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ABSTRACT

De novo mutations (DNMs) are an important cause
of genetic disorders. The accurate identification of
DNMs from sequencing data is therefore fundamen-
tal to rare disease research and diagnostics. Unfor-
tunately, identifying reliable DNMs remains a major
challenge due to sequence errors, uneven coverage,
and mapping artifacts. Here, we developed a deep
convolutional neural network (CNN) DNM caller (De-
NovoCNN), that encodes the alignment of sequence
reads for a trio as 160×164 resolution images. DeN-
ovoCNN was trained on DNMs of 5616 whole exome
sequencing (WES) trios achieving total 96.74% recall
and 96.55% precision on the test dataset. We find
that DeNovoCNN has increased recall/sensitivity and
precision compared to existing DNM calling ap-
proaches (GATK, DeNovoGear, DeepTrio, Samtools)
based on the Genome in a Bottle reference dataset
and independent WES and WGS trios. Validations of
DNMs based on Sanger and PacBio HiFi sequenc-
ing confirm that DeNovoCNN outperforms existing
methods. Most importantly, our results suggest that
DeNovoCNN is likely robust against different exome
sequencing and analyses approaches, thereby allow-
ing the application on other datasets. DeNovoCNN is
freely available as a Docker container and can be run
on existing alignment (BAM/CRAM) and variant call-
ing (VCF) files from WES and WGS without a need for
variant recalling.

INTRODUCTION

Many developmental disorders, such as intellectual disabil-
ity (1), autism spectrum disorder (2) and multiple congeni-
tal anomalies (3) are known to be caused by de novo muta-
tions (DNMs) (4,5). The reliable identification of DNMs is,
therefore, of paramount importance both for genetic test-
ing as well as research studies. Because of the genetic het-
erogeneity that exists for disorders where DNMs play a ma-
jor role, the identification of DNMs is typically performed
based on whole exome (WES) or whole genome sequenc-
ing (WGS) data. In principle, DNMs can be easily identi-
fied by selecting variants in the proband that are not present
in either of the parents. In practice, however, this process
is complicated by sequencing artifacts, mapping artifacts,
differences in sequence coverage and mosaicism. Moreover,
the genome of an average individual has 40–80 DNMs of
which on average 1.45 occur in the coding regions (6), mak-
ing DNMs considerably rarer than errors associated with
sequencing technology. Practically this means that the sen-
sitivity and specificity of DNM detection are usually bal-
anced by selecting appropriate quality score cutoffs.

Several different methods have been developed to identify
DNMs in next-generation sequencing (NGS) data. With
methods such as DeepTrio (7) and the Genome Analysis
Toolkit (GATK) (8) de novo calling is achieved straight-
forwardly by performing multi-sample variant calling and
subsequent selection of variants based on genotypes corre-
sponding to de novo mutations. The downside of these ap-
proaches is that DNM calling is dependent on the variant
calling, which therefore always needs to be performed with
the same method. For existing datasets, this may require re-
calling of variants with potentially high computational and
storage overheads. Other tools, such as DeNovoGear (9)
and TrioDeNovo (10) are able to call DNMs based on ex-
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isting variant calls by modelling the probability of mutation
transfer using mutation rate priors. All of these approaches
provide high sensitivity, but the specificity is usually lower
due to the amount of noise in NGS data, resulting in a high
number of false positive calls (11). Subsequent filtering of
DNMs based on quality criteria is, therefore, typically re-
quired.

Deep learning, a field of machine learning, has recently
seen a growth in popularity amongst applications in ge-
nomics (12). Deep learning approaches have been able to
achieve improvements in many genomics applications by
converting genomic data into an image-like representation
and employing convolutional neural networks (CNNs) (e.g.
tumor type classification using RNA-Seq data (13) and
germline variant calling (7)). Here, we developed DeN-
ovoCNN, a deep-learning model that encodes trio NGS
data as images and uses a suite of CNNs to detect de novo
mutations in next generation sequencing data.

MATERIALS AND METHODS

Training, validation and test datasets

A cohort of 6067 child-parent trios was used for building
the training and validation datasets, which is an extension
of the cohort used in Kaplanis et al. (5). All of the individu-
als were initially referred to the Radboudumc Department
of Human Genetics with an indication of unexplained de-
velopmental delay, for whom trio WES was performed as
described before (5). Briefly, all samples were sequenced on
Illumina HiSeq 2000/4000 instruments using Agilent Sure-
Select v4 or v5 exome enrichment kits, respectively. Initially,
de novo calling was performed using our in-house method
based on Samtools. Subsequently, all calls from the co-
hort used in Kaplanis et. al. were filtered based on qual-
ity metrics as described in the original manuscript (5) and
the rest of the cohort was filtered according to the follow-
ing approach: GATK quality score >300 for substitutions
and >500 for insertions and deletions, coverage ≥20× in the
proband, VAF >30%. The complete dataset yielded 13 068
DNM calls, which were used to construct the training and
validation datasets (Supplementary Figure S1).

