
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Vaccine 40 (2022) 3072–3084
Contents lists available at ScienceDirect

Vaccine

journal homepage: www.elsevier .com/locate /vacc ine
Designing an evidence-based Bayesian network for estimating the risk
versus benefits of AstraZeneca COVID-19 vaccine
https://doi.org/10.1016/j.vaccine.2022.04.004
0264-410X/� 2022 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: School of Public Health, Faculty of Medicine, The
University of Queensland, 288 Herston Rd, Herston, Brisbane, Queensland 4006,
Australia.

E-mail address: h.mayfield@uq.edu.au (H.J. Mayfield).
Helen J. Mayfield a,⇑, Colleen L. Lau a, Jane E. Sinclair b, Samuel J. Brown b, Andrew Baird c, John Litt d,e,
Aapeli Vuorinen f, Kirsty R. Short b, Michael Waller a, Kerrie Mengersen g

a School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
b School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, Brisbane, Queensland, Australia
c St Kilda Medical Group, St Kilda, Melbourne, Victoria, Australia
dDiscipline of General Practice, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
e Scientific Advisory Committee, Immunisation Coalition, Melbourne, Victoria, Australia
fData Science Institute, Columbia University, New York, NY, USA
g School of Mathematical Sciences, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia

a r t i c l e i n f o a b s t r a c t
Article history:
Received 12 November 2021
Received in revised form 31 March 2022
Accepted 1 April 2022
Available online 8 April 2022

Keywords:
COVID-19
Bayesian network
Vaccination
Adverse events
Informed decision-making
Uncertainty surrounding the risk of developing and dying from Thrombosis and Thrombocytopenia
Syndrome (TTS) associated with the AstraZeneca (AZ) COVID-19 vaccine may contribute to vaccine hesi-
tancy. A model is urgently needed to combine and effectively communicate evidence on the risks versus
benefits of the AZ vaccine. We developed a Bayesian network to consolidate evidence on risks and ben-
efits of the AZ vaccine, and parameterised the model using data from a range of empirical studies, gov-
ernment reports, and expert advisory groups. Expert judgement was used to interpret the available
evidence and determine the model structure, relevant variables, data for inclusion, and how these data
were used to inform the model.
The model can be used as a decision-support tool to generate scenarios based on age, sex, virus variant and

community transmission rates, making it useful for individuals, clinicians, and researchers to assess the
chances of different health outcomes. Model outputs include the risk of dying from TTS following the AZ
COVID-19 vaccine, the risk of dying from COVID-19 or COVID-19-associated atypical severe blood clots
under different scenarios. Although the model is focused on Australia, it can be adapted to international set-
tings by re-parameterising it with local data. This paper provides detailed description of the model-building
methodology, which can be used to expand the scope of the model to include other COVID-19 vaccines,
booster doses, comorbidities and other health outcomes (e.g., long COVID) to ensure the model remains rel-
evant in the face of constantly changing discussion on risks versus benefits of COVID-19 vaccination.

� 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Vaccine safety is a key consideration for public health man-
agers, policy makers and the public. The controversy surrounding
the safety of the AstraZeneca (AZ) COVID-19 vaccine (Vaxzevria)
in relation to fatalities from rare, atypical severe blood clots
(Thrombosis and Thrombocytopenia Syndrome [TTS]) [1] has con-
tributed to vaccine hesitancy in many countries including Australia
[2]. This hesitancy is in-part due to the lack of access to
comprehensive, up-to-date scientific information, displayed in an
easily understandable and objective manner. The problem has
been exacerbated by continually-evolving information, with the
publication of new scientific studies and agency reports. Moreover,
many scientific studies often address only part of the overall puz-
zle. The lack of aggregated information presents challenges not
only to members of the public, but also to the clinicians who are
tasked with helping patients make an informed decision about
the AZ vaccine. Delving into the extensive and constantly-
changing scientific literature is also beyond the resources of most
public health practitioners and policy makers who need to make
decisions in a highly dynamic environment. Similar challenges face
epidemiologists and other scientists who need to assess and
account for vaccine safety in related studies.
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While there have been attempts to compile results into a mean-
ingful comparison with respect to the risks versus benefits of the
AZ vaccine, these have typically been confined to specific scenarios,
for example when community transmission of SARS-CoV-2 in Aus-
tralia was low [3]. A more flexible framework is therefore urgently
needed to effectively combine and communicate the existing evi-
dence surrounding the risks versus benefits of vaccines such as
the AZ vaccine. It is crucial that this framework is both transparent
in its assumptions and data sources, as well as easily updatable to
account for new evidence and changes in the pandemic landscape,
such as new variants, changes in vaccine effectiveness, or fluctua-
tions in the rates of community transmission. The framework must
also be able to incorporate data from a wide range of sources, and
in different formats.

Bayesian network (BN) modelling [4] is well suited for imple-
menting such a framework. The transparency and flexibility of
BNs for integrating different data sources [5–7] has seen them used
for a variety of different analyses relating to COVID-19, such as
examining the limitations of contact tracing [8] using expert-
elicited data for interpretation of SARS-CoV-2 testing [9] and esti-
mating SARS-CoV-2 infection and fatality rates [10]. BNs can be
designed as causal models and are easily interpretable, which
makes them suitable for use in decision-support contexts, for
example those developed by Fenton et. al. [10] to illustrate the
need for more random testing of community members when esti-
mating prevalence of COVID-19.

