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Abstract 

Introduction: Introduction of highly pathogenic avian influenza virus (HPAIV) into a country and its further spread may 

have a devastating impact on the poultry industry and lead to serious economic consequences. Various risk factors may increase 

the probability of HPAI outbreak occurrence but their relative influence is often difficult to determine. The study evaluates how 

the densities of selected poultry species and proximity to the areas inhabited by wild birds impacted HPAI outbreak occurrence 

during the recently reported epidemics in Poland. Material and methods: The analysis was developed using these risk factors in 

the locations of affected and randomly chosen unaffected commercial farms. Generalised linear and non-linear models, specifically 

logistic regression, classification tree and random forest, were used to indicate the most relevant risk factors, to quantify their 

association with HPAI outbreak occurrence, and to develop a map depicting spatial risk distribution. Results: The most important 

risk factors comprised the densities of turkeys, geese and ducks. The abundance of these species of poultry in an area increased the 

probability of HPAI occurrence, and their farming intensity in several areas of central, western, eastern and northern Poland put 

these areas at the highest risk. Conclusion: The results may improve the targeting of active surveillance, strengthen biosecurity in 

the areas at risk and contribute to early detection of HPAI in outbreak reoccurrences. 

 

Keywords: poultry diseases, risk map, spatial analysis. 

 

 

Introduction 

Highly pathogenic avian influenza (HPAI) is  

an infectious viral disease affecting wild and domestic 

bird species worldwide (4). The HPAI viruses (HPAIV) 

emerge from low-pathogenic precursor viruses (low-

pathogenic avian influenza viruses, LPAIV) upon 

transmission from wild aquatic birds and circulation in 

poultry (3, 4, 5). HPAI occurrence in a country brings 

serious economic consequences and invokes temporary 

suspension of poultry trade (8). Therefore, confirmation 

of the disease is subject to notification and immediately 

triggers countermeasures to prevent its further spread (7). 

In 1996, the Guangdong lineage of H5 HPAIV 

(H5 Gs/Gd) emerged in China and subsequently 

evolved into multiple genetic clades and genotypes as 

a result of genetic drift and reassortment (15, 23). Since 

2008, a specific clade 2.3.4 of H5 Gs/Gd HPAI viruses 

has undergone frequent reassortments with LPAIV of 

wild-bird origin and the resulting novel viruses, 

collectively known as “H5Nx” (H5N2, H5N5, H5N6 

and H5N8 as differentiated by neuraminidase subtype), 

show increased adaptation to wild aquatic birds and 

have spread to other continents, including Europe, 

Africa and North America (15). In recent years, Europe 

has experienced repeated outbreaks of HPAIV H5Nx 

Gs/Gd clade 2.3.4.4 lineage as a result of new 

introduction of the virus from southeast Asia or Africa, 

re-emergence of the reassorted virus from the previous 

epidemic, or the continued endemic circulation of 

HPAIV H5 (1, 19, 25, 27). In Poland, epidemics of 

HPAI in poultry have occurred three times: in 2007 

(caused by HPAIV H5N1 clade 2.2), in 2016–2017 

(caused by HPAIV H5N8 and H5N5 clade 2.3.4.4) and 

in 2019–2020 (caused by HPAIV H5N8 clade 2.3.4.4) 

(24, 25, 26). 

In the face of the changing HPAI epidemiological 

characteristics and the increasingly substantial role of 

wild birds in the spread of HPAIV into a new area (5), 

there is a need for continuous improvement of 
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emergency preparedness. According to European Union 

(EU) legislation, Member States must identify risk areas 

on their territory where there are multiple facilitators of 

introduction of HPAIV into poultry holdings (6). 

Relevant risk factors for the introduction of HPAIV into 

poultry flocks include proximity to wetlands such as 

swamps and to bodies of water such as ponds, lakes, 

rivers or the sea where migratory birds, in particular 

waterfowl and shorebirds, may gather at stop-over sites; 

poultry holdings being in locations through which 

migratory birds travel or at which they rest during their 

movements along the north-eastern and eastern 

migratory routes into the EU; and keeping poultry in 

free-range systems where contact between wild birds 

and poultry cannot be prevented. In turn, the risk 

factors for the spread of HPAIV between holdings 

include holdings being in locations with a high density 

of poultry farming, particularly operations with 

outdoor access (ducks, geese or free-range layers); 

frequent movements of vehicles transporting poultry 

and of persons within and from holdings; and other 

direct and indirect contacts between holdings being 

common (6). 

