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The Effects of Middle Cerebral Artery Occlusion on Central
Nervous System Apoptotic Events in Normal
and Diabetic Rats
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Apoptosis and neural degeneration are characteristics
of cerebral ischemia and brain damage. Diabetes is asso-
ciated with worsening of brain damage following ischemic
events. In this study, the authors characterize the influ-
ence of focal cerebral ischemia, induced by middle cerebral
artery occlusion, on 2 indexes of apoptosis, TUNEL (termi-
nal deoxynucleotidyl transferase–mediated deoxyuridine
5-triphosphate nick end-labeling) staining and caspase-
3 immunohistochemistry. Diabetes was induced in nor-
mal rats using streptozotocin and maintained for 5 to
6 weeks. The middle cerebral artery of both normal and
diabetic rats was occluded and maintained from 24 or
48 hours. Sham-operated normal and diabetic animals
served as controls. Following 24 to 48 hours of occlu-
sion, the animals were sacrificed and the brains were re-
moved, sectioned, and processed for TUNEL staining or
caspase-3 immunohistochemistry. Middle cerebral artery
occlusion in normal rats was associated with an increase
in the number of both TUNEL-positive and caspase-3–
positive cells in selected brain regions (hypothalamic pre-
optic area, piriform cortex, and parietal cortex) when
compared to nonoccluded controls. Diabetic rats without
occlusion showed significant increases in both TUNEL-
positive and caspase-3–positive cells compared to nor-
mal controls. Middle cerebral artery occlusion in diabetic
rats resulted in increases in TUNEL-positive as well as
caspase-3–positive cells in selected regions, above those
seen in nonoccluded diabetic rats. Both TUNEL staining
and caspase-3 immunohistochemistry revealed that the
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number of apoptotic cells in diabetic animals tended to
be greatest in the preoptic area and parietal cortex. The
authors conclude that focal cerebral ischemia is associ-
ated with a significant increase in apoptosis in nondia-
betic rats, and that diabetes alone or diabetes plus focal
ischemia are associated with significant increases in apop-
totic cells.
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Chronic degenerative changes in the nervous system is
one of the hallmarks of diabetes. Although this is a well-
recognized finding, the exact mechanism of these neurologi-
cal changes is not clear. Apoptosis or physiological cell death
is also characteristic of diabetes and have been demonstrated
in various tissues, including the cardiovascular system, the
retina, and the peripheral nervous system [1–3]. The mech-
anism(s) associated with diabetes-related apoptosis are not
defined.

The morphological expression of apoptosis is character-
ized by cell shrinkage, nuclear chromatin condensation, chro-
matin fragmentation, nuclear membrane lysis, and apoptotic
body formation [4, 5]. Following ischemic brain damage, both
apoptosis and neuronal degeneration are observed. In addition,
apoptosis has been documented in neuropathologic changes
associated with global as well as focal ischemia [6–10]. These
apoptotic changes have been demonstrated to occur in a va-
riety of brain regions, including the neocortex, striatum, and
thalamus, after permanent or transient occlusion of the middle
cerebral artery [11, 12]. The time sequence of apoptotic events
has been characterized as beginning 6 hours after injury and
remaining evident after 24 to 48 hours [13–16].
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In the present study, we examined the presence of pro-
grammed neural cell death in both normal and diabetic animals
with and without cerebral ischemia using 2 methods iden-
tifying apoptotic cells, TUNEL (terminal deoxynucleotidyl
transferase–mediated deoxyuridine 5-triphosphate nick end-
labeling) staining and caspase-3 immunohistochemistry. The
frequency of occurrence of apoptotic cells in nonlesioned con-
trol and diabetic rats was compared to control and diabetic rats
subjected to occlusion of the middle cerebral artery. In addi-
tion, we evaluated selected brain regions outside of the stroke
area (i.e., penumbra) to determine the spatial influence of mid-
dle cerebral artery (MCA) occlusion in normal and diabetic
animals.

MATERIALS AND METHODS
Fisher-344 rats, weighing 250 to 350 g, (Harlan, Indianapo-

lis, IN) were used in this study. Diabetes was induced in
Fisher-344 rats by injecting streptozotocin (Sigma Chemi-
cal, St. Louis, MO; dissolved in 0.1 M sodium citrate buffer,
pH 4.5) at 35 to 40 mg/kg into the tail vein. The animals were
maintained without any treatment for 5 to 6 weeks. They were
maintained and housed according to standard guidelines. The
animals had free access to rat chow and water.