The COVID-19 Risk Calculator (CoRiCal) was developed to
address the need for a user-friendly risk–benefit analysis tool to
assist clinicians and the public to make informed decisions about
COVID-19 vaccinations [11,12]. The specific objectives of the
model were to estimate and compare: (i) the risk of developing
and dying from TTS following the AZ vaccine; (ii) the background
risk of developing and dying from atypical severe blood clots (cere-
bral venous sinus thrombosis [CVST] and portal vein thrombosis
[PVT]) in the general population; (iii) the risk of developing and
dying from COVID-19-associated atypical severe blood clots (CVST
or PVT); and iv) the risk of SARS-CoV-2 infection and related deaths
under different transmission intensities [12]. In this paper, we
describe in detail the methods used to design and validate the
BN model that integrates the best available evidence to compare
the risks versus benefits of the AZ vaccine for the Australian
population.
2. Methods

2.1. Modelling approach

The modelling process was a hybrid evidence-driven and
expert-led approach (Fig. 1). This process was modified from the
approach used by Ticehurst et. al. [13], and was chosen as an effi-
cient way of creating a useful and evidence-based model in as
short a timeframe as possible. Seven subject matter experts with
experience in virology (KRS, JES), clinical practice (AB, CLL, JL), bio-
statistics (MW, KM), and infectious disease epidemiology (CLL, JL)
were involved in gathering and interpreting available information.
The modelling team (HJM, KM, CLL, JES) facilitated the design pro-
cess and implemented the model using the GeNIe BN modelling
software version 3.0.5703 [14].

Evidence was initially collected for the incidence of the adverse
events following immunisation (AEFI) for both the AZ and Pfizer
vaccines, as well as for a range of adverse outcomes and complica-
tions from COVID-19 (including death), and comorbidities (e.g.,
obesity, diabetes) that could influence COVID-19-related out-
comes. We selected CVST and PVT to provide a comparator to
TTS which occurs after administration of a drug or vaccine. CVST
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and PVT are atypical severe blood clots that can occur at a back-
ground rate in the general population [15–17] and have also been
reported in COVID-19 patients [18].

The scope of the model was narrowed in response to the chang-
ing pandemic landscape, where hesitancy for the AZ vaccine was
growing, despite it being the only vaccine available to older age
groups at the time of model development. To facilitate the urgent
need for decision-support tools for clinicians and the general pub-
lic, analysis of the Pfizer vaccine, comorbidities, and other COVID-
19-related outcomes (e.g., ICU admission, long COVID) were
excluded from this initial model. The results presented here there-
fore focus on (i) the risk of developing and dying from TTS follow-
ing the AZ vaccine; (ii) the background risk of developing and
dying from atypical severe blood clots (iii) the risk of developing
and dying from COVID-19-associated atypical severe blood clots
(CVST or PVT) and (iv) the risk of SARS-CoV-2 infection and related
deaths under different transmission intensities.
2.2. Data sources

Three main sources of evidence were considered: published lit-
erature, publicly available government data/reports and profes-
sional expert advisory groups such as Thrombosis and
Haematology Society of Australia and New Zealand (THANZ). In
Australia, the Commonwealth Government is guided by an expert
subcommittee of haematologists from THANZ and vaccine experts
to adjudicate on whether cases of AEFI related to the AZ vaccine
were classified as TTS. All publicly available data used in this study
was sourced from official government websites (Section 3.1).
2.3. Bayesian networks

BN models provide a visual and probabilistic approach to inte-
grating and analysing data [4]. In a BN, the system of interest is
depicted as a directed acyclic graph (DAG) in which variables are
represented as nodes and parent–child associations between vari-
ables are represented as arrows connecting the respective nodes. In
a discrete BN, each node is categorised into, or defined by, a set of
states that define the classes (e.g., male/female) or ranges (e.g., 1–
19, 20–30, 30+ years old) of the corresponding variable. The BN is
then quantified by assigning probabilities to these states, condi-
tional on the states of the parent nodes. The probability table for
a node without parents is quantified using a prior distribution.
The BN structure therefore ascribes a set of conditional indepen-
dencies on the joint distribution of the variables. This allows a rich
model to be designed by encoding various model assumptions
about the relationships of variables, while only needing to assign
conditional probability tables (CPTs) on a few variables at a time,
specifically between a child node and its immediate parent nodes.
The simplification of a BN as a connected set of CPTs, in which each
node is dependent only on immediate parent nodes is a result of
the Markov properties of the underlying DAG, and allows for very
flexible model structure, fast computation and the ability to use
different information sources to inform different components of
the system [6].

The features of a BN are illustrated in the example shown in
Fig. 2, which demonstrates one option for modelling the probabil-
ity of dying from vaccine-associated TTS based on AZ dose, variant
(either no doses, first dose or second dose) and age group. The out-
come node, Die from vaccine-associated TTS has one parent node;
Vaccine-associated TTS. The Vaccine-associated TTS node is itself a
child node of the AZ dose and Age group nodes. The CPT for the out-
come node is shown, giving the probability for each state of this
node conditional on the state of the parent node (Vaccine-associ-
ated TTS).



Fig. 1. Model design process used for implementing the CoRiCal Bayesian network.

Fig. 2. An example Bayesian network modelling the chance of dying from vaccine-associated TTS based on AZ dose and age group. Scenario shown is for the first dose of the
AZ vaccine for a female aged between 60 and 69 years old.
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2.4. Model design

2.4.1. Model structure
The structure of the BN model described here was developed in

four stages. In the first stage, all authors agreed on the overall
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scope of the model. To accelerate development, it was decided to
concurrently design and parameterise the model using three sub-
models, based on subject matter. These were 1) risk of developing
AZ vaccine-associated TTS, and background risk of developing and
dying from atypical severe blood clots (CVST and PVT) over a
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six-week time-period, i.e. in persons who have not received the AZ
vaccine, nor been diagnosed with COVID-19; 2) risk of developing
symptomatic COVID-19 over a six-month time-period; and 3) risk
of developing and dying from COVID-19 or COVID-19-associated
atypical severe blood clots (CVST and PVT) over a six-month time
period. These three sub-models were then combined into a single
model. The final conceptual model, which defined the structure
of the resulting BN, represented the key relationships identified
by the experts.