The aim of the study was to evaluate the impact of 

the assumed risk factors, for which quantitative data are 

available, on HPAI occurrence in commercial Polish 

flocks during the epidemics which have occurred in 

recent years. The findings may lead to the improvement 

of control strategies by fine-tuning risk-based 

surveillance and advocating for reinforced biosecurity 

on farms at higher risk of infection. 

Material and Methods 

Input data. A set of six risk factors comprising the 

density of each different farmed species of poultry 

(chickens, turkeys, ducks and geese) and proximity to 

areas inhabited by wild birds (water bodies and terrain 

with high site concentration of wild birds) was 

considered in the study. Data concerning the density of 

poultry in each Polish commune (n = 2,477) were 

obtained from the National Statistical Office and the 

General Veterinary Inspectorate. The locations of bodies 

of water and sites of wild bird concentrations were 

obtained from the General Directorate for 

Environmental Protection. 

Disease-related data, i.e. the geographical coordinates 

of commercial farms on which HPAIV was confirmed 

during the epidemic in 2007 (n = 5), the epidemic in 

2016–17 (n = 38) and the epidemic in 2019–20 (n = 28) 

were derived from the records of the National Reference 

Laboratory for Avian Influenza in Poland. The locations 

of 331 randomly selected farms on which HPAIV was 

not reported during the epidemics were obtained from 

the General Veterinary Inspectorate. The locations of the 

farms are presented in Fig. 1. 

The spatial distribution of each risk factor in Poland 

was expressed as a separate raster layer with a raster  

cell of 250 × 250 m, using the appropriate package 

(raster: Geographic Data Analysis and Modeling, R 

package version 3.4-5) in R software (version 3.6.1) 

(21). The input data used to develop the layers include 

the densities of the four poultry species in each 

commune, the distance from water bodies and the 

distance from sites of high wild bird concentration all 

over the country. Next, the values of each risk factor at 

the locations of both affected and unaffected farms were 

extracted. The analysis was developed on the basis of 

these values. The distributions of the values and the 

raster layers depicting the spatial distributions of the risk 

factors in Poland are presented in Table 1. 

Analysis. A dataset consisting of 402 observations 

was considered in the analysis. Each observation includes 

a binary target variable (HPAI presence/absence) and six 

quantitative predictor variables (values of each risk 

factor). 

Firstly, the entire dataset was split into a training set 

(70% of the observations) and a testing set (30% of the 

observations). To predict the probability of HPAI 

occurrence based on values of predictors (risk factors), 

three approaches were applied to the training dataset. 

Firstly, the logistic regression model of the form 

𝑃(𝑌 = 1|𝑥1, 𝑥2, … , 𝑥6) =
𝑒
𝑎0+∑ 𝑎𝑖𝑥𝑖

6

𝑖=1

1+𝑒
𝑎0+∑ 𝑎𝑖𝑥𝑖

6

𝑖=1

  

was used, where 𝑃(𝑌 = 1|𝑥1, 𝑥2, … , 𝑥6) is a conditional 

probability of the target value of Y being 1 (HPAI 

occurrence), given the values of predictors 𝑥1, 𝑥2, … , 𝑥6 

(risk factors). The regression coefficients 𝑎0, 𝑎1, … , 𝑎6 

were estimated using maximum likelihood estimation. 

Logarithm transformation was used for variables with 

skewed distributions. To construct the final model, the 

relevant predictors were selected based on a stepwise 

variable selection method with Akaike Criterion (AIC). 

The model was developed using the glm function from 

the stats package. The levels of multicollinearity among 

the predictors were assessed using the variance inflation 

factor (VIF) (13). The linear relationship between the 

log odds of the target variable and the predictors was 

verified through plotting of standardised Pearson 

residuals against individual predictors (30). 