The studies were conducted in 4 groups of animals: (1) non-
diabetic rats without MCA occlusion; (2) nondiabetic rats with
MCA occlusion; (3) diabetic rats without MCA occlusion; and
(4) those with MCA occlusion.

Focal Cerebral Ischemia
The permanent induction of selected cerebral ischemia was

produced by occluding the middle cerebral artery according to
the method described by Tamura and colleagues [17]. Nondi-
abetic and diabetic animals were anesthetized with ketamine
(Fort Dodge, IA) (0.8 mg/kg intraperitoneal [IP]) and xylazine
(Butler Co., Columbus, OH) (0.25 mg/kg IP). A vertical in-
cision was made along the scalp, the temporalis muscle was
divided and retracted after being exposed, and the zygomatic
arch was removed. A subtemporal craniectomy was carried
out using a dental drill. The left MCA was coagulated after
it was located and isolated. A piece of gelfoam (UpJohn Co.,
Grand Rapids, MI) was used to replace the cranium. Muscles
and skin were sutured in place. The animals were allowed to
recover. To assess the extent of the lesions, coronal sections
through the infarcted area of brains from each group were
stained using Nissl methods 3 days after MCA coagulation.
Twenty-four or 48 hours after MCA coagulation, the animals
were used for histological studies of caspase-3 immunohisto-
chemistry and TUNEL staining, respectively.

Tissue Preparation for TUNEL Staining
and Caspase-3 Immunohistochemistry

Five animals per group were deeply anesthetized with
sodium pentobarbital (50 mg/kg) and an abdominal inci-
sion was made, with extension through the thoracic cavity
in order to expose the heart. A small incision was made at
the apex of the left ventricle and a catheter was inserted.
Phosphate-buffered saline (PBS, 0.1 M) was administered fol-
lowed by 4% paraformaldehyde. The brain was removed and
coronal sections were cut with a vibratome at a thickness of
25µm. Morphological identifications were made and quan-
tification of in situ DNA fragmentation (TUNEL) was con-
ducted as described previously [18]. The hypothalamic pre-
optic area, piriform cortex, and parietal cortex, (after Paxinos
and Watson [18]) were analyzed. Within these selected ar-
eas, 500-µm2 areas were chosen using a micrometer and
the number of TUNEL-positive cells within these areas were
counted.

In a parallel study, coronal brain sections from the same
areas were prepared as described above. Sections were incu-
bated with a rabbit polyclonal antibody to caspase-3 (1:400)
(Cell Signaling Tech., Beverly, MA) for 1 hour. Tissue sections
were then incubated with biotinylated goat anti-rabbit sec-
ondary antibody (1:500). The reaction product was visualized
by 3,3-diaminobenzidine tetrahydrochloride (DAB). The sec-
tions were mounted on slides and the above described anatom-
ical areas were analyzed and the number of caspase-3–positive
cells determined as described above. Negative controls were
processed by eliminating the primary antibody.

Statistical analysis of differences between the focus groups
and the number of apoptotic cells within the selected areas
of the brain were performed using 1-way analysis of variance
(ANOVA) followed by Fisher least significant different (LSD)
test.

RESULTS

Induction of Diabetes and Middle Cerebral
Artery Occlusion

Induction of diabetes with streptozotocin resulted in a sig-
nificant increase in the plasma glucose from 106± 3 mg/dL in
normal rats to 364± 41 mg/dL in diabetic rats. Occlusion of
the MCA did not significantly affect the glucose levels in either
group. Analysis of Nissl-stained coronal sections through the
region of the infarct, 72 hours after right MCA coagulation,
showed degenerated neurons and reactive gliosis in ipsilateral
caudate-putamen complex, frontal and dorsolateral parietal
cortex, and dorsal thalamus (Figure 1A). No signs of obvious
nerve cell degeneration or reactive gliosis were found in the
regions selected for histological analyses, namely in piriform
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FIGURE 1
Low-power magnification photomicrographs of Nissl-stained sections of the rat brain illustrating the area of necrosis 72 hours

