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A new paradigm in neuroscience has recently emerged – the brain–gut axis (BGA).
The contemporary focus in this paradigm has been gut → brain (“bottom-up”),
in which the gut-microbiome, and its perturbations, affects one’s psychological
state-of-mind and behavior, and is pivotal in neurodegenerative disorders. The
emerging brain → gut (“top-down”) concept, the subject of this review, proposes
that dysfunctional brain health can alter the gut-microbiome. Feedback of this
alternative bidirectional highway subsequently aggravates the neurological pathology.
This paradigm shift, however, focuses upon non-communicable neurological diseases
(progressive neuroinflammation). What of infectious diseases, in which pathogenic
bacteria penetrate the blood–brain barrier and interact with the brain, and what is
this effect on the BGA in bacterial infection(s) that cause chronic neuroinflammation?
Persistent immune activity in the CNS due to chronic neuroinflammation can lead to
irreversible neurodegeneration and neuronal death. The properties of cerebrospinal fluid
(CSF), such as immunological markers, are used to diagnose brain disorders. But
what of metabolic markers for such purposes? If a BGA exists, then chronic CNS
bacterial infection(s) should theoretically be reflected in the urine. The premise here is
that chronic CNS bacterial infection(s) will affect the gut-microbiome and that perturbed
metabolism in both the CNS and gut will release metabolites into the blood that are
filtered (kidneys) and excreted in the urine. Here we assess the literature on the effects
of chronic neuroinflammatory diseases on the gut-microbiome caused by bacterial
infection(s) of the CNS, in the context of information attained via metabolomics-based
studies of urine. Furthermore, we take a severe chronic neuroinflammatory infectious
disease – tuberculous meningitis (TBM), caused by Mycobacterium tuberculosis, and
examine three previously validated CSF immunological biomarkers – vascular endothelial
growth factor, interferon-gamma and myeloperoxidase – in terms of the expected
changes in normal brain metabolism. We then model the downstream metabolic

Frontiers in Neuroscience | www.frontiersin.org 1 April 2020 | Volume 14 | Article 296

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00296
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-2945-5768
https://doi.org/10.3389/fnins.2020.00296
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00296&domain=pdf&date_stamp=2020-04-21
https://www.frontiersin.org/articles/10.3389/fnins.2020.00296/full
http://loop.frontiersin.org/people/471340/overview
http://loop.frontiersin.org/people/719195/overview
http://loop.frontiersin.org/people/727297/overview
http://loop.frontiersin.org/people/383089/overview
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00296 April 17, 2020 Time: 19:21 # 2

Isaiah et al. CSF Metabolic Response to Mycobacterium

effects expected, predicting pivotal altered metabolic pathways that would be reflected
in the urinary profiles of TBM subjects. Our cascading metabolic model should be
adjustable to account for other types of CNS bacterial infection(s) associated with
chronic neuroinflammation, typically prevalent, and difficult to distinguish from TBM, in
the resource-constrained settings of poor communities.

Keywords: gut-brain axis, tuberculous meningitis, immunological biomarker, metabolism, urinary profiling,
chronic neuroinflammation, bacterial infectious diseases