 

 

Fig. 1. Locations of affected and unaffected commercial farms. The 

map was produced using the maps package (maps: Draw Geographical 

Maps, R package version 3.3.0 (21)) 



A. Gierak, K. Śmietanka/J Vet Res/65 (2021) 45-52 47 

 

 

Table 1. The list of preliminary selected risk factors with their spatial distribution in Poland and the distribution of values in experimental (from 

affected farms) and control (from unaffected farms) groups. The maps and graphs were produced using raster and ggplot2 packages (ggplot2: 

Elegant Graphics for Data Analysis, R package (21)), respectively 

Notation Risk factor Distribution of values 
Spatial distribution  

(expressed as a raster layer) 

𝑥1 
Density of commercially 

farmed geese 

 
 

𝑥2 
Density of commercially 

farmed turkeys 

 
 

𝑥3 Proximity to water bodies 

 
 

𝑥4 
Density of commercially 

farmed chickens 

 
 

𝑥5 
Density of commercially 

farmed ducks 

 
 

𝑥6 
Proximity to areas of high 

concentration of wild birds 

 
 

 

 

Secondly, the classification tree model was applied 

to the dataset of the form (𝑥, 𝑌) = (𝑥1, 𝑥2, … , 𝑥6, 𝑌), 
where 𝑌 is the target variable (HPAI presence/absence) 

and 𝑥 is a vector of the risk factors 𝑥1, 𝑥2, … , 𝑥6. The 

membership of observations in the classes of the binary 

target variables was predicted based on the values of 

their predictor variables through fitting the classification 

tree to the data using the rpart function from the rpart 

package (rpart: Recursive Partitioning and Regression 

Trees, R package version 4.1-15) (21). To find accurate 
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splits of the set of observations into certain subsets, the 

Gini index was used (13). In order to determine the 

optimal level of tree complexity (complexity parameter), 

10-fold cross-validation was performed in three 

repetitions. 

Finally, the random forest model was used. 

Different decision trees were formed via multiple 

resampling of the subsets of data (bootstrap sample)  

and different subsets of predictors from the training 

dataset. The final probabilities were predicted based  

on an average of all individual trees. The number of 

predictors was determined using 10-fold cross-

validation in three repetitions. The number of trees was 

set to 500. A detailed description of the methods has 

been published previously (13). The model was 

developed using the randomForest function from the 

package of the same name (Classification and 

Regression by randomForest). 

The importance of predictors was estimated using 

the mean decrease of Gini index in the decision tree and 

the random forest model using the caret package (caret: 

Classification and Regression Training, R package 

version 6.0-86) (21). The impact of changes in the values 

of the predictors on the value of probability was 

determined in each model. 

Based on the six raster layers representing the risk  

 

factors, the probability of HPAI occurrence was 

calculated in each raster cell with a size of 250 × 250 m. 

For each method, the risk map depicting the spatial 

distribution of the probability within the country was 

created using the raster package. 

Predictive accuracy of the models was evaluated 

using the testing dataset. The actual status of each farm 

(affected or unaffected) was compared with their 

predicted status, using different cut-off values of 

probability. The performance of each model was 

described using the value of accuracy being the number 

of correctly classified observations divided by the total 

number of observations. Based on the misclassification 

matrix, the optimal cut-off value of probability was 

determined in each model. 

Results 

The results of the logistic regression model indicate 

that the relevant variables (risk factors) include log-

transformation of density of turkeys, geese, ducks and 

chickens. The densities of these species, except 

chickens, are positively associated with the probability 

of HPAI occurrence. The detailed statistics for these 

variables are presented in Table 2. 

 

Table 2. Results of logistic regression model 

Notation Description of the variable Estimation 95% Confidence interval P value 

𝑙𝑜g(𝑥1 + 50) 
log-transformed density of 

turkeys 
0.973 [0.634, 1.355] 9.94e−08 

𝑙𝑜g (𝑥2 + 5) 
log-transformed density of 

geese 
0.409 [0.113, 0.709] 6.92e−03 

𝑙𝑜g(𝑥3 + 10) 
log-transformed density of 

ducks 
0.447 [0.108, 0.791] 9.8e−03 

𝑙𝑜g(𝑥4 + 10) 
log-transformed density of 

chickens 
−0.193 [−0.375,−0.018] 3.31e−02 

 

The form of the final regression model is: 

𝑃(𝑌) =
𝑒−7.88 ∗ (𝑥1 + 50)0.973 ∗ (𝑥2 + 5)0.409 ∗ (𝑥3 + 10)0.447 ∗ (𝑥4 + 10)−0.193

1 + 𝑒−7.88 ∗ (𝑥1 + 50)0.973 ∗ (𝑥2 + 5)0.409 ∗ (𝑥3 + 10)0.447 ∗ (𝑥4 + 10)−0.193
 

 

 

 
 

Fig. 2. Results of decision tree model 
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Logarithm transformation was used for all 

predictors. The maximum VIF was lower than 1.87, 

which indicates the non-existence of high correlations 

between them. The assumptions of a linear relationship 

between the log odds of the target variable and the 

predictors were not fully met, because their distributions 

were concentrated in one point. 

