemma 9 0.02  2.19E-04 
 GOTERM_MF_DIRECT GO:0004714~transmembrane receptor protein tyrosine kinase activity 9 0.02  6.30E-07 
  GO:0004713~protein tyrosine kinase activity 14 0.02  2.39E-06 
  GO:0046934~phosphatidylinositol-4,5-bisphosphate 3-kinase activity 9 0.02  2.88E-05 
  GO:0043548~phosphatidylinositol 3-kinase binding 5 0.01  4.61E-04 
    GO:0005088~Ras guanyl-nucleotide exchange factor activity 10 0.02  4.67E-04 

 
 
 



 Journal of Cancer 2019, Vol. 10 

 
http://www.jcancer.org 

6623 

Table 2. KEGG pathway enrichment analysis of differentially expressed-methylated genes. 

Pathway 
ID 

Pathway name Gene 
Count 

% PValue Genes 

Hypomethylation and high expression 
hsa04110 Cell cycle 16 0.01  6.73E-04 YWHAZ, E2F5, ANAPC13, DBF4, TTK, CDK6, PTTG1, CDC27, MCM4, MCM5, CCNE2, CCND1, 

CDKN2A, MCM7, MAD2L1, BUB3 
hsa03050 Proteasome 9 0.01  8.90E-04 PSMB5, PSMB4, PSMD14, PSMD12, PSMC2, SHFM1, PSMD1, PSMD4, PSMB9 
hsa04115 p53 signaling pathway 10 0.01  0.00  CCNE2, PPM1D, CCND1, CDKN2A, RRM2, CYCS, CDK6, APAF1, THBS1, PERP 
hsa03030 DNA replication 7 0.01  0.01  RFC3, MCM7, SSBP1, POLD1, MCM4, MCM5, FEN1 
hsa04141 Protein processing in 

endoplasmic reticulum 
16 0.01  0.01  RAD23B, DERL1, MAN1A2, NSFL1C, UBQLN1, ATF6, DNAJB11, FBXO6, DNAJB1, SAR1A, DNAJC1, 

SEC61A1, SSR2, SEC23B, SEC61G, SEL1L 
hsa05152 Tuberculosis 16 0.01  0.02  RFX5, ATP6AP1, IL18, CEBPG, CYCS, ITGB2, ARHGEF12, ATP6V0B, CD74, VDR, MYD88, MAPK13, 

RIPK2, HSPD1, APAF1, FCGR3B 
hsa03060 Protein export 5 0.00  0.02  SRPRB, SRP72, SRP9, SEC61A1, SEC61G 
hsa05169 Epstein-Barr virus infection 12 0.01  0.03  DDX58, ICAM1, PSMD14, PSMD12, CD44, MAPK13, NFKBIE, PSMC2, SHFM1, PSMD1, PSMD4, 

TRAF5 
hsa04623 Cytosolic DNA-sensing 

pathway 
8 0.01  0.03  DDX58, POLR3K, POLR2K, IL18, IRF7, AIM2, CXCL10, ADAR 

hsa05203 Viral carcinogenesis 17 0.02  0.03  HPN, YWHAZ, HIST1H2BC, HIST1H2BD, SP100, UBE3A, GTF2H4, CDK6, CCNE2, CCND1, KRAS, 
CDKN2A, HIST2H2BE, IRF7, HDAC8, TRAF5, DLG1 

Hypermethylation and low expression 
hsa04015 Rap1 signaling pathway 16 0.03  9.42E-05 EGFR, FGFR1, MAGI2, FGF7, FLT1, PGF, MRAS, GRIN2A, KIT, CALML3, PDGFRA, RAP1A, GNAS, 

FGF2, INSR, PIK3R1 
hsa04014 Ras signaling pathway 16 0.03  2.13E-04 EGFR, FGFR1, PLD1, FGF7, FLT1, PGF, RALBP1, MRAS, GRIN2A, KIT, CALML3, PDGFRA, RAP1A, 

FGF2, INSR, PIK3R1 
hsa05200 Pathways in cancer 22 0.04  2.55E-04 EGFR, FGFR1, FGF7, WNT5B, PGF, RALBP1, STAT5A, STAT5B, RUNX1T1, KIT, DAPK2, LAMA2, 