In the second stage of development, for each sub-model, the
team of experts compiled a list of relevant variables, agreed on a
list of reputable information sources for each variable, and defined
the relationships between variables. Questionnaires were devel-
oped to formalise the evidence gathering (Supplementary S1 –
Example questionnaire for evidence gathering) and prompt experts
for relevant information (e.g. ‘Is there evidence to suggest that vac-
cine effectiveness differs by sex?’). After discussing the evidence
with the experts, the answers from these questionnaires were used
by the modelling team to design a draft conceptual model. This
process was iterated over several weeks until agreement was
reached between experts and modellers. The structure of the BN
was modified as new evidence was identified or as updates became
available. For example, when evidence emerged that the risk of
COVID-19-associated CVST and PVT differed by sex [18], links
between these nodes were added in the model.

In the third stage, the states of each node were defined. Most
nodes in the model were binary, having only two possible states
(yes/no; effective/ineffective), with age and community transmis-
sion being the only continuous variables requiring categorisation.
Age was categorised into ten-year age brackets consistent with
those used in the weekly Australian Technical Advisory Group on
Immunisation (ATAGI) reports [19]. Community transmission
was categorised to be compatible with the ATAGI reported rates
for low, medium and high transmission, as well as a baseline state
(1000 cases per day) for three Australian states.

In the final stage, the model was critically evaluated to ensure
that all variables and relationships could be informed by authorita-
tive, quantitative evidence. Nodes and links in the BN were
removed in the absence of evidence, or where the evidence sug-
gested that the parent node had little effect on the outcome. For
example, although the experts found evidence that males were at
a higher risk of infection [20], the difference between sexes was
small and did not appear to have a substantive impact on the
risk–benefit analysis; as highlighted above, this can be modified
as further supporting information emerges. States of nodes were
also examined in a similar manner and the states redefined where
necessary according to the available evidence (for example, adding
additional transmission rates).

2.4.2. Parameterisation
Once the model structure was finalised, the available evidence

was converted into a suitable format to quantify the CPTs. This
involved defining the information in terms of conditional probabil-
ities. For example, data reported as number of cases per 100,000
people, or infection rate over a certain time such as 16 weeks or
six months, were converted into an equivalent probability and
standardised to the same timeframes used in the model (six weeks
for background rates of CVST and PVT and six months for all
COVID-19-related outcomes, including COVID-19-associated atyp-
ical blood clots). CPT values were revised several times during the
modelling process as new evidence or updated data became
available.

Where evidence was available from more than one source,
expert judgement was used to combine information or determine
which source was most appropriate. For example, as there were
limited Australian data on COVID-19-associated CVST and PVT, this
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information was sourced from a large international study [18].
Expert judgement was also used if a particular source of evidence
did not align with the model structure. For example, the age distri-
bution of cases for the delta variant was sourced from daily reports
by New South Wales (NSW) Health for the following age cate-
gories: 0–19 years, 5-year age groups from 20 to 69 years, and
70+ years. However, for the BN, the experts agreed that the 0–19
years age category needed to be divided into 0–9 years and
10–19 years. A 40%/60% split for the cases in the respective age
groups was assumed, based on the age distribution of cases
reported by the National Notifiable Disease Surveillance System
(NNDSS) [21].

2.5. Model validation

Four key components of the BN model were inspected and crit-
ically evaluated by the modelling team: network structure, node
discretisation, CPT parameterisation and overall model behaviour.
The evaluation included the assessment of content, face, integral
and concurrent validities [22]. Content and face validities were
used to assess the model structure, the variables included and
the relationships between them, and the discretisation of nodes
within the network. All subject matter experts were provided with
a step-by-step description of the final structure of the full model.
They were then given the opportunity to discuss the assumptions
and evaluate whether all relevant evidence from the literature
had been included and appropriately represented in the model.

Integral validity was evaluated to confirm that the structure of
the model reflected the design assumptions. Two statisticians (MW
and KM) were provided with the assumptions and data used to cal-
culate the CPTs. These values were then used to manually calculate
the probabilities of various outcomes under different scenarios.
These calculations were performed independently of model struc-
ture or parameterisation and the outcomes compared against
model estimates for these same scenarios. The model structure
was assessed for internal consistency with official data sources
such as ATAGI, for example the discretisation of age groups and
definitions of low/medium/high transmission intensity [19]. As
described earlier, in some instances the choice was made to forego
concurrent validity in favour of model parsimony based on the
available evidence, for example excluding the reported weak rela-
tionship between sex and risk of infection as it would have little
impact on the outcome but greatly increase the size of the CPT.
Evaluation of the external validity of the model requires indepen-
dent published information about analogous outcomes. Because
such information was scarce, the external validity assessment
was undertaken by comparing the behaviour of the results of the
scenarios generated for the integral validity analysis with the pub-
lished data listed in Table 1.

2.6. Model Sensitivity

Sensitivity analyses play a crucial role in assessing the robust-
ness of the findings or conclusions of an analysis. They are an
important way to assess the impact, effect or influence of key
assumptions or variations—such as different methods of analysis,
definitions of outcomes, protocol deviations, missing data, and out-
liers—on the overall conclusions of a model [23]. The sensitivity of
the model was examined in three steps.

In the first step, for each intermediate and outcome node (i.e. all
child nodes), the strength of influence of each parent node was cal-
culated using the inbuilt function in the GeNie modeller software
program [14]. The strength of influence measures the difference
in the probabilities of the target CPT based on changes in the prob-
abilities of the parent CPT. A larger difference indicates a stronger
influence. Two measures were considered, the average Euclidian



Table 1
Data sources used in designing and parameterising the model.