INTRODUCTION

A new paradigm in neuroscience has emerged in recent
years – the brain–gut axis (BGA) – involving bidirectional
communication between the brain and gut. This implicates
a variety of pathways, including the enteric nervous system
(ENS), central nervous system (CNS), gastrointestinal tract
(GIT), endocrine system/GI hormones, and immune response,
all integrated to orchestrate the bidirectional feedback loop
of the BGA. As averred by Hippocrates, the Greek physician
acknowledged by many as the father of modern medicine,
“All disease starts in the gut.” The gut-microbiome is made
up of innumerable microbes, which function in a mutualistic
relationship with the human host (Collins et al., 2012; Zhu
et al., 2017). Currently, scientific evidence supports the notion
that homeostatic imbalance is initiated in the gut-microbiome,
mediated by several microbe-derived molecules, in the gut–
brain (“bottom-up”) direction of communication (Foster and
Neufeld, 2013; Martin et al., 2018). Stable gut microbiota are
essential for normal gut physiology and contribute to appropriate
signaling along the BGA (Forsythe et al., 2010; Cryan and
Dinan, 2012; Schroeder and Bäckhed, 2016). Over the past
decade, however, neuroscience research on the BGA has focused
on how perturbations in the gut-microbiome affect the brain
in a feedback loop, centered on the premise of “you are
what you eat” and “gut feelings” (Moos et al., 2016; Sherwin
et al., 2016; Zmora et al., 2019). Considering the bottom-
up motif, particularly its perturbations in the gut-microbiome,
can have a clear and direct effect on the host’s psychological
state-of-mind (depression, anxiety, bipolar disorder), behavior
(autism) and also in the pathogenesis and/or progression of
various neurodegenerative diseases (Alzheimer’s, Parkinson’s,
and multiple sclerosis). These disorders associated with the
bottom-up direction of communication have been succinctly and
meticulously detailed in many topical research reviews (Mayer
et al., 2014; Konturek et al., 2015; Powell et al., 2017; Zhu et al.,
2017; Martin et al., 2018; Ambrosini et al., 2019). Perturbations
of the BGA associated with non-communicable neurological
diseases – to what degree, the precise mechanism involved,
and their appropriate therapy – are not yet well understood.
Many studies on the role of microbiota in the pathogenesis of
neurodegenerative/psychiatric diseases exist, however, and their
main findings are summarized in Table 1.

The focus of this review is on the brain–gut (“top-
down”) direction of the BGA. In particular, perturbations
of brain metabolism induced by invading bacteria and, as a
consequence, gut dysbiosis. Within the contemporary paradigm

of a perturbed BGA, most of the relevant research centers on non-
communicable neurological diseases, synonymous with a slow,
gradual progression of neuroinflammation. However, the link
between the brain–gut concept and CNS bacterial infection(s)
is less prevalent in the literature, and hence the focus of this
review. The most recent and comprehensive review of the
BGA was by Cryan et al. (2019). However, only a very small
section, amounting to half a page, discusses infections and the
brain, even though bacterial penetration of the blood–brain
barrier (BBB), and subsequent infection, leads to a cascade of
events within the brain, modulating a feedback effect on the
host gut-microbiome (Dando et al., 2014; Bauer et al., 2016;
Martin et al., 2018). Bacterial infection(s) of the CNS induce an
inflammatory response via glia mediators, pivotal to establishing
communication between the host’s immune system and the brain
(DiSabato et al., 2016) and, ultimately, generating sustained
feedback on the BGA (Geyer et al., 2019).

As a proof of a novel concept for the BGA, we use three
previously validated immunological CSF markers of tuberculous
meningitis (TBM) – vascular endothelial growth factor (VEGF),
interferon-gamma (IFN-γ), and myeloperoxidase (MPO) – to
model/predict the metabolic changes, and are the basis for
postulating a metabolic cascade, expected within the brain of
a TBM patient. It is well known that important diagnostic
and prognostic information related to alterations in metabolic
cascades and disruption of homeostasis can be characterized
through metabolite profiling of urine (An and Gao, 2015; Emwas
et al., 2015). Hence, logic dictates that if the BGA exists then
the impact of chronic CNS bacterial infection(s) (such as TBM)
should be reflected in the host’s urine.

BRAIN–GUT CONCEPT

According to the brain–gut (“top-down”) concept, the brain
can alter the community structure and function of the
gut-microbiome in a bidirectional interaction feedback loop,
characterized by continuous communication between the CNS
and the GIT (Zhu et al., 2017; Karol and Agata, 2019).
The GIT is a highly complex organ involved in multiple
dynamic physiological processes, while interacting with the gut-
microbiome – an extensive and diverse community of bacteria
(Parker et al., 2018). The brain nerves (e.g., vagus nerve), which
control unconscious tasks, run from the brainstem to the gut,
maintaining the physical bidirectional communication between
the CNS and intestinal wall. The brain-to-gut signaling pathway
affects host–bacteria interactions in the GIT by influencing
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TABLE 1 | Main findings from studies describing the role of microbiota in the pathogenesis of neurodegenerative/psychiatric diseases.