LAMA1, EDNRB, BCL2, PDGFRA, JAK1, NKX3-1, GNAS, FGF2, PIK3R1, APC 
hsa04510 Focal adhesion 14 0.02  9.15E-04 EGFR, FLT1, PGF, ITGA1, ITGA10, MYL9, LAMA2, LAMA1, BCL2, PDGFRA, RAP1A, RELN, MYLK, 

PIK3R1 
hsa04151 PI3K-Akt signaling pathway 19 0.03  9.56E-04 EGFR, FGFR1, FLT1, SGK2, FGF7, PGF, ITGA1, ITGA10, KIT, LAMA2, LAMA1, TSC1, BCL2, 

PDGFRA, JAK1, RELN, FGF2, INSR, PIK3R1 
hsa04810 Regulation of actin 

cytoskeleton 
14 0.02  1.09E-03 EGFR, FGFR1, FGF7, ARHGEF7, MRAS, ITGA1, ITGA10, MYL9, PDGFRA, MSN, FGF2, MYLK, 

PIK3R1, APC 
hsa04640 Hematopoietic cell lineage 8 0.01  3.84E-03 CD9, CR1, CD59, ITGA1, MME, KIT, IL11RA, IL1A 
hsa05230 Central carbon metabolism in 

cancer 
6 0.01  0.02  EGFR, NTRK3, FGFR1, PDGFRA, KIT, PIK3R1 

hsa04270 Vascular smooth muscle 
contraction 

8 0.01  0.02  ACTG2, CALML3, ACTA2, ADRA1A, GNAS, MYLK, PPP1R14A, MYL9 

hsa04610 Complement and coagulation 
cascades 

6 0.01  0.02  CR1, A2M, C3, F3, CD59, SERPING1 

 

Table 3. Expression validation of 12 upregulated-hypomethylation and 4 downregulated-promotor hypermethylation hub genes by 
UALCAN. 

Category Hubgenes Gene description Degree Expression status P value 
Hypomethylation and high expression TOP2A topoisomerase (DNA) II alpha 76 Up-regulated <1E-12 
 MAD2L1 MAD2 mitotic arrest deficient-like 1 (yeast) 38 Up-regulated 1.62E-12 
 FEN1 flap structure-specific endonuclease 1 35 Up-regulated 1.62E-12 
 EPRS glutamyl-prolyl-tRNA synthetase 35 Up-regulated <1E-12 
 EXO1 exonuclease 1 33 Up-regulated <1E-12 
 MCM4 minichromosome maintenance complex component 4 32 Up-regulated 1.62E-12 
 PTTG1 pituitary tumor-transforming 1 30 Up-regulated 1.62E-12 
 RRM2 ribonucleotide reductase regulatory subunit M2 29 Up-regulated <1E-12 
 PSMD14 proteasome 26S subunit, non-ATPase 14 28 Up-regulated <1E-12 
 CDKN3 cyclin dependent kinase inhibitor 3 28 Up-regulated 1.62E-12 
 H2AFZ H2A histone family member Z 27 Up-regulated <1E-12 
 CCNE2 cyclin E2 26 Up-regulated 1.10E-16 
Hypermethylation and low expression EGFR epidermal growth factor receptor 37 Down-regulated 2.20E-16 
 FGF2 fibroblast growth factor 2 34 Down-regulated <1E-12 
 BCL2 BCL2, apoptosis regulator 29 Down-regulated 5.40E-04 
  PIK3R1 phosphoinositide-3-kinase regulatory subunit 1 27 Down-regulated 1.62E-12 

 

Expression validation of the hub genes in 
TCGA dataset through UALCAN database 

In order to validate the expression status of 16 
hub genes in breast cancer compared to normal breast 
tissue, UALCAN database was utilized to confirmed 
the result. All of the 16 hub genes were found to be 
significantly differential expressed in invasive breast 
carcinoma. 12 upregulated hub genes (TOP2A, 

MAD2L1, FEN1, EPRS, EXO1, MCM4, PTTG1, RRM2, 
PSMD14, CDKN3, H2AFZ, CCNE2) identified from 
GSE database were confirmed to be high expression 
genes in breast cancer (Fig. 2 and 3) (p<0.05) and 4 
downregulated hub genes (EGFR, FGF2, BCL2, 
PIK3R1) confirmed to be low expression genes (Fig. 4) 
(p<0.05). P values for those genes were listed in Table. 
3. What’s more, we compared expression of 16 hub 
genes using breast cancer RNASeq data downloaded 
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from TCGA and the result was consistent with the 
previous data (Fig. S3). 