Type of data Variable Data Source

Government
reports

Risk of developing and dying from vaccine- associated
TTS

ATAGI weekly updates

VE against symptomatic infection and death Australian Government report (delta variant)- Doherty Institute Modelling Report for
National Cabinet, Table S2.5 [24]
UK Government report (alpha variant) - Vaccine effectiveness table, 16 July 2021. Public
Health England [25]

Risk of developing symptomatic COVID-19 based on age
group

Delta variant: NSW COVID-19 cases data [20]
Alpha Variant: National Notifiable Diseases Surveillance System public datasets [21]

Peer-reviewed
publications

Background chance of developing and dying from
atypical severe blood clots (CVST or PVT)

CVST: Incidence and Mortality of Cerebral Venous Thrombosis in a Norwegian Population
[17]
PVT: Incidence rates and case fatality rates of portal vein thrombosis and Budd-Chiari
Syndrome [16]; Survival after splanchnic vein thrombosis: A 20-year nationwide cohort
study [15]

Risk of developing and dying from COVID-19-associated
atypical severe blood clots (CVST and PVT)

Cerebral venous thrombosis and portal vein thrombosis: a retrospective cohort study of
537,913 COVID-19 cases [18]

Professional
advisory
group

Risk of developing and dying from TTS ATAGI weekly updates [19]
Thrombosis and Haematology Society of Australia and New Zealand (THANZ) Vaccine-
induced Immune Thrombotic Thrombocytopenia (VITT) advisory group

Calculated Risk of infection depending on age and variant Calculated using formula, based on data from parent nodes
Risk of symptomatic COVID-19 infection under current
transmission and vaccination status

Calculated using formula, based on data from parent nodes
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difference and the maximum Euclidian difference (Supplementary
S2 – Explanation of Euclidian Distance in BNs).

In the second step, this analysis was expanded to identify nodes
that were most influential for the chance of developing symp-
tomatic COVID-19 and the chance of dying from COVID-19 within
a six-month timeframe. These two variables were selected as key
nodes for analysis because both were highly connected (having
three or more parents in the final model) and both had multiple
indirect links with other nodes, so the route of influence is not
easily determined by simply looking at the model structure. The
most influential nodes were identified using the ‘Sensitivity Anal-
ysis’ function in the GeNie modeller software program [14].

In the third step, two separate analyses were carried out for all
outcome nodes. The first examined which input nodes were most
influential on the outcomes by adjusting the selected states for
each node, for example selecting each age group one at a time,
and then noting the estimated values of each outcome node. The
second analysis for step three calculated and compared the mini-
mum (worst-case) and maximum (best-case) estimates for each
outcome node. The best-case and worst-case scenarios were iden-
tified by systematically adjusting the scenarios for each of the
input nodes. The exception was that low, rather than no transmis-
sion was used for best-case scenarios for COVID-19-related out-
comes over a six-month timeframe, as it was considered more
meaningful. Under a zero-community transmission scenario, all
outcome nodes other than Die from background CVST within six
weeks (n16) and Die from background PVT within six weeks (n17)
have a probability of zero, blocking any influence from the remain-
ing input nodes.
3. Results

3.1. Data sources

The range of data sources used to design and parameterise the
model are presented in Table 1. Evidence from Australian data
was prioritised, however international studies were used to pro-
vide evidence on the rates of CVST and PVT, and vaccine
effectiveness.
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3.2. Model description

The first sub-model, risks of developing and dying from back-
ground atypical severe blood clots (CVST and PVT), is shown in
Fig. 3. The risk of developing TTS associated with the AZ vaccine
differs by age group and whether first or second dose of AZ is being
considered [26]. In this model, the risk of TTS after the first and
second AZ dose (n1) were treated as independent events (risk of
TTS after the first dose or after the second dose). For a
population-level analysis of total cases and deaths from TTS, a
cumulative definition can be used where the risk of TTS after the
second dose is the combined risk of both doses. Die from vaccine-
associated TTS (n15) represents the proportion of TTS cases who
die as a result (case fatality rate). The background rates of CVST
and PVT were calculated over six weeks to be comparable to the
timeframe in which vaccine-associated TTS is likely to occur after
the AZ vaccine.

The second sub-model (Fig. 4) focuses on the risk of developing
symptomatic COVID-19 based on age group, SARS-CoV-2 variant
and vaccine effectiveness. To enable direct comparison of risks of
poor health outcomes versus benefits of the vaccine, all probabili-
ties were calculated for a six-month period to reflect the estimated
duration of protection from the AZ vaccine. Data were based on
reported cases in different age groups from NSW [20], which pro-
vided the best open-source data available in Australia at the time
of model development. In line with the dominant variant in Aus-
tralia, data from June 2021 were used for the delta variant, and
data prior to this date were used for the alpha/ancestral variant.
Vaccine effectiveness was sourced separately for the delta variant
[24] and alpha/ancestral variant[25].

To simplify the model structure and enable easier updates in
the future, the relative risk of symptomatic infection by age and
variant was calculated using an intermediate node (n11). The Risk
of symptomatic infection under current transmission and vaccination
status (n12) over a six-month period was thus calculated for differ-
ent transmission intensities that reflect various realistic scenarios.
The intermediate step of calculating the Risk of symptomatic infec-
tion by age and variant (n11) was not necessary from a mathemat-
ical perspective, but was included to simplify the conceptual model
and resulting CPTs. This reduces the number of different combina-



Fig. 3. Conceptual model for sub-model 1: Risk of developing and dying from (i) vaccine-associated TTS, and (ii) background atypical severe blood clots (CVST and PVT), i.e. in
those who have not received the AZ vaccine and have not been infected with SARS-CoV-2.

Fig. 4. Conceptual model for sub-model 2: Risk of developing symptomatic COVID-19 depending on number of AstraZeneca vaccine doses received, SARS-CoV-2 variant,
vaccine effectiveness, age group, and level of community transmission.
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tions in the resulting CPT and makes it easier for experts to quan-
tify them with unique probabilities.

The final sub-model (Fig. 5) collated evidence for the risk of
dying from COVID-19, or from COVID-19-associated CVST or PVT.
The COVID-19-associated CVST/PVT rates (n19 and n20) represent
the total rates in COVID-19 patients, not an increase over the back-
ground rates. The probabilities used to parameterise the model for
deaths from COVID-19 (n18) are calculated based on case fatality
rates for each age/sex category, as reported by Australian Govern-
ment Department of Health COVID-19 summary statistics
(Table S5.3). These figures also include deaths from COVID-19-
associated complications, such as rare blood clots (including CVST
and PVT). These case fatality rates are entered into the CPT for the
scenario where the vaccine is not effective against death (i.e.
node VE against death (n10) is set to ‘No’). All scenarios in this
CPT where the node VE against death (n10) is ‘Yes’ are set to zero
probability of death, as by this definition the vaccine is 100%
effective against death. For each scenario in the analysis, the model
uses these probabilities to calculate the probability for each age
group of dying from COVID-19 based on the values of vaccine effec-
tiveness against death (n10), and the risk of becoming infected
(n12).