Snapshots of all of the potential DNM calls were gener-
ated using the Integrative Genomics Viewer (IGV) (14) for
visual inspection, and each variant was evaluated by assign-
ing it to one of the three classes: DNM, IV (inherited vari-
ant) or UN (unknown) for cases where it was not feasible
to make the confident decision on visual inspection alone.
UN variants were removed from the dataset. The obtained
dataset of 5616 trios was complemented with randomly se-
lected IVs resulting in 10 274 DNMs and 55 134 IVs. The
5616 trios were randomly divided into training, validation
and test subsets using a 70/15/15 percentage ratio. (Supple-
mentary Figure S1).

One of the challenges of DNM detection is to distinguish
false positives in difficult genomic regions, so we developed
a way to add such examples. First, we took the current
training and validation datasets to train an interim DeN-
ovoCNN model for DNMs calling. Second, we randomly
selected 403 trios and applied an interim DeNovoCNN
model to get candidate DNM calls on these trios. Finally, we
manually curated all calls in IGV, selecting 905 IVs that were

either clearly inherited from the parents or occurred in diffi-
cult regions where a lot of sequencing mistakes and artefacts
were visible. In addition, we selected 159 true DNMs. This
provided a better representation of the locations where our
algorithm made mistakes in the previous step and therefore
the most difficult genomic regions for the model.

Despite the large exome dataset, the total number of
DNMs for training was relatively low. Therefore, we sup-
plemented the DNM dataset by performing DNM calling
using the in-house caller on two artificial trios where the
child was unrelated to the parents. These 2 trios were con-
structed by randomly sampling two parent pairs, followed
by the random choice of a child (Supplementary Figure S1).
This resulted in an additional 1005 DNMs that were added
only to the training dataset to avoid biases in validation and
test datasets.

All IVs and DNMs were further assigned into three cate-
gories: insertions, deletions and single-nucleotide substitu-
tions for the training of the three different models. (Supple-
mentary Table S1).

DeNovoCNN

Model architecture. We aimed to replicate the visual in-
spection process of possible DNMs performed by human
experts using software such as IGV. By converting NGS
data into RGB images de novo variant calling could be ap-
proached as a computer vision classification task with two
classes: DNMs and IVs. The state-of-the-art approach for
vision classification tasks is the convolutional neural net-
work (CNN), a variation of which we chose for our pur-
poses. The choice of the architecture was a trade-off be-
tween the ability to generalize (complexity) of the model
and the available amount of training data. Thus, the model
architecture was chosen to be basic and consisted of nine
2D convolutional layers with 96 filters, 3 × 3 kernels, ReLU
activation and the same padding in each layer. After every
third convolutional layer, we applied batch normalization
and added a Squeeze-and-Excitation block (15). Global
max and average pooling were applied before the output
layer (Supplementary Figure S2). The architecture was de-
veloped using Python with the TensorFlow v.2.3.0 (16). Us-
ing this architecture we constructed three separate models,
for insertions, deletions and substitutions because of their
specific visual patterns and the skewness of the dataset to-
wards substitutions. We also considered a single model for
all three types of variants but obtained inferior results using
this approach.

Image generation. Variants in de novo and control datasets
were converted into images prior to being fed to the convo-
lutional neural network. All variants of interest were con-
verted into 160×164 RGB images (Supplementary Figure
S3). Image generation was based on reads pileup data in the
location of the variant capturing 20 nucleotides before and
after the candidate DNM. Read pileup data from individual
trio members for the same variant position was extracted
using the Pysam v.0.19.0 library (17).

Each row in the image encodes a read base sequence. Im-
age columns were structured in a recurring pattern of 4 pix-
els per genomic position, which represents a one-hot vector
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that encodes A, C, T and G bases respectively. Thus, the im-
age width of 164 pixels represents a sequence of 41 (164/4)
bases with the variant starting at the central position (20 us-
ing 0 indexing). In a one-hot vector for (A, C, T, G) the co-
ordinate was filled with a value in the resulting image in case
we observe this nucleotide in the corresponding genomic
position in the read, whereas the rest were filled with zeros
(Figure 1). Pixel intensities have a maximum value of 255,
adjusted by mapping and base quality scores with higher
quality corresponding to higher pixel intensity. Each col-
umn represents the sequencing depth which was limited to
160 reads for computational performance. Red, green and
blue color channels represent different individuals of the
trio, corresponding to child, father and mother respectively.