Validation of DNA methylation in 16 hub 
genes in TCGA dataset through MethHC 

DNA methylation status was validated in 
MethHC database. 7 in 12 upregulated hub genes 
(TOP2A, EPRS, EXO1, PTTG1, RRM2, PSMD14, 
H2AFZ) were found to be promoter hypomethylated 
(Fig. 5) and 2 in 4 downregulated genes (EGFR, FGF2) 
were validated to be promoter hypermethylated (Fig. 
6). There was no significance of DNA promoter 
methylation between invasive breast cancer and 
normal breast tissues in 4 upregulated hub genes 
(MAD2L1, FEN1, CDKN3, CCN2) (Fig. 5). In contrast, 
MCM4 gene promoter was hypermethylated in breast 
cancer (Fig. 5) and BCL2, PIK3R1 gene promoter were 

hypomethylated (Fig. 6). DNA methylation status of 
hub genes and P values was listed in Table 3. 

Clinical outcome due to differential expression 
of the hub genes 

To analyze prognostic value of 16 differentially 
expressed-methylated hub genes of breast cancer, 
Kaplan Meier-plotter database restricted to breast 
cancer was searched. Upregulation of TOP2A, 
MAD2L1, FEN1, EPRS (Fig. 7), EXO1, MCM4, PTTG1, 
RRM2 (Fig. 8), PSMD14, CDKN3, H2AFZ, CCNE2 
(Fig. 9) and downregulation of FGF2, BCL2, PIK3R1 
were significantly associated with poor overall 
survival, but downregulation of EGFR was not (Fig. 
10). Among the 16 hub genes, upregulation of 
MAD2L1 was associated with unfavorable OS most 
significantly (HR=2.02 (1.62-2.51), P =1.8e-10). 

 

 
Figure 2. Expression validation in UALCAN database for upregulated-hypomethylated hub genes (Data from TCGA database). A: TOP2A; B: MAD2L1; C: FEN1; D: EPRS; E: 
EXO1; F: MCM4. ***: p<0.001. 
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What’s more, we analyzed prognostic value of 
combined genes by using GSE42568 and GSE65194 
datasets. Univariable cox regression analysis was 
performed first and we found that overexpression of 
MAD2L1, EXO1, MCM4, PTTG1 and CDKN3 was 
significantly associated with poor OS in GSE42568 
dataset. Overexpression of EXO1, PTTG1, CCNE2 and 
PIK3R1 was significantly associated with poor OS in 
GSE65194 (Table S1) (p<0.05). TOP2A, MAD2L1, 
EXO1, MCM4, PTTG1, CDKN3 and CCNE2 in 
GSE42568 and TOP2A, FEN1, EXO1, MCM4, PTTG1, 
RRM2, CCNE2 in GSE65194 were enrolled in 
multivariable cox regression analysis whose p <0.1. 
Finally, EXO1, MCM4 and EXO1, PTTG1 were 
selected as combined gene group in GSE42568 and 

GSE65194 separately according to the final step of 
multivariable cox regression analysis. RR and 95% CI 
of univariable and multivariable cox analysis was 
listed in Table S1. Further, we classified patients into 
high expression and low expression group by single 
gene expression status. For combined gene group 
classification, we divided patients into two groups by 
relative ratio of multivariable analysis. ROC analysis 
for predicting 5-year overall survival was performed. 
AUC for combined group was equal to EXO1 in both 
datasets. Kaplan Meier-plotter was constructed for the 
previous identified groups. Prognostic value of 
combined EXO1 and MCM4 was no better than EXO1 
in both datasets (Figure S4). 

 

 
Figure 3. Expression validation in UALCAN database for upregulated-hypomethylated hub genes (Data from TCGA database). A: PTTG1; B: RRM2; C: PSMD14; D: CDKN3; 
E: H2AFZ; F: CCNE2. ***: p<0.001. 
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Figure 4. Expression validation in UALCAN database for downregulated-hypermethylated hub genes (Data from TCGA database). A: EGFR; B: FGF2; C: BCL2; D: PIK3R1. ***: 
p<0.001. 