The overall chance of dying depends on the chance of becoming
infected, which in turn depends on the community transmission
rate (x% over six months). In the default scenario where infection
is unknown, it therefore represents the overall chance of dying
from COVD-19 over six months. Once a person is infected, the level
of community transmission is no longer relevant, and this node
represents a fixed chance of dying from COVID-19 i.e. the case
fatality rate based on age and sex, and us such does not have an
associated timeframe.

The final BN (Fig. 6) combines the three sub-models and inte-
grates the current available evidence regarding the probability of
Dying from vaccine-associated TTS (n15), Dying from background
CVST (n16) or Dying from background PVT (n17), overall probability
of Dying from COVID-19 (n18), and probability of Dying from COVID-
Fig. 5. Conceptual model for sub-model 3: Dying from COVID-19 or COVID-19-associate
and level of community transmission.
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19-associated CVST (n19) or Dying from COVID-19-associated PVT
(n20). Five input nodes – AZ dose (n1), Age group (n2), SARS-CoV-2
variant (n3), Community transmission at x% over 6 months (n4) and
Sex (n5) were used to define the population and transmission
scenarios.

Several latent nodes were included as intermediate steps when
calculating the probability of Dying from COVID-19 (n18). VE against
symptomatic infection (n9) and VE against death (n10) were mod-
elled based on the SARS-CoV-2 variant (n3) (either alpha/ancestral
or delta) and the AZ dose (n1) received; none, first or second). At
the time of this study, there was insufficient evidence to include
the effects of the different vaccine schedules (e.g., shorter intervals
between first and second doses) on vaccine effectiveness. The Risk
of symptomatic infection by age and variant (n11) is an intermediary
node used to simplify the calculations required for the child node
Risk of symptomatic infection under current transmission and vacci-
nation status (n12). The CPT for n11 represents the probability that
an unvaccinated person in a given age group and with a given
SARS-CoV-2 variant (n3) would develop symptomatic infection
over six months, assuming an overall infection rate of 10% during
this time period. For example, assuming the delta variant, an
unvaccinated 20–29 year old would have a 15.5% probability of
developing a symptomatic infection over six months. In contrast,
a 60–69 year old in the same scenario would have a 5.5% probabil-
ity. The CPT for the child node, Risk of symptomatic infection under
current transmission and vaccination status (n12), can then be calcu-
lated based on the risk of infection without the vaccine (n11), vac-
cine effectiveness against symptomatic infection (n9) and the
current transmission rate over six months (n4). The final variables
used to calculate the risk of Dying from COVID-19 (n18) were Age
group (n2), Sex (n5), the Risk of symptomatic infection under current
transmission and vaccination status (n12) and VE against death(n10).
The remaining two outcome nodes were Die from COVID-19-associ-
atedCVST (n19) and Die from COVID-19-associatedPVT (n20), each
dependent on developing CVST from COVID-19 (n13) or PVT from
COVID-19 (n14), respectively.
d atypical severe blood clots, depending on age, sex, vaccine effectiveness, variant,



Fig. 6. Bayesian network structure showing relationships between the input, intermediate and outcome nodes.
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3.3. Parameterisation

Full probability tables for all nodes are given in Supplementary
S3 – Values for conditional probability tables. Of the five input
nodes, priors for two of these (sex and age group) were set to
reflect the approximate distribution of the Australian population.
For Sex (n5) a uniform distribution (50% males and 50% females)
was adopted. The distribution for the Age groups (n2) was based
on data from the Australian Bureau of Statistics [27]. To reflect
the COVID-19 situation in Australia at the time the analysis was
carried out (August 2021), the priors for the SARS-CoV-2 variant
(n3) were set as 95% delta variant and 5% alpha/ancestral variant.
AZ dose (n1) was set to 30% unvaccinated, 35% received first dose
only, and 35% received second dose. Priors for AZ dose can be
updated as vaccine coverage increases. Uniform priors were used
for the Community transmission at x% over six months (n4) – where
x is the percent transmission at each state, as it is expected that a
value will be selected for this state prior to running scenarios.

The default probabilities for the model are shown in Fig. 7. Sce-
narios can be generated by selecting a single state for each input
node (shown in orange). This evidence then propagates through
the network to produce an estimate from each outcome (shown
in purple). Additional scenarios can be generated to evaluate the
effect of the vaccine once a person becomes infected with SARS-
CoV-2 by setting node n12 to ‘Yes’. Probability values for a medium
transmission scenario (n4) for the delta variant (n3) and a fully
vaccinated population (n1) are given in Supplementary S4 – Prob-
abilities for scenario, as an example of scenario analysis. Of the 15
intermediate and outcome nodes, three (VE against symptomatic
infection [n9], VE against death [n10], and relative Risk of symp-
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tomatic infection by age and variant [n11]) were calculated from
data provided in government reports [20,24,25]. The case fatality
rate for vaccine-associated TTS (n15) was sourced from ATAGI
reports [26].

For the Risk of symptomatic infection under current transmission
and vaccination status (n12), the CPTs for any scenario in which
VE against symptomatic infection (n9) equalled ‘Yes’ (i.e. the vaccine
is effective) or relative Risk of symptomatic infection by age and vari-
ant (n11) equalled ‘No’ (i.e. there was no risk of infection) were
parameterised at 100% probability of no infection (i.e. zero risk).
For the remaining scenarios (i.e., the VE against symptomatic infec-
tion (n9) was ‘No’ and relative Risk of symptomatic infection by age
and variant (n11) was ‘Yes’), the probability for each state of Com-
munity transmission at x% over six months (n4) was calculated as a
proportion of the 10% baseline in node n11. For example, in node
n12 the state ‘Two-percent’ represents a 2% community transmis-
sion rate over six months, which is one fifth of the 10% baseline
assumed for node n11. Under this scenario, the value for the ‘Yes’
state in the CPT is therefore 0.2, or 20% of the assumed baseline.
The remaining nine CPTS were populated directly with data from
published literature, and modified for external consistency if nec-
essary. A full explanation of all assumptions used in the calcula-
tions is given in Supplementary S5 – Assumptions.