Hyperparameters optimization. The architecture of the
model and the process of training require the definition of
some hyperparameters, such as learning rate, number of
convolutional features, batch size, and regularization co-
efficients. The choice of these parameters was done using
the Hyperband algorithm for hyperparameter optimization
(18) (Supplementary Table S2). The values for the number
of convolutional features and batch size were sampled from
[32, 64, 96, 128] and [32, 64] respectively. For continuous
parameters the values were logarithmically sampled from
corresponding segments. The L1 coefficient of the sigmoid
layer was sampled from [1e–10, 0.1], learning rate from [1e–
8, 0.01] and the Adam weight decay from [1e–8, 0.01]. The
Hyperband optimization was performed such that the hy-
perparameters showed the lowest cross-entropy loss on the
validation dataset.

Training the model. Networks were trained for 100 epochs
unless the performance on the validation dataset did not im-
prove for 40 epochs, in which case the training was stopped.
For all three networks training stopped before reaching 100
epochs (Supplementary Figure S4). The final models were
selected at the epoch that showed the best performance on
the validation dataset. Due to the large dataset size, the
substitution network was trained first using random weight
initialization, while insertion and deletion networks were
trained using weights from the trained substitution network
as the starting point. As a result of optimization, some hy-
perparameters are different for the three different networks
(Supplementary Table S2). Adam optimizer for substitu-
tions and AdamW for insertions and deletions with de-
fault Keras parameters were used for minimization of bi-
nary cross-entropy loss in all models. The initial learning
rate was set to the optimized values for each network with
a stepwise decay of 0.5 every 10 epochs (Supplementary Ta-
ble S2). The output of the network is a vector containing
probabilities for a variant being a DNM and IV. The area
under the curve (AUC), overall accuracy, specificity, sensi-
tivity and F1 score were calculated on the test set.

Data augmentation was applied during the training of
the networks for substitutions, deletions and insertions. The
standard augmentations included random brightness ad-
justment by a factor between [0.3, 1]. To increase the stabil-
ity of the model, random shuffling of the reads was imple-
mented. Additionally, we observed that some specific cases
of DNMs were underrepresented in our dataset, namely,

DNMs in low-coverage regions and multi-nucleotide sub-
stitutions. We simulated reduced coverage by discarding a
random number of reads from the pileup and enriched the
dataset for multi-nucleotide substitutions by generating ad-
jacent substitutions using the substitution dataset on-the-
fly.

The training was performed on a machine with NVIDIA
GeForce GTX TITAN X 12 Gb. Training time on this ma-
chine was ∼17.6 h for substitutions, ∼1.7 h for deletions and
∼1.5 h for insertions.

DNM prediction. After the training DeNovoCNN was
used for DNM prediction on new data. The input consists
of one VCF and one BAM file per sample (three per trio), as
well as paths to the trained model weights for substitutions,
insertions and deletions. The prediction consists of two
steps. The first step is dependent on the initial variant call-
ing used for generating VCF files: using the trio VCF files,
the inherited variants are discarded. This is achieved us-
ing the bcftools isec -C child vcf father vcf
mother vcf (17) command and results in around a 10-fold
reduction of the number of genomic locations for evalua-
tion, which usually ends up with <10 000 variants for WES
(depending on capture kit size) and ∼100 000 for WGS. The
second step iterates through the generated list and classifies
each variant as DNM or non-DNM. The variant is consid-
ered to be de novo if the probability of DNM class returned
by DeNovoCNN is ≥0.5. The application of DeNovoCNN
doesn’t require any GPUs. On a standard 16 core CPU ma-
chine, the run-time is ∼15–20 min for a 100× coverage WES
trio and ∼5.5–6 h for a 50× WGS trio.

Performance assessment. In order to validate the per-
formance of the proposed deep learning model, we used
datasets from different types of sequencing (exomes and
genomes) as well as different types of enrichment and se-
quencing platforms (Supplementary Table S3, Supplemen-
tary Methods). DeNovoCNN was compared to other avail-
able algorithms, such as DeepTrio (7), GATK PossibleDe-
Novo (8), and DeNovoGear (9). We also compared to our
in-house de novo detection algorithm, based on Samtools
mpileups, because of the 10 years of experience that we had
with this approach.