Disorders Main findings References

Neurodegenerative

Parkinson’s
disease (PD)

(i) Gut microbiota influence the activity of enteric neurons, affecting cellular α-synuclein (α-syn) secretion,
characterized by the accumulation and aggregation of α-syn in the substantia nigra (SN).

Braak et al., 2003

(ii) Gastrointestinal dysfunction is present in ∼80% of PD patients. Mulak and Bonaz, 2015

(iii) α-Synucleinopathy is suggested to be an early indicator of PD pathology. Nair et al., 2018

(iv) The vagal nerve, which serves as channel for α-syn from the ENS to the CNS, is crucial for the
communication between gut microbiota and the brain.

Ulusoy et al., 2013;
Scheperjans et al., 2015;
Fitzgerald et al., 2019

(v) Pathological hallmarks of PD are a loss of dopaminergic neurons in the SN and the presence of
cytoplasmic eosinophilic inclusions termed Lewy bodies (LBs).

Lebouvier et al., 2009

(vi) Immunolabeling with α-syn antibodies have become the reference standard in the assessment of LBs
and Lewy neurites in both the CNS and peripheral nervous system. Hence, α-synucleinopathy affects all
levels of the BGA.

Lebouvier et al., 2009

Alzheimer’s
disease (AD)

(i) AD is characterized by a deposition of amyloid beta (Aβ) followed by the formation of plaques,
characterized by a progressive decline in cognitive function.

Wang et al., 2014; Jouanne
et al., 2017

(ii) Gut microbiota produce amyloids which aid bacterial cell binding, and form part of the biofilm protecting
these from destruction by host immune factors.

Friedland and Chapman, 2017

(iii) Bacterial amyloid proteins exposure to the host, from the gut, may be detrimental since they prime of the
host’s immune system against endogenous production of neuronal amyloids in the brain.

Kowalski and Mulak, 2019

(iv) Bacterial lipopolysaccharides are increased in the neocortex and the hippocampus in AD. Zhao et al., 2017

(v) Calprotectin is indicative of inflammation and has be detected in elevated amounts in the CSF, brain and
fecal matter of AD patients.

Kowalski and Mulak, 2019

Multiple
sclerosis (MS)

(i) MS is a demyelinating disease, clinically associated with autoimmune disease. Progressive degradation of
the integrity of the epithelia that comprise cellular barriers essential to maintaining the integrity of both
intestine and CNS, have been associated in MS patients suffering from autoimmunity, resulting in paralysis
and other related symptoms of MS.

Ochoa-Repáraz and Kasper,
2014; Dendrou et al., 2015;
Ochoa-Repáraz et al., 2018

(ii) Clinical signs of MS are relapse of sensory, motor and cerebellar complications; while an acute disease
stage is a characteristic feature of the relapsing-remitting MS (the latter of which are often diagnosed with
neuronal dysfunction).

Johnston and Joy, 2001;
D’Amico et al., 2016; Connick
et al., 2018

(iii) Secondary-progressive MS develops and transcends into progressive neurological impairment. D’Amico et al., 2016

(iv) Dysbiosis affects the immunological responses of the host to the microbiota, as described in an
experiment where germ-free mice with an immune dysfunction, were characterized by an imbalance
between pro- and anti-inflammatory immune cells in the gut, where after colonization of the gut with
commensal microbes restored immune function.

Mazmanian et al., 2005; Kirby
and Ochoa-Repáraz, 2018;
Ochoa-Repáraz et al., 2018

Neuropsychiatric

Autism
spectrum
disorders (ASD)

(i) Dysbiosis in children with ASD has been show to contribute to both gastrointestinal and CNS
abnormalities.

Wang et al., 2011; Santocchi
et al., 2016

(ii) Short-chain fatty acid producing bacteria, and their metabolites, especially propionic acid, has been
indicated to adversely affect the CNS and contribute to autism behavior by modulating the BGA.

De Angelis et al., 2015

(iii) Behavioral abnormalities are accompanied by imaging abnormalities in the sensory and emotion
regulation regions of the brain.