3.4. Validation

All subject matter experts were satisfied that the final concep-
tual model structure sufficiently represented all relevant variables
and relationships within the scope of the model, and that chosen
states for each node were consistent with what could be parame-



Fig. 7. Parameterisation for the delta variant under a medium transmission scenario.
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terised based on the available evidence. Calculations made inde-
pendently of the model agreed with model predictions (Supple-
mentary S6 – Manual calculations for validation), confirming the
integral validity of the model structure in meeting the design
assumptions. The results of the scenario testing (Supplementary
S7 – Influence of inputs nodes on outcomes), which were also used
for sensitivity analysis, confirmed that the model behaved as
expected. For example, increasing the rate of community transmis-
sion increased the fatalities from COVID-19 and COVID-19-
associated atypical severe blood clots. Similarly, increasing the
proportion of the population who were vaccinated decreased these
same outcomes. Additional checks based on the scenarios used for
the manual calculations further confirmed that outcomes from the
model were consistent with the available evidence (Supplemen-
tary S8 – External validation checks).

One potential anomaly revealed in this analysis was that for
lower age groups, model estimates for dying from COVID-19-
associated atypical severe blood clots were higher than estimates
of the overall probability of dying from COVID-19. Investigation
revealed that this was a result of the data being taken from differ-
ent sources, with the probability of blood clots being derived from
UK data [18] and the COVID-19 case fatality data from Australia
[20], where there had been relatively few COVID-19 fatalities at
the time of writing. While this should not be considered as an error
in the model, it has the potential to cause confusion when end-
users are interpreting scenario results, which may reduce trust in
the model estimates. Clear communication around the limitations
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and assumptions of the model are critical in helping to prevent
these misunderstandings.
3.5. Sensitivity analysis

The results of the strength-of-influence analysis comparing the
relative influence of direct parent nodes on child nodes were mea-
sured using the average and maximum Euclidean distance (ED),
where a larger ED indicates greater influence. A person’s age group
(average ED 0.013) was more influential than their sex (average ED
0.001) in determining their chance of Dying from COVID-19 (n18).
Age group (ED 0.043) was also more influential than virus variant
(ED 0.031) in determining the Risk of symptomatic infection by age
and variant (n11). Full results are shown in Supplementary S9 -
strength-of-influence analysis.

Fig. 8 shows the results of the sensitivity analysis for the Risk of
symptomatic infection under current transmission and vaccination
status (n12). The strength of influence is shown by the shading,
with darker red shading representing a stronger influence, i.e.
small changes in these nodes will lead to larger changes in node
n12 [28]. Nodes shown in grey have no links to, and hence no influ-
ence on the target node (n12) because of the network structure.
The shading of the target node for this analysis (in this case n12)
represents the overall degree to which the value of the connected
nodes will influence the target. In Fig. 8, this therefore reflects the
range of possible values for the risk of symptomatic infection based



Fig. 8. Sensitivity to findings for ‘Risk of symptomatic infection under current transmission and vaccination status (n12)’. Nodes with darker red shading have more influence
than lighter shaded nodes. Grey nodes are not connected upstream of the target node (n12) and therefore have no influence. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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on changes in the six parent and grand-parent nodes (n1, n2, n3,
n4, n9 and n11).

As expected, when all nodes were considered (rather than just
the direct parents), Community transmission at x% over 6 months
(n4) was highly influential on the Risk of symptomatic infection
under current transmission and vaccination status (n12) (Fig. 8). Of
the input nodes, both Age group (n2) and the AZ dose (n1) had a
strong influence on the Risk of symptomatic infection under current
transmission and vaccination status (n12).

The equivalent analysis for Die from COVID-19 (n18) (Supple-
mentary S10 - Sensitivity to findings for ‘Die from COVID-19 –
n18), showed that Age group (n2) has a large influence on this node.
The AZ dose (n1) is shown as influential in both preventing Risk of
symptomatic infection under current transmission and vaccination
status (n12) and preventing Dying from COVID-19 (n18) . The stron-
ger influence of Age group (n2) compared with AZ dose (n1) on the
Die from COVID-19 (n18) node is due to both the input data and the
model structure, in that nodes directly linked to the target node
will be more influential than variables linked indirectly.

The results of alternating the states of individual input variables
are provided in Table 2. The minimum and maximum values in
Table 2 represent the largest and smallest feasible probabilities
for each outcome node being ‘Yes’, when the respective input node
is used to define a scenario. For example, when no evidence was set
for any other input nodes, changing the values of AZ dose (n1)
results in a maximum estimated probability of Dying from COVID-
19 (n18) equivalent to 224 per million, and can be reduced to at
most 8 deaths per million. AZ dose (n1) in these tables, and in
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Fig. 8 and Supplementary S10 were averaged across all age groups
and transmission rates, so it should also be considered that AZ dose
(n1)would be expected to have more influence at the higher trans-
mission rates. Analysis of sensitivity to findings can be conducted
for specific scenarios, e.g., for a specific age group and under a
specific transmission scenario.

Based on Table 2, it is evident that Age group (n1) is the most
influential node for the Die from COVID-19 (n18) node, as indicated
by the large range of probabilities associated with this input. In
contrast Community transmission at x% over 6 months (n4)was more
influential than Age group (n1) for the outcomes relating to dying
from COVID-19-associated atypical severe blood clots (n19 &
n20). Values in Table 2 are reported in absolute rather than relative
changes in cases per million) to emphasise the difference in the
number of expected deaths in each scenario.