Based on the results of the classification tree model, 

the areas with both goose density greater than or equal to 

42 and turkey density greater than or equal to 95 are at the 

highest risk. An 8% share of the observations belonged to 

these areas, among which HPAIV was confirmed in 91%. 

The areas with goose density lower than 42 are at low risk. 

A 79% of the observations belonged to low-risk areas, 

among which HPAIV was confirmed in 7%. The detailed 

predictions of the values of the target variable using the 

risk factors are presented in Fig. 2. 

In the decision tree model, the importance values of 

the risk factors were 25.54, 21.93, 19.08, 12.19, 3.73 and 

0 for densities of turkeys, geese, and ducks, proximity to 

areas with high concentrations of wild birds, proximity 

to water bodies and chicken density, respectively, which 

indicates that the predictions of the model were mainly 

based on the turkey density, and to a lesser extent, goose 

and duck densities, proximity to areas with high 

concentrations of wild birds and proximity to water 

bodies. The predicted values of probabilities were not 

affected by the density of chickens. In the random forest 

model, the importance values of the risk factors were 

18.53, 17.79, 15.01, 10.4, 9.79 and 5.93 for densities of 

turkeys and geese, proximity to areas with high 

concentrations of wild birds, duck density, proximity to 

water bodies and chicken density, respectively, which 

indicates that the predictions of the model were mainly 

based on the turkey density, and to a lesser extent, goose 

density, proximity to areas with high concentrations of 

wild birds, duck density and proximity to water bodies. 

The prediction of the model was based on chicken 

density to the least extent. The scaled importance values 

of the risk factors designated by the decision tree and 

random forest models are presented in Fig. 3. 

 
Fig. 3. The importance of considered risk factors designated by the 

decision tree (red dots) and random forest (blue dots) models. WB – 
wild birds. The importance values were scaled to 0 and 100 (values of 

100 and 0 indicated the most important and the least important risk 

factor in the model, respectively) 

The impact of changes in the values of the selected 

variable on the output value of probability for fixed median 

values of the other variables is presented in Fig. 4. 

 

 

Fig. 4. Impact of changes in the selected variables on the predicted value of probability of HPAI occurrence using different 
models: logistic regression (black line), decision tree (green line), and random forest (red line). WB – wild birds 
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The first, second and third models attained 

predictive accuracy of 0.8667 (95% CI (0.7925, 

0.9218)), 0.875 (95% CI (0.8022, 0.9283)) and 0.8917 

(95% CI (0.8219, 0.941)), respectively. Sensitivity of 

80% was achieved for the cut-off values of 0.05 and 0.12 

for the logistic regression and random forest models, 

respectively. Their corresponding specificities were 

52% and 78%, respectively. Sensitivity of 80% was not 

achieved for the decision tree model. 

The probability of HPAI occurrence is not equally 

distributed across the country. Several areas of central, 

western, eastern and northern Poland are at the highest 

risk. The spatial distribution of the values of 

probabilities is presented in Fig. 5. 

 
a) 

 
b) 

 
c) 

 
Fig. 5. Spatial distribution of the predicted values of the probabilities 
using different models: a) logistic regression, b) decision tree, and  

c) random forest 

Discussion 

The results of each model indicated that the 

densities of turkeys and geese are the most important 

risk factors. In each model, a slightly different 

association between the exact number of these poultry 

species in an area and the values of the probability of 

HPAI occurrence was observed (Fig. 4). The other 

relevant parameter was the density of ducks. Proximity 

to areas with a high concentration of wild birds was 

found to be a more important risk factor than proximity 

to water bodies. Nevertheless, no statistically significant 

importance of these two parameters was confirmed in 

the logistic regression model. The presence of chickens 

in an area hardly had any impact on the value of 

probability in either the classification tree or random 

forest models. The logistic regression model indicated, 

in turn, a negative association between chicken density 

and the value of the probability (Fig. 4). 