 
Figure 5. Validation of DNA methylation in upregulated hub genes in TCGA dataset through MethHC database. (A-L) Expression of upregulated-hypomethylated hub genes. A: 
TOP2A; B: MAD2L1; C: FEN1; D: EPRS; E: EXO1; F: MCM4, G: PTTG1; H: RRM2; I: PSMD14; J: CDKN3; K: H2AFZ; L: CCNE2. Green column: Normal breast tissue; Red 
column: invasive breast cancer. * p <0.05; ** p <0.005. 
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Figure 6. Validation of DNA methylation in downregulated hub genes in TCGA dataset through MethHC database. (A-D) A: EGFR; B: FGF2; C: BCL2; D: PIK3R1. Green 
column: Normal breast tissue; Red column: invasive breast cancer. * p <0.05; ** p <0.005. 

 

Table 4. Biological function of modules identified by Cytoscape. 

Category Module Function description P Value Nodes Genes 
Hypomethylation and high expression    
 1 Cell division 3.30E-06 22 EXO1, RAD51AP1, SHCBP1, PBK, TTK, MCM4, KIF14, ECT2, RRM2, PTTG1, NEK2, 

CENPF, CDKN3, MAD2L1, UBE2T, E2F8, DTL, CCNE2, ZWINT, FEN1, ASPM, TOP2A 
 2 Negative regulation of ubiquitin-protein 

ligase activity involved in mitotic cell cycle 
3.80E-13 10 PSMB5, BUB3, UCHL5, PSMD4, PSMC2, SHFM1, PSMD1, STAMBP, PSMD14, PSMB4 

 3 mRNA splicing, via spliceosome 4.20E-07 25 POLD1, PQBP1, PUSL1, MYLIP, H2AFZ, POLR2K, UBE2Q1, UBE2H, U2AF2, CDC5L, 
NBN, MRE11A, EPRS, TCEB1, SOCS1, SF3B4, RPL7, RBM8A, RSRC1, RAD54B, 
FBXO22, SNRPB, FBXO6, BRIP1, SEC61A1 

 4 tRNA aminoacylation for protein 
translation 

5.00E-08 5 GARS, TARS, DARS2, CCT5, IARS2 

 5 Mitochondrial translational elongation 6.60E-17 8 MRPS5, MRPS14, MRPL42, GFM2, CHCHD1, MRPS34, MRPL24, MRPL19 
Hypermethylation and low expression    
 1 Mesenchyme migration 2.40E-03 9 ITGA1, MYL9, MYLK, ACTG2, TPM2, CNN1, ACTA2, LMOD1, TAGLN 
 2 Protein ubiquitination 3.60E-06 7 CUL3, ANAPC4, KLHL21, FBXL5, FBXO2, TRIM9, HUWE1 
  3 Negative regulation of phosphorylation 4.80E-03 5 CDKN1C, GRB10, PEG3, MEST, PLAGL1 

 

Prognosis in patients with protein expression 
of EXO1 

Since high EXO1 mRNA expression was 
identified as a strong individual prognostic factor in 
the previous part. Then, we performed IHC to 
investigated if EXO1 protein levels were significantly 
associated with OS in breast cancer patients.  

Finally, there were 133 of 140 tumor samples 
used for EXO1 protein expression analysis since 7 
samples were missing in the process of IHC staining 
within the TMAs. Representative images of EXO1 low 

and high expression were shown (Fig.11A). EXO1 was 
mainly expressed in nuclear. 48.1% (64 of 133) patients 
exhibited EXO1 high expression (IRS >6). Median 
follow-up time was 123 months. For survival analysis, 
Kaplan–Meier analysis showed that high EXO1 
protein expression was significantly associated with 
decreased OS in breast cancer patients (p=0.03, Fig. 
11B). There were no differences in clinical 
Clinicopathological characteristics between EXO1 
high expression and low expression cohorts (Table 
S2). The results suggested that in protein levels, high 
EXO1 expression was correlated with poor OS. 
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Figure 7. Prognostic values of upregulated hub genes in breast cancer (Kaplan Meier-plotter database). A: TOP2A; B: MAD2L1; C: FEN1; D: EPRS. 

 

Discussion 
Recurrence and drug resistance are the main 

causes of mortality in breast cancer [14], therefore it is 
of great significance to evaluate the prognosis 
precisely and individually before progression. In this 
study, we discovered 677 upregulated-hypome-
thylated and 361 downregulated-hypermethylated 
genes from GSE54002, GSE65194, GSE20713 and 
GSE32393 by GEO2R and FunRich. Among them, 12 
upregulated hub genes and 3 downregulated genes 
turn out to contribute to significant adverse clinical 
outcome in breast cancer.  