The results of each outcome under the best-case and worst-case
input scenarios (defined in Supplementary S11 – Best-case and
worst-case scenario definitions) are given in Supplementary S12
– Best-case and worst-case scenario results. Note that for best-
case scenarios, males were used instead of females for the Die from
COVID-19 (n18) outcome due to zero deaths in females in the
younger age groups and low, rather than no transmission has been
used for COVID-19-related outcomes. Delta variant was used in all
scenarios to reflect the current situation in Australia. The largest
range in values was for the Die from COVID-19 (n18) outcome, com-
paring the worst-case scenario of unvaccinated males aged greater
than 70 years in a high transmission scenario (5391 deaths per mil-
lion) to the best-case scenario of fully vaccinated females aged 10–



Table 2
Sensitivity of outcome values to changes in inputs (shown as per million cases). Minimum and maximum represent the smallest and largest values for each outcome node when
selecting different states of the input nodes.

Input nodes

AZ dose (n1) Age group (n2) Variant (n3) Community transmission
rate at x% over 6 months (n4)

Sex (n5)

Output nodes Die from vaccine- associated TTS (n15) Range 1.18 0.19 – – –
Min 0.00 0.31 – – –
Max 1.18 0.50 – – –

Die from background CVST (n16) Range – 0.03 – – –
Min – 0.03 – – –
Max – 0.05 – – –

Die from background PVT (n17) Range – 0.53 – – –
Min – 0.00 – – –
Max – 0.53 – – –

Die from COVID-19 (n18) Range 215.92 655.53 89.39 269.85 16.24
Min 7.99 0.00 80.63 0.00 76.98
Max 223.91 655.53 170.02 269.85 93.22

Die from COVID-19-associated CVST (n19) Range 0.08 0.09 0.02 0.28 0.05
Min 0.05 0.04 0.07 0.00 0.06
Max 0.13 0.13 0.09 0.28 0.11

Die from COVID-19-associated PVT (n20) Range 0.90 1.04 0.23 3.04 0.39
Min 0.55 0.44 0.74 0.00 0.76
Max 1.45 1.48 0.97 3.04 1.16
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19 years in a low transmission scenario (0.008 deaths per million).
The outcome nodes that were least sensitive to changes in the
input nodes (in absolute numbers) related to the risk of dying from
CVST, either background rates (n16) or COVID-19-associated CVST
(n19), where the minimum and maximum values varied by less
than one death per million (0.024 and 0.445 respectively).
4. Discussion

BNs provided an ideal framework for rapidly prototyping a
decision-support tool to consolidate the existing evidence on risks
and benefits of the AZ vaccine. The BN for AZ vaccine risk–benefit
analysis developed in this study enables users to set scenarios by
vaccination status (none, one or two doses of AZ vaccine), age,
sex, SARS CoV-2 variant, and community transmission rate. Param-
eterisation of the model for the Australian population was based on
seven separate data sources. By helping the subject matter experts
to combine the relevant evidence from different sources, the
resulting model can be used to probabilistically estimate and com-
pare risks of adverse outcomes and generate meaningful scenarios
for a risk–benefit analysis. The analyses also provide useful infor-
mation for informing the debate on the risks of vaccine-
associated TTS relative to the risks of dying from COVID-19 or asso-
ciated CVST or PVT.

Using a BN framework to collate and analyse existing evidence
highlighted several key messages for informing the risk–benefit
analysis for the AZ vaccine. The rate of community transmission
was found to be a major moderating influence on the risk–benefit
analysis for the AZ vaccine. These results should therefore be con-
sidered in the context of the dynamic nature of the COVID-19 pan-
demic, where transmission rates are likely to change rapidly. It is
also worth noting that once someone has symptomatic COVID-
19, their risks of dying from COVID-19-associated clots, whilst
higher than the risk of dying from vaccine-associated TTS, are
orders of magnitude smaller than the risk of dying from COVID-
19 itself. Including deaths from COVID-19-associated clots in the
Die from COVID-19 (n18) node would therefore not significantly
alter the risk–benefit assessment. For example, from Table 2, we
can see that the risks of dying from COVID-19 (depending on the
scenario) range from 0 to 655.3 deaths per million cases. In com-
parison, the rates for dying from COVID-19-related CVST and PVT
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range from 0 to 0.28 and 0 to 3.04 deaths per million cases
respectively.

As expected, the model indicated that age group was found to
have a higher influence than sex on the risk of dying from
COVID-19. While there was large variance in the risk of dying from
COVID-19 depending on a person’s age group, sex and vaccination
status, there was less variance in the risk of developing and dying
from either the background or COVID-19-associated CVST or PVT.
Knowing which outcomes were highly variable, as well as which
inputs were highly influential on each outcome provides useful
information when looking to design a simple decision-support tool
for risk–benefit analysis. As an example, these details could be
used to customise the inputs required to simplify the tool for the
user (e.g. not asking for sex if it isn’t relevant). The same informa-
tion could also be used to target certain groups, such as focusing
efforts on certain age groups, or by those who have only had one
vaccine dose.

The objective of the model described here is to provide a risk–
benefit analysis to inform the CoRiCal decision-support tool. In
results reported previously [29], which specifically compared the
population-level risks and benefits of the AZ vaccine based on
the BN, vaccination was expected to reduce overall deaths from
atypical blood clots in the majority of age groups and transmission
scenarios. Specifically, a person was estimated to be 14–28 times
more likely to develop COVID-19-associated atypical blood clots
if they developed symptomatic infection, than developing TTS after
their first dose of AZ vaccine. The difference in the estimated risk of
fatalities was even greater. Depending on their age group, the
probability of someone with a symptomatic infection dying from
COVID-19-associated atypical blood clots was 58–126 higher than
the chance of someone dying from TTS after their first dose of the
AZ vaccine (although it should be noted that both events are extre-
mely rare).

By adapting the CPTs of the vaccine-associated TTS node (n6) to
be the cumulative probability across the two doses, the model can
also be used for population-level analysis (Lau et. al. 2021). For
example, using scenarios based on this population-level model, it
is estimated that in a partially vaccinated population of one million
people aged �70 years (30% unvaccinated, 35% received only first
their dose, 35% received two doses) there would be at most one
death expected from vaccine-associated TTS. In the same popula-
tion, the AZ vaccine would be expected to prevent 25 deaths under
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a low transmission scenario and more than 3000 deaths under a
high transmission scenario.