For validation purposes, we applied the above-mentioned
algorithms as follows:

• DeNovoCNN takes as an input trio VCF files and
BAM/CRAM files. See the DNM prediction section for
the details.

• DeepTrio version 1.2.0 was run on BAM/CRAM files
to call variants on a trio, followed by GLnexus tool for
gVCF merging according to DeepVariant and GLnexus
best practices (19) with optimized configuration for
DeepVariant caller in WES and WGS data (Deep-
VariantWES, DeepVariantWGS). We additionally ran
GLnexus using a config with no quality filters (DeepVari-
ant unfiltered) as it is suggested in the DeepTrio available
documentation. Since it is recommended not to perform
BQSR on the input files for DeepTrio, we run the tool
on the BAMs without base recalibration as well. De novo
mutations were defined as Mendelian violations with a
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Figure 1. Overview of the method depicting the different steps starting with (from left to right), the training data, encoding of sequence data as images,
training of the different deep-learning models, and validation of the final model. The first step consisted of the construction of training and validation
datasets using de novo and inherited or false de novo variants from the 6,067 trios. As is shown in the ‘Image encoding’ section of the figure all variants
were transformed to RGB images, where each color channel corresponds to the child, father, and mother data respectively. Every row encodes a separate
read, and every nucleotide in a particular position is encoded as a one-hot vector, containing (A, C, T, G). 70% of these images were then used to train 3
convolutional neural networks (for substitutions, deletions, and insertions variants). The remaining 15% of the data (1564 DNM variants, 8410 IV variants)
was used as a test dataset. The resulting models were thoroughly validated using various independent datasets: the external gold standard GIAB WGS
trio, the in-house 20 WES dataset, the in-house 7 WGS dataset, and the multi-platform 551 WES trios from the SolveRD project.

heterozygous variant in the child and homozygous refer-
ence calls in the parents and were selected with the RTG
Tools Mendelian package v.3.12.1 (20).

Whereas DeepTrio performed well on WGS data, we were
unable to generate good results for DeepTrio on WES data.
Although we tried different settings and post-analysis fil-
tering, we found that DeepTrio consistently generated high
numbers of DNM calls in WES data. We have documented
our efforts and results in the Supplemental (Supplementary
Table S4).

• DeNovoGear version 1.1.1 (9) was run according to the
specifications. DeNovoGear takes in PED and BCF files
as input. The BCF file was generated using the follow-
ing command: samtools mpileup -gDf refer-
ence.fa child.bam father.bam mother.bam

• GATK (gatk4-4.1.2.0 and gatk4-4.1.8.1) was run on
BAM/CRAM or gVCF files according to the best prac-
tices for germline short variant discovery (SNPs + indels)
and ‘Genotype Refinement workflow for germline short
variants’ (8) to detect de novo variants.

• Our in-house method: this is an in-house developed
method that generates a list of de novo candidates based
on the VCF files of the trio (1). For WES remaining candi-
dates were then filtered out based on gnomAD allele fre-
quency <1.0%. For WGS data gnomAD allele frequency
<0.1% and xAtlas quality score >15 filters were used.
Subsequently, this method performs Samtools pileups
which are used to select the most likely DNM candidates
based on a set of hard filters. The variant is considered to
be de novo if the coverage in both parents is ≥10 and either
there are no alternative reads in the parents or the VAF
in both parents ≤15% with the number of alternative
reads <3.

We compared these methods based on the raw de novo
calls, as well as after the application of the commonly used
quality filtering for de novo mutations. This high-quality
DNM set was created using the following filters (derived

from in-house practices): number of reads in the sample and
both parents ≥10, variant allele frequency ≥20%, gnomAD
allele frequency <0.01%.

RESULTS

We used a convolutional neural network (CNN) with
squeeze-and-excitation blocks (15) as the architecture for
DeNovoCNN (Figure 1, Supplementary Figure S2), and
trained three separate models for substitutions, insertion
and deletion variants. Our primary training dataset was
based on DNMs and inherited variants (IVs) from a cohort
of 6067 child-parent trios that were supplemented with sim-
ulated data in order to optimize training (5), (Supplemen-
tary Figure S1, Material and Methods). All variants were
converted into 160×164 RGB images (Supplementary Fig-
ure S3). The dataset was split into an 70% training (8,517
DNMs, 40 590 IVs), 15% validation (1357 DNMs, 7110
IVs; Supplementary Table S1) and 15% test (1564 DNMs,
8410 IVs) dataset. DeNovoCNN generates a probability of
a variant being de novo, and, therefore, we used a threshold
of ≥0.5 to select de novo calls. After training DeNovoCNN
achieved a high sensitivity/recall rate of 96.74% (sub-
stitutions: 97.71%, insertions: 91.76%, deletions: 91.76%)
and precision of 96.55% (substitutions: 97.78%, insertions:
96.3%, deletions: 87.64%) (Supplementary Figure S5, Sup-
plementary Figure S6, Supplementary Table S5) on the test
dataset.