after middle cerebral artery occlusion (A) and the three areas selected for qualitative and quantitative analyses, namely the
piriform cortex (B), parietal cortex (C), and hypothalamic preoptic area (D). Magnification inA is indicated by the 1-mm scale
and magnification inB to D is the same and indicated by another 1-mm scale inB. Orientation ofA, B, andD is the same and

indicated by the orthogonal arrows (d, dorsal and l, lateral) inA. In C, dorsal is to the right and lateral to the bottom of the
micrograph. Note that the area of infarct inA includes both the lateral portion of the caudate-putamen complex (CPu) and

adjacent parietal cortex (Cx). Single arrows inB andC point at the rhinal fissure and the pia surface, respectively. The squares in
B to D outline 500-µm2 areas that were chosen for quantitative determinations of TUNEL-positive and activated

caspase-3–positive cells. The third ventricle (3rd v) inD is also indicated.

cortex, ventral parietal cortex (just dorsal to the rhinal fissure),
and the hypothalamic preoptic area (Figure 1B–D).

TUNEL Staining
There was a significant number of TUNEL-positive cells

in all 3 areas selected for analysis in nonoccluded diabetic rats
and in diabetic rats 48 hours post-MCA occlusion (Table 1).
In contrast, analysis of nonoccluded normal animals revealed
no TUNEL-positive cells in any of the 3 areas (Table 1).

On the other hand, nondiabetic rats subjected to MCA oc-
clusions revealed in all 3 areas significantly increased num-
bers of TUNEL-positive cells (Table 1), although the numbers
were less than those seen in diabetic rats. Different patterns
of TUNEL staining were observed depending on whether the
animals were subjected to MCA occlusion alone, rendered
diabetic, or a combination of both. As shown for normal piri-
form cortex in Figure 2, after MCA coagulation alone, TUNEL
positivity was in the form of condensed nuclear chromatin in
cells averaging 15 to 20µ in diameter, which is consistent with
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FIGURE 2
Paired, low/high-power photomicrographs of TUNEL staining of the right piriform cortex.A andB were stained 48 hours after a

right MCA coagulation.C andD were stained 30 days after induction of diabetes without MCA coagulation.E andF were
obtained after induction of diabetes (30 days) and 48 hours after stroke. Magnification inA, C, andE is the same and indicated by
the 1-mm scale inA. Magnification inB, D, andF is indicated likewise by the 10-µ scale inB. Orientation ofA to F is indicated

by the orthogonal arrows (d, dorsal; l, lateral) inA. Note the condensation of the nuclear chromatin in several cells in the
stroke-injured rat (B) and the more fragmented nature of the chromatin in the diabetic rat (D, arrows). A mixture of cells, some

containing condensed chromatin and other fragmented chromatin (D, arrow) is revealed in the same diabetic plus
stroke-injured rat.
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TABLE 1
Average number of TUNEL-positive cells (per 500µm2) in the preoptic area and piriform and parietal

cortices of normal and diabetic animals with or without occlusion

Normal Normal occluded Diabetic Diabetic occluded

Preoptic area 0.00 6.0± 1.24b 17.1± 6.84b,c 20.0± 1.05b,c,d

(5) (5) (5) (5)
Piriform cortex 0.00 6.5± 4.35b 8.5± 4.17a,b 13.0± 4.28a,b

(5) (5) (5) (5)
Parietal cortex 0.00 5.5± 4.06b 14.6± 5.42b 6.2± 2.13a,b

(5) (5) (5) (5)

Note.The number in parentheses is the number of animals studied.
a P < .05 versus preoptic diabetic and diabetic occluded;b P < .05 versus normal;c P < .05 versus normal

occluded;d P < .05 versus diabetic.

the size of nerve cell bodies (Figure 2B). A more condensed
and fragmented pattern of nuclear chromatin was found in
similar cells in diabetic rats (Figure 2D) and a mixture of both
patterns was present in diabetic MCA-injured rats (Figure 2F ).
Quantification of TUNEL-positive cells in the 3 areas of anal-
ysis in diabetic rats revealed significant increases, but with
wide variabilities in the number of positive cells in all 3 areas
compared to those found in corresponding areas of diabetic
rats subjected to MCA occlusion (Table 1). Furthermore, the
number of TUNEL-positive cells was significantly increased
in the preoptic area in diabetic animals following MCA oc-
clusion when compared to diabetic animals without stroke.