One key advantage of BNs as modelling tools is the ability to
easily adapt the model by editing the CPTs [4]. This feature has pro-
ven to be crucial for our study, where new evidence was available
weekly and needed to be updated on a regular basis. This feature
also leads to a clear, coherent and auditable framework for adapt-
ing the model to other contexts. For example, the CPTs can be
informed using other country-specific data, particularly for case
fatality rates which vary substantially between countries. In Aus-
tralia, even during the peak of the delta wave in 2021, diagnosed
COVID-19 cases were hospitalised and access to mechanical venti-
lators were generally available where required. Because of this,
case fatality rates in Australia are likely to be lower than in other
countries where residents have less access to healthcare, or where
access to mechanical ventilators became restricted. Updating the
model with country-specific case fatality rates would allow more
accurate representation of the benefits of vaccination in these
areas where the risk of dying from COVID-19 once infected may
be different to the Australian scenario.

The transparency of BN models and the model-building process
was also critical to building a trusted model. First, having a model
that users can interrogate and see why a probability has been esti-
mated for a given scenario allows users to explore and understand
the model. Fully documenting the design assumptions and explic-
itly identifying the sources used for populating the CPTs allows
users to understand and evaluate where the probabilities have
originated from. Another advantage of BNs was the ability to easily
compartmentalise the model into sub-models, and narrow or
broaden the scope as required by the addition or removal of nodes.
This capability facilitated a prototyping approach that was able to
reflect the evolving evidence around the AZ vaccine.

Although the probabilities in the model were derived from
empirical studies or publicly available government data, decisions
about which data to include (based on availability, robustness and
compatibility with other datasets), and how they should be inte-
grated were based on expert judgement. The experts’ role in the
process was therefore crucial in both selecting and interpreting
the available evidence, such as when choosing between results of
different studies. In some cases, it may be more appropriate to
include the study with the larger cohort, whereas in other
instances, a smaller study that more closely resembles the popula-
tion being modelled was preferable. In other instances, expert
knowledge was required to align the data from different sources.
For example, the youngest age group reported for the data on the
chance of developing TTS after each vaccine dose was for those
under 50 years of age, whereas the model has five ten-year age
groups for this same population (0–9 years, 10–19 years, etc.).

An important distinction when designing a model for use in the
context of public health is whether it should be interpreted as an
individual model or a population model. For example, does 10%
chance of infection represent a 10% chance that an individual will
become infected, or that 10% of the population will become
infected? While in practice these values might be considered to
be interchangeable, in this model, the distinction was important
in the definition of the node states and the corresponding calcula-
tion of the probability of developing TTS. The individual model was
designed to represent the probability of TTS after the first and sec-
ond dose as independent events. To model population-level esti-
mates, e.g., the number of cases of TTS per million people where
35% have had only one dose, and 35% have had two doses, the
model should be designed to consider cumulative risk, i.e., those
who received two doses were also exposed to the risk associated
with the first dose [29]. It is also important to note that individual
factors, such as comorbidities and access to healthcare, were not
included in the model, so the risk for a particular individual may
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vary substantially from the population estimate. As with any data
model, communicating a clear interpretation of the BN is crucial in
a decision-support context where clinicians and the public, as well
as policy makers, public health managers and the broader scientific
community might misinterpret the model outputs.

Constructing an evidence-based model relying on expert-
derived assumptions introduced several challenges for validating
the model. Whereas the predictive performance of a data-driven
model can be validated using cross-validation, and expert-
derived models can be validated based on the opinion of indepen-
dent experts [6], neither option was suitable for the model pre-
sented here. Instead, the logic in the model was validated against
independent calculations based on the same evidence. While this
did not validate the evidence or the assumptions, it did confirm
that the model accurately reflects the information reported in the
selected sources.

The modeller-led approach used in this research, although well-
suited to a rapid design process, was a deviation from best-practice
expert-elicitation processes (for example Wu et. al. [9]; Richards
et al. [30]), where the initial conceptual model would ideally be
developed by the subject matter experts, facilitated by the mod-
elling experts. Instead, presenting the subject-matter experts with
a draft BN structure based on preliminary discussions allowed for
an expedited design process. The design process was also facili-
tated by structured questionnaires used to help the experts collate
the evidence into a suitable format that the modelling team could
use to populate the CPTs.

A key benefit of BNs is that the interface facilitates model inter-
action, allowing users to explore different scenarios and develop a
deep understanding of how concepts are represented and related
in the model. However, a BN interface can be daunting to untrained
users and interpreting the probabilities in relatable terms can be
difficult. A frontend interface for the model has been created to
simplify the inputs and communicate the results in terms of relat-
able risk [11]. This publicly available decision-support tool can also
be updated as the scope of the model is expanded to include other
vaccines, adverse events and comorbidities.

While the scope of the present study is currently limited to the
AZ vaccine, the process described here can be easily repeated to
expand the model to include additional inputs, including other
COVID-19 variants or vaccines, demographic variables such as
remoteness, or individual variables such as comorbidities. Specific
next steps in model development are the inclusion of long COVID
as an outcome and the chance of myocarditis from mRNA vaccines.
More generally, the process could be extended to consideration of
vaccine safety in the context of other health outcomes, particularly
in rapidly changing environments.

Although the model has been quantified using data from Aus-
tralia as well as international data from the UK and US, it has been
adapted for the Australian context, and priority has been given to
Australian data if available. Using the same process described here,
however, the model is easily adaptable to international settings by
re-parameterising it with local data where available. Through rapid
aggregation, modelling and communication of vaccine-associated
risks, the comparative merits of vaccination in target populations
can be better understood, leading to improved decision-making
by policy makers and public health managers, and increased capa-
bility and capacity for clinicians to guide patients to make
informed decisions about vaccines.
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