Comparison on GIAB WGS dataset

In order to compare our method to other de novo detec-
tion methods on an independent dataset, we used Illumina
WGS data of an Ashkenazim Trio (NA24385; NA24149;
NA24143) from the Genome in a Bottle (GIAB) consor-
tium (21). This trio was sequenced using various differ-
ent technologies in order to create a dataset of 1323 high-
quality cell-line and germline DNMs. We only consid-
ered DNMs in high-quality regions, as suggested by the
GIAB consortium. We compared DeNovoCNN DNMs to
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Figure 2. The comparison results on the GIAB reference trio. These figures contain four plots of the different tools’ performance for substitutions,
insertions, deletions, and all variants on a GIAB dataset. All tools for the comparison are on the horizontal axis: DeNovoGear with a threshold of 0.5,
DeNovoGear with a threshold of 0.9, DeepTrio (DeepVariant unfiltered, BQSR), DeepTrio (DeepVariant unfiltered, no BQSR), GATK with high quality
calls only, GATK, our in-house tool, and DeNovoCNN. The green, orange and violet bars show precision, recall (sensitivity), and specificity respectively.
(A) The performance of different de novo calling methods for the GIAB reference genome trio. (B) The performance of different de novo calling methods
for the GIAB reference genome trio using the manually curated set of DNMs (Material and Methods).

Table 1. The results of the comparison on the GIAB dataset

Tool Calls TP FP TN FN Sensitivity/recall Specificity Precision Accuracy

DeNovoCNN 1233 1198 35 640 125 90.55 94.81 97.16 91.99
DeNovoGear-0.5 1346 1063 283 392 260 80.35 58.07 78.97 72.82
DeNovoGear-0.9 1161 1047 114 561 276 79.14 83.11 90.18 80.48
DeepTrio (DeepVariantWGS, BQSR) 210 176 34 641 1147 13.3 94.96 83.81 40.89
DeepTrio (DeepVariantWGS, no
BQSR)

268 240 28 647 1083 18.14 95.85 89.55 44.39

DeepTrio (DeepVariant unfiltered,
BQSR)

1207 1127 80 595 196 85.19 88.15 93.37 86.19

DeepTrio (DeepVariant unfiltered, no
BQSR)

1222 1129 93 582 194 85.34 86.22 92.39 85.64

GATK 1338 1171 167 508 152 88.51 75.26 87.52 84.03
GATK HC 1257 1149 108 567 174 86.85 84.0 91.41 85.89
In-house 1293 1195 98 577 128 90.33 85.48 92.42 88.69

Every row shows different statistics and performance metrics for DeNovoCNN, DeNovoGear with the probability threshold of 0.5 and 0.9, DeepTrio
with different settings, GATK and GATK with high quality DNMs, and our in-house tool. The first column shows the name of the tool, the next five
columns show the number of total DNM calls, the number of true positive, false positive, true negative and false negative DNM calls respectively based
on GIAB reference calls. The next four columns show the performance metrics, such as sensitivity/recall, specificity, precision and accuracy.

DNMs from DeepTrio (applied on BAMs with and without
BQSR, with DeepVariantWGS and DeepVariant unfiltered
presets for GLnexus), in-house method based on Sam-
tools (17), GATK (8), GATK filtered for high confidence
DNM calls (GATK HC), and DeNovoGear filtered using
a ≥0.5 and ≥0.9 probability thresholds (DeNovoGear-0.5,
DeNovoGear-0.9) (9) (Figure 2A, Table 1, Supplementary
Table S6, Supplementary Figure S7).

DeNovoCNN outperformed other algorithms with a pre-
cision rate of 97.16%. DeepTrio (DeepVariant unfiltered,
BQSR) showed a precision of 93.37%, our in-house tool
showed a precision of 92.42%, and DeepTrio (Deep-
Variant unfiltered, no BQSR) showed 92.39%, while
GATK HC and DeNovoGear-0.9 performances were
91.41% and 90.18%, respectively. DeNovoCNN also
has the highest sensitivity/recall rate of 90.55%, our
in-house tool showed 90.33%, and DeepTrio (DeepVari-

ant unfiltered, no BQSR) showed 85.34%, GATK and
DeNovoGear-0.5 performance were 88.51% and 80.35%,
respectively (Figure 2A, Table 1). We note that DeepTrio
was actually trained on this GIAB dataset, and therefore
the DeepTrio results may be slightly inflated.