Activated Caspase-3 Staining
Although numerous caspase-3–positive cells were detected

in the 3 regions of analysis of diabetic and MCA-lesioned rats,
none were observed in nonlesioned normal rats. As shown
for the piriform cortex, after MCA occlusion alone, caspase-
3–positive cells were small (10 to 15µ) and often showed
shrunken, pyknotic nuclei (Figure 3B, arrowhead). Caspase-3
positivity in the cytoplasm of the same cells was enhanced by
counterstaining with hematoxilin (Figure 3B, C, E, F, J, K ).

TABLE 2
Average number of caspase-3–positive cells (per 500µm2) in the preoptic area and piriform and parietal

cortices of normal and diabetic animals with and without occlusion

Normal Normal occluded Diabetic Diabetic occluded

Preoptic area 0.00 21.0± 2.65b 4.6± 6.31 30.4± 1.67b,c,d

(5) (5) (5) (5)
Piriform cortex 0.00 14.2± 6.54b 7.0± 7.68 18.2± 3.42b,d

(5) (5) (5) (5)
Parietal cortex 0.00 2.22± 4.21b 18.8± 4.32a,b 19.2± 5.07a,b

(5) (5) (5) (5)

Note.The number in parentheses is the number of animals studied.
a P < .05 versus preoptic diabetic and diabetic occluded;b P < .05 versus normal;c P < .05 versus normal occluded;

d P < .05 versus diabetic.

The cytoplasm of cells acquired a distinctly bright orange
color. In contrast, omission of hematoxylin rendered very little
staining of the cytoplasm of cells, even those showing pyknotic
nuclei (Figure 3H, arrow). In addition to cortex ipsilateral to
the lesion, caspase-3–positive cells were found in the con-
tralateral piriform cortex, although cells with pyknotic nuclei
seemed to have little or no cytoplasmic staining (Figure 3E,
F ). Qualitative increases of labeled cells were seen in diabetic
animals with and without MCA occlusion (Figure 3H, J, K )
compared to normal animals (Table 2). Further quantitative
analysis of the 3 selected brain areas revealed a greater num-
ber of caspase-3–positive cells in normal animals subjected to
stroke alone. Additionally, the number of positive cells was
increased in animals with diabetes and further increased fol-
lowing stroke (Table 2).

DISCUSSION
A number of studies have demonstrated apoptosis using

TUNEL-positive as well as caspase-3–positive cells as an
index in a variety of different neural and neural-related tissues,
such as peripheral nerves, ganglions, and the retina [1, 3, 19–
22]. It is well established that the apoptotic pathway can be
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mediated by a number of factors, such as oxidative stress, mi-
tochondrial dysfunction, insulin-like growth factor (IGF)-1,
and insulin deficiency, all elements in the pathogenesis of di-
abetic complications [23]. However, caspase-3 is recognized
as the final common pathway of the different apoptotic cas-
cades and it can be activated by the membrane receptor on
mitochondria signaling pathways [24]. Studies have addition-
ally demonstrated that hyperglycemia and/or diabetes may en-
hance these signaling pathways or cascades, leading to an in-
creased occurrence of apoptosis [25, 26]. In the present study,
we demonstrated a significant increase in apoptosis as indexed
by both TUNEL-positive and caspase-3–positive cells follow-
ing the induction of focal ischemia in the forebrain of normal
animals. We also demonstrated that chronic diabetes resulted
in significant enhancements of the number of both TUNEL-
and caspase-3–positive cells. Our observations are consistent
with those of other investigators who demonstrated that dia-
betes as well as hyperglycemia results in worsening of brain
injury after cerebral ischemia [27–29]. However, when we at-
tempted to correlate the frequency of apoptotic cell with blood
glucose levels of individual animals in this study, we observed
no correlation between the magnitude of apoptosis and blood
glucose levels (data not shown). Although the relationship be-
tween ischemia and diabetes is not clear, diabetes may chron-
ically initiate apoptosis through some of the same pathways
as brain injury. Diabetes causes a nutrient and metabolic defi-
ciency syndrome and the induction of brain injury in diabetic
animals may exacerbate both of these processes, resulting in
further cell death.