As was suggested in KEGG pathway enrichment 
analysis by DAVID, MAD2L1, PTTG1, MCM4 and 
CCNE2 are both involved in cell cycle pathway. 
MAD2L1 is a mitotic spindle checkpoint gene. Among 
patients with primary breast cancer, higher 
expression of MAD2L1 and BUB1 existed in patients 
with ER-, PR-, and high-grade tumors compared to 
those with ER +, PR+, and low-grade tumors. High 
MAD2L1 expression was associated with poor overall 
survival [15], which is consistent with our results. 
PTTG1 is a regulator in chromosomal segregation. It 
can promote the proliferation of breast cancer cell 
through binding to P27 directly to induce nuclear 
exclusion of P27 [16]. MCM4 gene encodes a kind of 
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minichromosomal maintenance proteins. MCM4 
overexpression was found only weakly associated 
with shorter survival in breast cancer alone while the 
MCM complex had a better prognosis value [17]. 
CCNE2 is known to promote G1-S transition. It has 
been demonstrated that CCNE2, targeted by miR-26a, 
miR-30b, might play an important role in acquired 
trastuzumab resistance in HER2+ breast cancer [18]. 
TOP2A and RRM2 are both essential enzyme in DNA 
replication. TOP2A amplification often occurs with 
HER2 amplification [19]. Previous researches have 
confirmed that upregulated TOP2A has unfavorable 
prognosis in breast cancer in both 5-year disease-free 

survival [20] and adjuvant treatment [21]. High 
expression of RRM2 was associated significantly with 
decreased survival in all breast cancer subtypes and 
increased expression was shown in tamoxifen- 
resistant patients [22]. Moreover, RRM2 can be 
targeted and suppressed by miR‐204‐5p and RRM2 
overexpression can promote the proliferation and 
metastasis of breast cancer cells and suppressed cell 
apoptosis [23]. FEN1 and CDKN3 are tumor 
suppressor genes while elevated expression of these 
genes may not seem to protect against carcinogenesis.  

 

 
Figure 8. Prognostic values of upregulated hub genes in breast cancer (Kaplan Meier-plotter database). A: EXO1; B: MCM4; C: PTTG1; D: RRM2. 
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FEN1 is a DNA repair-specific nuclease. High 
level of FEN1 expression in breast cancer cells could 
reflect the enhanced proliferation or increased DNA 
damage of cancer cells [24]. The level of FEN1 is 
inversely associated with cancer drug and radiation 
resistance [25]. YY1[25] and Nrf2 [26] can 
down-regulated FEN1 expression through binding to 
the FEN1 promoter region and inactivating it. CDKN3 
is involved in mitosis. Overexpression of CDKN3 
predicts poor prognosis in cervical cancer [27] and 
lung adenocarcinoma [28] and it is also an effective 
biomarker in digestive system carcinomas [29, 30]. 
However, there are not many relative researches 

about CDKN3 in breast cancer. EPRS is one of the 
Aminoacyl-tRNA synthetases, which are involved in 
protein translation. EPRS copy number gains in breast 
cancers tumors [31]. Additionally, EPRS was 
selectively carbonylated in tumor tissue compared to 
matched adjacent healthy tissue in breast cancer [32]. 
EXO1 is an exonuclease, which belongs to the 
mismatch repair system. EXO1 plays a role in 
replication fork degradation in BRCA1-and 
BRCA2-deficient cells [33]. A meta-analysis of 
transcriptomic data of primary breast tumors also 
supports our finding about EXO1 [34].  

 

 
Figure 9. Prognostic values of upregulated hub genes in breast cancer (Kaplan Meier-plotter database). A: PSMD14; B: CDKN3; C: H2AFZ; D: CCNE2. 
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PSMD14 is a kind of deubiquitinating enzymes. 
There are few researches on PSMD14 in breast cancer. 
While recent studies have shown that high expression 
level of PSMD14 predicts poor prognosis of human 
esophageal squamous cell carcinoma [35]. H2AFZ is 
an oncogenic histone variant that is expressed 
independently of DNA replication. SMYD3-mediated 
H2AFZ methylation accelerates G1-S transition and 
promotes breast cancer proliferation [36]. 