We observed a relatively low recall for insertions and dele-
tions of all algorithms which led us to investigate possi-
ble problems with the GIAB high-quality DNM dataset
(Supplementary Table S6). Therefore, we performed man-
ual cleaning of likely false positive de novo insertion
and deletion calls in the GIAB gold standard dataset
based on visual inspection (Supplementary Methods). We
then repeated our comparison on this manually curated
GIAB dataset and found that DeNovoCNN still out-
performed all other methods on sensitivity/recall as well
as precision and accuracy (Figure 2B, Supplementary
Table S7).
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Figure 3. Validation and comparison of the DeNovoCNN method with other tools on exome data. (A) Comparison results on 20 in-house WES trios based
on DNMs that were validated by Sanger/IonTorrent sequencing. The graph contains only variants that were marked as potentially de novo after manual
validation in IGV and then sent for Sanger/IonTorrent validation (see Materials and Methods). The green oval contains all potentially de novo variants for
the GATK tool with high quality DNMs, the light blue oval indicates potential de novo variants according to the in-house tool, the magenta oval contains
potentially de novo variants according to the DeNovoCNN tool, and finally, light brown oval shows potentially de novo variants based on the DeNovoGear
tool. Each intersection of the circles contains the number of potentially de novo variants that were found in the overlap of the corresponding tools’ calls.
For each intersection, the results of the Sanger validation of these variants are shown. (B) The DeNovoCNN and GATK results on SolveRD samples from
different exome sequencing kits and platforms. For each sequencing kit, the number of samples used is indicated in brackets. The first two graphs show
the distribution of the number of calls (on the horizontal axis) per sequencing kit using boxplots for DeNovoCNN and GATK with high-quality DNMs
respectively. The last graph shows the distribution of the average coverage per sequencing kit using violin plots.

Comparison on 20 WES trios

The comparison on the GIAB dataset highlighted the dif-
ficulties in obtaining high-quality validation datasets for
DNMs. Therefore, we also compared DeNovoCNN perfor-
mance with GATK HC, DeNovoGear, and our in-house
tool on a dataset of 20 randomly selected in-house WES
trios that were not part of the original training dataset of
6067 trios (Figure 3A, Table 2, Materials and Methods).
This allowed us to validate the called DNMs experimen-

tally. For all of the DNM calls by the different methods
we performed a visual selection to discard obvious false-
positive variants. The remaining 50 variants were validated
by Sanger/IonTorrent sequencing of which 24 were con-
firmed as DNMs, and 4 were either inherited or false pos-
itives (Supplementary Figure S8). For 22 variants, it was
not possible to perform the validation due to difficulties
with designing the primers (9 variants) and depletion of the
DNA sample (13 variants). Based on these validations, De-
NovoCNN was able to correctly identify all 24 confirmed
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Table 2. The results of the Sanger/IonTorrent validations on the 20 WES trios based on raw calls of the tools

Tool Calls TP FP TN FN Sensitivity/recall Specificity Precision Accuracy

DeNovoCNN 75 24 51 2488 0 100.0 97.99 32.0 98.01
GATK HC 103 20 83 2456 4 83.33 96.73 19.42 96.61
GATK 147 20 127 2412 4 83.33 95.0 13.61 94.89
DeNovoGear-0.9 599 19 580 1959 5 79.17 77.16 3.17 77.18
In-house 85 20 65 2474 4 83.33 97.44 23.53 97.31

Every row shows different statistics and performance metrics for DeNovoCNN, GATK with high quality DNMs and GATK, DeNovoGear with a
probability threshold of 0.9, and our in-house tool. The first column shows the name of the tool, the next five columns show the number of total DNM calls,
the number of true positive, false positive, true negative and false negative DNM calls respectively based on the results of Sanger/IonTorrent validations.
The next four columns show the performance metrics, such as sensitivity/recall, specificity, precision and accuracy.

DNMs (DeNovoCNN sensitivity/recall is 100%, next best
is 83.33% for in-house, GATK and GATK with high qual-
ity calls, and DeNovoGear-0.9 has 79.17%), showing the
best performance on all other metrics as well (Table 2).
We subsequently performed additional quality filtering on
the DNMs (Materials and methods), as is likely to happen
in a real-world setting, and re-evaluated the results. DeN-
ovoCNN still showed the best results on all calculated met-
rics (Supplementary Table S8).