The results of our study confirm the impact of the 

acknowledged risk factors on the occurrence of HPAI 

outbreaks to a large extent. Similarly to other studies’ 

findings (11), the presence of waterfowl increases the 

risk of HPAI occurrence due to outdoor access and 

facilitated contact with wild birds. The proximities to 

sites with high concentrations of wild birds and to water 

bodies where migratory birds tend to concentrate were 

previously demonstrated to be key risk factors for the 

introduction and further spread of HPAIV H5N1 (28). 

However, our results did not confirm such a strong 

impact of these factors on the HPAI occurrence during 

the recently reported epidemics. It may be related to the 

more stringent biosecurity and better prevention of 

contact between wild birds and poultry on commercial 

farms than on the varying farm types in different 

countries. On the other hand, turkey density was found 

to be the most important risk factor. This may be related 

to the high susceptibility of this species to HPAIV 

infection. It was shown experimentally that turkeys are 

>100-fold more susceptible to infection with HPAIV 

H5N1 and H7N1 subtypes than chickens (2). 

Additionally, it was also demonstrated that HPAIV 

H5N8 clade 2.3.4.4 can be successfully transmitted from 

ducks to turkeys followed by efficient onward 

transmission among turkeys (20, 22). 

Interestingly, the presence of commercially farmed 

chickens in an area did not increase the probability of 

HPAI outbreak occurrence. The logistic regression 

model suggested its negative and the other two models 

its negligible impact. This effect was previously 

observed also by other authors who studied risk factors 

for HPAI occurrence in France, China and Indonesia (9, 

12, 29). This phenomenon can be explained by three 

reasons. First, chickens seem to have lower 

susceptibility to HPAIV infection than turkeys or ducks, 

i.e. a much higher virus dose is required to cause 

infection (2, 14). Second, poor or no transmissibility was 

observed in chickens infected experimentally with 

HPAIV H5N8 clade 2.3.4.4 despite the high mortality 

caused by the virus in this species (14, 20). Finally, good 

management and biosecurity practices at commercial 

chicken farms (including the lack of open-air access) 

may contribute to the reduced risk of virus introduction 

onto the holding. 

Two types of model – generalized linear and non-

linear – were used to assess the impact of selected risk 
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factors on the probability of HPAI occurrence. The 

logistic regression approach was frequently used to 

indicate relevant risk factors in other countries (16, 17); 

however, the analysis of the input data suggests the 

validity of the application of non-linear approaches. 

Comparing the accuracies of the models, the random 

forest outperforms the logistic regression in terms of 

predictive power, in which case 80% sensitivity with 

78% specificity was attained. It may be explained by 

non-linear associations or the presence of interactions 

between risk factors. Comparing the two non-linear 

models in turn, the random forest was much more 

accurate than the decision tree. This is observed very 

often, because the former method combines the output 

of multiple (randomly created) decision trees to generate 

the final output. As the decision tree model’s results are 

simpler to interpret than those of the random forest 

model, they were presented only for visualisation of the 

impact of particular risk factors, but not as an alternative 

or competitive method. In view of this, the random forest 

approach should be the method of choice to predict the 

areas at increased risk of HPAI occurrence in Poland. 

None of the models allowed very high (>80%) 

sensitivity to be obtained with acceptable specificity.  

A 20% share of observations from the testing dataset 

was incorrectly classified – the predicted status of farms 

(affected or unaffected) did not reflect their actual status, 

even using a low cut-off value. This may suggest the 

impact of other risk factors than those included in our 

study, and this aspect should be further investigated. 

Nevertheless, the required data are often missing or their 

expression in quantitative terms is not always feasible. 

For instance, as indicated in other studies, the 

association of HPAI occurrence with anthropogenic risk 

factors is undeniable because virus spread by personnel 

and fomites is known to be possible (16, 18). The impact 

of these risk factors was previously estimated by 

population density in the county around the farm or in 

the area adjacent to the farm. However, our study 

focuses only on commercial poultry farming where any 

visits to the premises should be restricted to a minimum. 

Therefore, the more relevant risk factor is related to 

farming practices and biosecurity level on a farm (17). 

Nevertheless, quantifying the effect of these was also not 

feasible due to the lack of accurate and fully reliable 

data. 