4 downregulated-hypermethylated hub genes 
(EGFR, FGF2, BCL2, PIK3R1) were sorted out by PPI 
network, and 3 of them turned out to be significantly 
associated with poor overall survival except EGFR. 
EGFR is a commonly mutant gene in many malignant 

tumors. EGFR is often overexpressed in breast cancer, 
especially in triple-negative breast cancer [37], while 
hypermethylation of EGFR can contribute to 
cetuximab resistance [38]. FGF2 involves in cell 
proliferation and angiogenesis. FGF2 is hyper-
methylated in HR+ breast cancers and may have 
prognosis value [39] while it has low prognosis 
implication in triple-negative breast cancer [40]. BCL2 
belongs to the anti-apoptotic and anti-proliferative. A 
lot of studies have proved that positive BCL2 shows 
better prognosis in breast cancer [41-43]. Therefore, 
we can infer that down-regulated expression of BCL2 
predicts unfavorable prognosis.  

 

 
Figure 10. Prognostic values of downregulated hub genes in breast cancer (Kaplan Meier-plotter database). A: EGFR; B: FGF2; C: BCL2; D: PIK3R1. 
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Figure 11. Prognostic significances of EXO1 protein expression in breast cancer. (A). Immunohistochemical analysis of EXO1 in breast cancer tissue with low staining and high 
staining; (B) Kaplan–Meier OS analysis of EXO1 protein expression in breast cancer patients. (Each tissue section was observed under microscopy with low magnification of 50× 
and high magnification of 100×.) 

 
PIK3R1 encodes the p85α regulatory subunit 

which regulates and stabilizes p110α. PIK3R1 has a 
lower frequency mutation than PIK3CA in breast 
cancer [2]. Previous studies have confirmed that Low 
expression of PIK3R1 is associated with poor 
prognosis [44, 45].The prognosis value of some genes 
has been practiced in previous studies which is in 
accordance with our findings but more validation 
studies will still be needed. And the rest also needs to 
be explored in the future. 

To the best of our knowledge, this is the first 
study to screen the differentially expressed-aberrantly 
methylated hub genes of significant prognosis value 

in breast cancer by simple bioinformatics. In this 
study, 4 microarray datasets were used to screen these 
genes to make the results much more convincing. 
Moreover, databases from TCGA dataset were used to 
validate the expression and DNA methylation of these 
16 hub genes. In addition, the prognosis values of the 
16 genes in breast cancer were analyzed through 
Kaplan Meier-plotter database. Except EFGR, other 15 
differently-expressed genes are all significantly 
associated with prognosis. Also, the KEGG pathway 
analysis of these hub genes can provide guidance for 
further researches in breast cancer. What’s more, we 
analyzed the prognostic value of combined genes and 
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found that it was no better than EXO1 in both 
datasets. Not enough patients in either dataset or 
overexpression of EXO1 which was really a strong 
prognostic factor may cause this result. Protein levels 
of EXO1 were also analyzed and we found that high 
expression of EXO1 was associated with significant 
poor OS which suggested that EXO1 was a 
competitive prognostic factor for clinical application. 

However, there were still some limitations in this 
study should be acknowledged. Though, expression 
of these genes were all remained to be significantly 
upregulated or downregulated after validation in 
UALCAN database, but only 7 of 12 hypomethylated 
and 2 of 4 hypermethylated genes was validated in 
another methylation database. Expression analysis 
may be more stable across different database. 
However, methylation status of some genes was 
varied among different platforms and databases. In 
our study, two methylation microarray datasets were 
performed on the same platform (Illumina 
HumanMethylation27 Bead Chip) in order to 
eliminate platform diversity and using another 
methylation database to make the result more 
convincing. 

Conclusion 
In general, our study identified 9 aberrantly 

expressed-methylated hub genes in breast cancer 
significantly contributing to poor prognosis by 
bioinformatic analysis. Functional analysis and 
pathway enrichment analysis of those genes would 
provide novel ideas for further breast cancer research. 
12 upregulated hub genes (TOP2A, MAD2L1, FEN1, 
EPRS, EXO1, MCM4, PTTG1, RRM2, PSMD14, 
CDKN3, H2AFZ, CCNE2) and 4 downregulated hub 
genes (EGFR, FGF2, BCL2, PIK3R1) might serve as 
diagnosis and poor prognosis biomarkers in breast 
cancer in the future by more research validation. 
Especially, EXO1 was identified as an individual 
unfavorable prognostic factor in this research. 
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