The model we utilized in the description of ischemic brain
injury is characterized as a penumbra and a core region [30–
33]. These regions are described from medial to lateral on a
coronal section of the brain tissue [12–14]. Anatomically, the
MCA is located for the most part on the ventral aspect of the
brain. Therefore, we believe that the distance of the areas that

FIGURE 3
Activated caspase-3 immunostaining in the piriform cortex of the rat. The left panel consists of 4 low-power micrographs

(magnification indicated by the 1-mm scale inA) of (A), ipsilateral cortex 24 hours after right MCA coagulation; (D) contralateral
cortex 24 hours after MCA coagulation; (G) cortex 30 days after induction of diabetes; (I ) ipsilateral cortex of a diabetic rat

24 hours after MCA coagulation. Except forG andH, all sections were counterstained with hematoxylin. Orientation ofA, G,
andI are indicated by the orthogonal arrows inA (d, dorsal; l, lateral); and that ofD is indicated by similar arrows (d, dorsal; m,

medial). The right panel includes high-power photomicrographs (B, C, E, F, H, J, K; 10-µ scale inC) taken from each of the
corresponding areas on the left. After MCA coagulation, caspase-3 immunolabeling (light orange) occurs in the cytoplasm

(B, C, arrows) of small 10 to 15µ) cell bodies, which also contain pyknotic nuclei (B, arrowhead). Similar findings are found in
piriform cortex contralateral to MCA coagulation (E), although the cytoplasmic labeling in some cells appears attenuated

(F, arrows). Cytoplasmic caspase-3 staining is not readily discernable when counterstaining was omitted, such as the example of
the cell with pyknotic nucleus (arrow) from a diabetic rat (H). A qualitative increase in the number of caspase-3–labeled cells is
observed in the diabetic rat with stroke (J, K, arrows). A nonlabeled neuron (K, arrowhead) is seen in the same field containing

labeled cells (arrow).

we evaluated from the MCA and its area of perfusion is another
factor in characterizing brain damage caused by ischemia,
especially in the focal ischemic model. When we made the
anatomical correlations, it was observed that greater apoptotic
frequency was seen in the hypothalamic preoptic area follow-
ing focal ischemia than in uninjured control. Moreover, it was
observed that in diabetic animals, there was a greater num-
ber of TUNEL-positive cells in the preoptic area but a greater
number of caspase-3–positive cells in the parietal cortex. Al-
though the distribution profiles of apoptotic cells of diabetic
animals were more variable, the overall numbers were greater
in diabetic animals with stroke. Both TUNEL- and caspase-3–
positive cells, especially in the preoptic area of the hypothala-
mus and the piriform cortex, were increased to a greater extent
in diabetics with focal ischemia, when compared to animals
with focal ischemia alone. We do not have a good explana-
tion for the differences in spatial distribution using the present
different indexes of apoptosis in diabetic animals. One expla-
nation may be that the preoptic area is in close proximity to
the MCA and was therefore more impacted by the occlusion.
In addition, the greater numbers of caspase-3–positive cells in
parietal cortex may be due to the fact that the area where we
conducted our analysis (i.e., just dorsal to the rhinal fissure)
is the penumbral zone adjacent to the infracted core.

The identification of cells undergoing apoptosis is not en-
tirely clear. The size of TUNEL-positive cells is consistent
with the size of neurons, whereas that of caspase-3–positive
(10 to 15µ) could represent shrunken neurons or even glial
cells. Moreover, the finding of caspase-3–labeled cells in the
piriform cortex contralateral to MCA occlusion suggests that
some apoptotic cells may represent oligodedroglia associated
with commissural nerve fibers damaged by the lesion.

In summary, focal ischemia using MCA occlusion in-
creases the number of (neuronal) positive apoptotic cells. Di-
abetes alone results in an increased incidence of apoptosis
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and superimposed focal ischemia exacerbate this process. It
appears that diabetes is associated with a greater sensitivity to
ischemic injury in the hypothalamic preoptic area, suggesting
that the enhanced incidence of apoptosis may be correlated
with its distance from the MCA perfusion distribution.
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