This is the second spatial analysis developed to 

predict the areas at risk of HPAI occurrence in 

commercial flocks in Poland. The first analysis 

combined knowledge mined from the literature and 

opinions of Polish experts in the field of epidemiology 

and poultry diseases (10). Due to the development of the 

first model preceding the largest HPAI epidemic in 

Poland, data related to the locations of HPAI outbreaks 

were unavailable. After more extensive epidemic data 

became available, the obtained data were only used for 

the model verifications. Therefore, the first study 

reflected the arbitrary evaluations of each expert related 

to the key risk factors and their impact on HPAI 

occurrence in Poland. 

Comparing the results of the study reported herein 

with those of the pre-epidemic one, it can be noted that 

the overlapping areas at high risk mainly include parts 

of the Lubuskie, Lubelskie, Łódzkie, and Wielkopolskie 

provinces. As indicated by the experts, the common risk 

factors included density of turkeys, domestic waterfowl 

and proximity to areas with high concentrations of wild 

birds. Each of these risk factors was assumed to be 

positively associated with the areas at risk of HPAI 

occurrence. 

The number of observations (reported outbreaks of 

HPAI) included in the model was relatively small. 

Inclusion of new cases would improve the quality of the 

model. Therefore, if the epidemic reoccurs in the 

country, the experimental group should be extended. 

The data related to the densities of different poultry 

species considered in the analysis should be updated 

regularly. 

The models developed here can be a valuable 

source of information for different groups of 

stakeholders, including poultry owners and risk 

managers. The results can also lead to the improvement 

of targeted surveillance in Poland.  

 

Conflict of Interests Statement: The authors declare 

that there is no conflict of interests regarding the 

publication of this article. 

 

Financial Disclosure Statement: This study was 

funded by the “KNOW” (Leading National Research 

Centre) Scientific Consortium “Healthy Animal – Safe 

Food”, Ministry of Science and Higher Education 

resolution no. 05-1/KNOW2/2015. 

 

Animal Rights Statement: Not applicable. 
 

 

References 

1. Alarcon P., Brouwer A., Venkatesh D., Duncan D., Dovas C.I., 

Georgiades G., Monne I., Fusaro A., Dan A., Śmietanka K., 

Ragias V., Breed A.C., Chassalevris T., Goujgoulova G., 

Hjulsager C.K., Ryan E., Sánchez A., Niqueux E., Tammiranta N., 

Zohari S., Stroud D.A., Savić V., Lewis N.S., Brown I.H.: 

Comparison of 2016–17 and Previous Epizootics of Highly 

Pathogenic Avian Influenza H5 Guangdong Lineage in Europe. 

Emerg Infect Dis 2018, 24, 2270–2283, doi:10.3201/ 

eid2412.171860. 

2. Aldous E.W., Seekings J.M., McNally A., Nili H., Fuller C.M., 

Irvine R.M., Alexander D.J., Brown I.H.: Infection dynamics of 

highly pathogenic avian influenza and virulent avian 

paramyxovirus type 1 viruses in chickens, turkeys and ducks. 

Avian Pathol 2010, 39, 265–273, doi: 10.1080/03079457. 

2010.492825. 

3. Alexander D.J.: An overview of the epidemiology of avian 

influenza. Vaccine 2007, 25, 5637–5644, doi: 10.1016/j.vaccine. 

2006.10.051. 

4. Alexander D.J., Capua I.: Avian influenza in poultry. World 

Poultry Sci J 2008, 64, 513–532, doi: 10.1017/ 

S0043933908000184. 



52 A. Gierak, K. Śmietanka/J Vet Res/65 (2021) 45-52 

 

5. Bodewes R., Kuiken T.: Changing Role of Wild Birds in the 

Epidemiology of Avian Influenza A Viruses. Adv Virus Res 2018, 

100, 279–307, doi: 10.1016/bs.aivir.2017.10.007. 

6. Commission of the European Communities: Commission 

Implementing Decision (EU) 2018/1136 of 10 August 2018 on 

risk mitigation and reinforced biosecurity measures and early 

detection systems in relation to the risks posed by wild birds for 

the transmission of highly pathogenic avian influenza viruses to 

poultry. OJ L 2018, 205, 61, 14.8.2018, pp. 48–53. 

7. Council of the European Union: Council Directive 2005/94/EC of 

20 December 2005 on Community measures for the control of 

avian influenza and repealing Directive 92/40/EEC. OJ L 2006, 

10, 49, 14.1.2006, pp. 16–65. 