Additionally, we compared different properties (VAF,
coverage, strand bias, variant context and population al-
lele frequency) between the true positive and false posi-
tive DNMs from DeNovoCNN, GATK and DeNovoGear
in order to explore obvious possibilities for improvements
(Supplementary File). We did not observe any striking dif-
ferences, with the exception of population allele frequency
(gnomAD) which could be used as post-processing filtering.

Results on the multi-platform WES trio dataset

Next, we wanted to verify that DeNovoCNN is robust
across different capture and sequencing approaches. We
used an exome dataset of the Solve-RD consortium (22)
that contains 551 trios sequenced across 15 different
capture/sequencing combinations (Supplementary Meth-
ods; Supplementary Table S9). We measured the robustness
of our method by considering the number of called DNMs
per sample and compared this to the number of high-quality
DNM calls from GATK (GATK HC) (Figure 3B, Supple-
mentary Figure S9). In addition, we expected that the num-
ber of calls is within the same range regardless of the se-
quencing platform that was used. The median number of
DeNovoCNN calls is 2.5, the 5th and 95th percentiles are
0.0 and 7.55 whereas the overall distribution lies between 0
and 64 calls. This result is consistent with what we observe
for GATK calling (median number of calls is 4.0, the 5th
and 95th percentiles are 1.0 and 13.0, maximum number of
calls is 93.0). This suggests that our method was likely not
overfitted to the training dataset’s specific capture kit and
sequencing instrument.

Results on 7 WGS trios

To confirm that DeNovoCNN also performs well on whole-
genome sequencing data, we used seven in-house WGS
trios. We applied DeNovoCNN, GATK and DeepTrio
(with DeepVariantWGS and DeepVariant unfiltered pre-
sets for GLnexus). We compared these tools with high-
quality de novo calls obtained with PacBio Hi-Fi long

reads sequencing (LRS) (Supplementary Methods). DeN-
ovoCNN had the highest concordance with LRS calls with
sensitivity/recall of 81.83%, next was GATK with 76.37%
and 75.72% and for low and high confidence calls respec-
tively. DeepTrio had 73.47% and 15.76% concordance with
DeepVariant unfiltered and DeepVariantWGS preset filtra-
tion respectively. DeNovoCNN outperformed other tools
significantly based on the specificity (92.81%), precision
(21.8%) and accuracy (92.54%) (Figure 4, Table 3). We re-
peated the comparison after filtering the DNMs for high
quality calls (Materials and Methods) and obtained similar
results (Figure 4, Supplementary Table S10).

DISCUSSION

Here we introduced DeNovoCNN, a novel approach to
de novo variant calling based on a convolutional neural
network. We applied DeNovoCNN to several independent
datasets such as the GIAB WGS Ashkenazi trio, 20 WES
trios and 7 whole-genome short-read sequencing trios to
compare the performance with other methods (GATK,
Samtools, DeepTrio, DeNovoGear) based on orthogonal
validations with the GIAB gold standard DNM dataset,
Sanger/IonTorrent validations and PacBio LRS respec-
tively. For all of these datasets, we find that DeNovoCNN
consistently outperforms other approaches in terms of pre-
cision, recall and specificity. An advantage of DeNovoCNN
is that it is in principle not dependent on the variant call-
ing method itself, which will make it easier to use on ex-
isting datasets and incorporate into existing data analysis
pipelines. Other approaches such as GATK and DeepTrio,
require that variants are called in a specific way and other-
wise will not be able to produce DNM calls. This means that
for existing datasets recalling is likely to be needed which
may represent a significant (computational) effort. How-
ever, we cannot fully exclude that for particular variant call-
ing methods, DeNovoCNN will need to be retrained.

Another potential advantage comes from the observation
that DeNovoCNN seems to be able to identify also mosaic
variants. Because these variants are even rarer than DNMs
we were not able to perform a thorough evaluation. How-
ever, we ran DeNovoCNN on 10 WES trios in which a mo-
saic variant had been reported and identified 9 out of 10 of
these variants (Supplementary Table S11).

The biggest challenge of DeNovoCNN is common for
most deep learning models and is related to the fact that
the model should generalize well to other data unseen dur-
ing training. Deep learning models can be sensitive to subtle
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Figure 4. Validation and comparison of the DeNovoCNN method on genome data. The figure contains two plots for the performance based on raw
and high confidence DNM calls (Material and methods). The tools used for the comparison are on the horizontal axis: DeepTrio (DeepVariantWGS),
DeepTrio (DeepVariant unfiltered), GATK with high quality DNMs, GATK and DeNovoCNN. The green, orange and violet bars show precision, recall
(sensitivity) and specificity, respectively.