8. Domenech J., Lubroth J., Eddi C., Martin V., Roger F.: Regional 

and international approaches on prevention and control of animal 

transboundary and emerging diseases. Ann N Y Acad Sci 2006, 

1081, 90–107, doi: 10.1196/annals.1373.010. 

9. Fang L-Q., de Vlas S.J., Liang S., Looman C.W., Gong P., Xu B., 

Yan L., Yang H., Richardus J.H., Cao W-C.: Environmental 

factors contributing to the spread of H5N1 avian influenza in 

mainland China. PLoS One 2008, 3, e2268, doi: 10.1371/ 

journal.pone.0002268. 

10. Gierak A., Bocian Ł., Śmietanka K.: Identification of Areas at 

Increased Risk of Highly Pathogenic Avian Influenza Occurrence 

in Commercial Poultry in Poland. Avian Dis 2019, 63, 257–262, 

doi: 10.1637/12005-112718.1. 

11. Gilbert M., Pfeiffer D.U.: Risk factor modelling of the spatio-

temporal patterns of highly pathogenic avian influenza (HPAIV) 

H5N1: a review. Spat Spatiotemporal Epidemiol 2012, 3,  

173–183, doi: 10.1016/j.sste.2012.01.002. 

12. Guinat C., Artois J., Bronner A., Guérin J-L., Gilbert M.,  

Paul M.C.: Duck production systems and highly pathogenic avian 

influenza H5N8 in France, 2016–2017. Sci Rep 2019, 9, 61–77, 

doi: 10.1038/s41598-019-42607-x. 

13. James G., Witten D., Hastie T., Tibshirani R.: An Introduction to 

Statistical Learning with Applications in R. Springer 

Science+Business Media, New York, 2013. 

14. Leyson C., Youk S-S., Smith D., Dimitrov K., Lee D-H.,  

Larsen L.E., Swayne D.E., Pantin-Jackwood M.J.: Pathogenicity 

and genomic changes of a 2016 European H5N8 highly 

pathogenic avian influenza virus (clade 2.3.4.4) in experimentally 

infected mallards and chickens. Virology 2019, 537, 172–185, 

doi: 10.1016/j.virol.2019.08.020. 

15. Lycett S.J., Duchatel F., Digard P.: A brief history of bird flu. Phil 

Trans R Soc B 2019, 374, 20180257, doi: 10.1098/rstb.2018.0257. 

16. Métras R., Stevens K.B., Abdu P., Okike I., Randolph T.,  

Grace D., Pfeiffer D.U., Costard S.: Identification of potential risk 

factors associated with highly pathogenic avian influenza subtype 

H5N1 outbreak occurrence in Lagos and Kano States, Nigeria, 

during the 2006–2007 epidemics. Transbound Emerg Dis 2013, 

60, 87–96, doi: 10.1111/j.1865-1682.2012.01322.x. 

17. Osmani M.G., Thornton R.N., Dhand N.K., Hoque M.A.,  

Milon S.M., Kalam M.A., Hossain M., Yamage M.: Risk factors 

for highly pathogenic avian influenza in commercial layer chicken 

farms in Bangladesh during 2011. Transbound Emerg Dis 2014, 

61, e44–51, doi: 10.1111/tbed.12071. 

18. Paul M., Tavornpanich S., Abrial D., Gasqui P., Charras-Garrido M., 

Thanapongtharm W., Xiao X., Gilbert M., Roger F., Ducrot C.: 

Anthropogenic factors and the risk of highly pathogenic avian 

influenza H5N1: prospects from a spatial-based model. Vet Res 

2010, 41, 28, doi: 10.1051/vetres/2009076. 

19. Poen M.J., Venkatesh D., Bestebroer T.M., Vuong O.,  

Scheuer R.D., Munnink B.B.O., de Meulder D., Richard M., 

Kuiken T., Koopmans M.P.G., Kelder L., Kim Y-J., Lee Y-J., 

Steensels M., Lambrecht B., Dan A., Pohlmann A., Beer M.,  

Savić V., Brown I.H., Fouchier R.A.M., Lewis N.S.:  

Co-circulation of genetically distinct highly pathogenic avian 

influenza A clade 2.3.4.4 (H5N6) viruses in wild waterfowl and 

poultry in Europe and East Asia, 2017–18. Virus Evol 2019, 5, 

vez004, doi: 10.1093/ve/vez004. 

20. Puranik A., Slomka M.J., Warren C.J., Thomas S.S., Mahmood S., 

Byrne A.M.P., Ramsay A.M., Skinner P., Watson S., Everett H.E., 

Núñez A., Brown I.H., Brookes S.M.: Transmission dynamics 

between infected waterfowl and terrestrial poultry: Differences 

between the transmission and tropism of H5N8 highly pathogenic 

avian influenza virus (clade 2.3.4.4a) among ducks, chickens  

and turkeys. Virology 2020, 541, 113–123, doi: 10.1016/j.virol. 

2019.10.014. 

21. R Core Team: R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, 

2016, 2019, 2020. 

22. Slomka M.J., Puranik A., Mahmood S., Thomas S.S., Seekings A.H., 

Byrne A.M.P., Núñez A., Bianco C., Mollett B.C., Watson S., 

Brown I.H., Brookes S.M.: Ducks Are Susceptible to Infection 

with a Range of Doses of H5N8 Highly Pathogenic Avian 

Influenza Virus (2016, Clade 2.3.4.4b) and Are Largely Resistant 

to Virus-Specific Mortality, but Efficiently Transmit Infection to 

Contact Turkeys. Avian Dis 2019, 63, 172–180, doi: 

10.1637/11905-052518-Reg.1. 

23. Smith G.J., Donis R.O., World Health Organization/World 

Organisation for Animal Health/Food and Agriculture 

Organization (WHO/OIE/FAO) H5 Evolution Working Group.: 

Nomenclature updates resulting from the evolution of avian 

influenza A(H5) virus clades 2.1.3.2a, 2.2.1, and 2.3.4 during 

2013–2014. Influenza Other Respir Viruses 2015, 9, 271–276, 

doi: 10.1111/irv.12324. 

24. Śmietanka K., Fusaro A., Domańska-Blicharz K., Salviato A., 

Monne I., Dundon W.G., Cattoli G., Minta Z.: Full-Length 

Genome Sequencing of the Polish HPAI H5N1 Viruses Suggests 

Separate Introductions in 2006 and 2007. Avian Dis 2010, 54, 

335–339, doi: 10.1637/8782-040109-ResNote.1. 

25. Święton E., Fusaro A., Shittu I., Niemczuk K., Zecchin B., Joannis T., 

Bonfante F., Śmietanka K., Terregino C.: Sub-Saharan Africa and 

Eurasia Ancestry of Reassortant Highly Pathogenic Avian 

Influenza A(H5N8) Virus, Europe, December 2019. Emerg Infect 

Dis 2020, 26, 1557–1561, doi:10.3201/eid2607.200165. 

26. Święton E., Śmietanka K.: Phylogenetic and molecular analysis of 

highly pathogenic avian influenza H5N8 and H5N5 viruses 

detected in Poland in 2016–2017. Transbound Emerg Dis 2018, 

65, 1664–1670, doi: 10.1111/tbed.12924. 

27. Venkatesh D., Brouwer A., Goujgoulova G., Ellis R., Seekings J., 

Brown I.H., Lewis N.S.: Regional Transmission and 

Reassortment of 2.3.4.4b Highly Pathogenic Avian Influenza 

(HPAI) Viruses in Bulgarian Poultry 2017/18. Viruses 2020, 12, 

605, doi: 10.3390/v12060605. 

28. Ward M.P., Maftei D.N., Apostu C.L., Suru A.R.: Association 

between outbreaks of highly pathogenic avian influenza subtype 

H5N1 and migratory waterfowl (family Anatidae) populations. 

Zoonoses Public Health 2009, 56, 1–9, doi: 10.1111/j.1863-

2378.2008.01150.x. 

29. Yupiana Y., de Vlas S.J., Adnan N.M., Richardus J.H.: Risk 

factors of poultry outbreaks and human cases of H5N1 avian 

influenza virus infection in West Java Province, Indonesia. Int  

J Infect Dis 2010, 14, e800–805, doi: 10.1016/j.ijid.2010.03.014. 

30. Zhang Z.: Residuals and regression diagnostics: focusing on 

logistic regression. Ann Transl Med 2016, 4, 195, doi: 

10.21037/atm.2016.03.36. 

  

 

 

 