Table 3. Validations on the 7 WGS trios using PacBio LRS based on raw calls of the tools

Tool Calls TP FP TN FN Sensitivity/recall Specificity Precision Accuracy

DeNovoCNN 2335 509 1826 23557 113 81.83 92.81 21.8 92.54
GATK HC 5562 471 5091 20292 151 75.72 79.94 8.47 79.84
GATK 8353 475 7878 17505 147 76.37 68.96 5.69 69.14
DeepTrio
(DeepVariant unfiltered)

14554 457 14097 11286 165 73.47 44.46 3.14 45.16

DeepTrio (DeepVariantWGS) 5792 98 5694 19689 524 15.76 77.57 1.69 76.09

Every row shows different statistics and performance metrics for DeNovoCNN, GATK with high quality DNMs and GATK, and DeepTrio with two
different settings. The first column shows the name of the tool, the next five columns show the number of total DNM calls, the number of true positive,
false positive, true negative and false negative DNM calls respectively based on comparison with DNMs from PacBio HiFi LRS. The next four columns
show the performance metrics, such as sensitivity/recall, specificity, precision and accuracy.

differences in the data which can lead to unexpected results.
Because we exclusively used data from a single center for
the training of our model, albeit from two different capture
kits and sequencing instruments we have used data augmen-
tation techniques to prevent overfitting. Our validations are
for the most part done on completely different datasets than
those used for training the model, such as the GIAB dataset,
the 7 WGS trios, and the WES data from the Solve-RD
project. For all of these datasets, we obtain good results,

supporting the notion that DeNovoCNN is not overly bi-
ased towards the training dataset. However, we cannot ex-
clude that some residual bias from the training data exists
and that this may become apparent when DeNovoCNN is
applied to other datasets. We tested for two potential bi-
ases, namely lower coverage sequencing data, and omitting
Base Quality Score Recalibration (BQSR). At lower cover-
ages, we observed no drastic effects on recall and precision
(Supplementary Figure S10) and find a high correlation in
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DeNovoCNN predictions for the alignments with and with-
out BQSR (Supplementary Figure S11). Another hurdle
to the application of DeNovoCNN could be the fact that
nowadays CRAM is becoming a new data standard (23) for
storing sequence alignments. Therefore, we also compared
DeNovoCNN results from BAM files and corresponding
CRAM files with quality-score binning. We find that the
correlation between the prediction on BAM and CRAM
files is very high (Supplementary Figure S12) and therefore
expect DeNovoCNN to work equally well on CRAM files.

A possible source of bias of our model lies in the genera-
tion of the training data using manual inspection of the vari-
ants in IGV. We did not observe any obvious biases in the
performance of DeNovoCNN on independent datasets that
seemed to arise from our manual inspection. However, com-
prehensive gold standard DNM datasets, including DNMs
in the complex regions of the human genome, will be needed
to make such manual visual inspection unnecessary in the
future.

Although DeNovoCNN shows overall good perfor-
mance compared to other methods, we have seen some pos-
sibilities for future improvements. We noticed that the per-
formance on indels is lower than the performance on sub-
stitutions. This is not surprising since the calling of indels
is also more challenging than for substitution variants, but
could also be explained by the fact that the amount of the
indels events in the training dataset is much lower than sub-
stitutions events. In addition, DNMs were mostly validated
using visual inspection. Because indel de novo events are
more difficult to distinguish manually from sequencing arte-
facts, this could have led to a poorer training dataset specif-
ically for these events. In general, we remark that for future
improvements in DNM detection, it will be essential to have
sizeable, curated training datasets.

Other possible improvements could lie in the model itself.
The training of deep learning models is computationally
intensive, which is why we chose a relatively simple CNN.
Although we did not observe any clear negative effects on
model performance, more complex architectures and more
context information for variants could potentially improve
the performance further.

DATA AVAILABILITY

DeNovoCNN is open-source software available as a Docker
container in the GitHub repository (https://github.com/
Genome-Bioinformatics-RadboudUMC/DeNovoCNN).

The training dataset for DeNovoCNN is avail-
able in the GitHub repository (https://github.
com/Genome-Bioinformatics-RadboudUMC/
DeNovoCNN training dataset).
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Supplementary Data are available at NAR Online.
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