Green et al., 2013

(iv) Abnormally elevated levels of lipopolysaccharides have also been associated with the pathogenesis of
autism.

Fattorusso et al., 2019

(v) 40% of ASD patients complain of GI symptoms; abnormalities such as chronic diarrhea, constipation,
vomiting, feeding problems, reflux and abdominal pain, as well as anxiety.

Mayer et al., 2014; Fattorusso
et al., 2019

(vi) Patients with ASD also have high fecal and urinary levels of bacterially derived p-cresol, and further
exposure to p-cresol has been shown to contribute to the severity of behavioral symptoms and cognitive
impairment in ASD.

Altieri et al., 2011; Persico and
Napolioni, 2013; Gabriele et al.,
2014

(vii) Optimized remedies that are practiced include rehabilitation, educational therapy and
psycho-pharmacological approaches.

Fattorusso et al., 2019

Depression,
anxiety, and
major
depressive
disorder (MDD)

(i) Pre-clinical studies of depression, anxiety and MDD indicate that the altered brain function associated
with these, can partly be attributed to disturbances in the gut microbiota composition.

Bercik et al., 2011; Park et al.,
2013; Jiang et al., 2015; Kelly
et al., 2016

(ii) Studies have shown that the microbiome has the capacity to influence on emotional behavior, and is
associated with various parameters relating to depression pathogenesis and severity.

Bercik et al., 2011; Clemente
et al., 2012; Cryan and Dinan,
2012

(iii) Hippurate, dimethylamine and dimethylglycine, all by-products of gut microbiota, have been detected in
abnormal concentrations in MDD patients which further substantiates the aforementioned observations.

Zheng et al., 2013, 2016

(iv) Increased severity in depression and anxiety have been noted following bacterial infection in patients. Naseribafrouei et al., 2014
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the enteric microbiota indirectly via an altered intestinal
permeability, or directly via signaling molecules released into
the gut lumen from immune and enterochromaffin cells, thereby
increasing motor, sensory and secretory modalities of the
GIT (Rhee et al., 2009; Grenham et al., 2011; Eisenstein,
2016). Those signaling systems that allow the brain, in this
crosstalk communication, to influence gut-microbiome functions
in the GIT, are: (1) the endocrine-immune system, (2) the
hypothalamus–pituitary–adrenal (HPA) axis, (3) the sympathetic
and parasympathetic arms of the autonomic nervous system
(ANS), and (4) enteric nervous system (ENS) (Rhee et al.,
2009; Grenham et al., 2011; Cong et al., 2015). These signaling
systems are interlinked systematically to form a complex reflex
network, with afferent and efferent fibers (O’Mahony et al.,
2011). Hence, activation of any of these signaling systems,
either alone or in combination, might influence the composition
and functionality of enteric microbiota (Rhee et al., 2009). For
instance, under conditions of chronic stress the brain recruits
these same mechanisms, by activation of the HPA axis in the
brain, to regulate cortisol secretion. Cortisol in turn affects
various immune cells (including cytokine secretion) locally in the
gut, subsequently inducing changes to microbiota composition,
and increasing the gastrointestinal permeability (de Punder and
Pruimboom, 2015; Kelly et al., 2015; Farzi et al., 2018). Hence, an
exceedingly complex array of signaling systems, all interlinked,
lies between the brain and gut in the “top-down” concept (Aziz
and Thompson, 1998; Collins and Bercik, 2009; O’Mahony et al.,
2009; Forsythe et al., 2014; Khlevner et al., 2018; Weltens et al.,
2018; Zhao et al., 2018).

The CNS is well shielded by the BBB, the major site of blood–
CNS exchange. The barrier comprises microvascular endothelial
cells, astrocytes and pericytes, and is tasked with the regulated
passage of molecules into and out of the brain (Abbott et al.,
2010; Sochocka et al., 2017b). Neurotropic bacteria are capable
of evading host defenses, gaining access to the CNS (Dando
et al., 2014), with >95% of brain abscesses caused by bacterial
infection(s) (Sonneville et al., 2017). Furthermore, the brain may
become particularly susceptible to bacterial infection(s), if the
BBB is chronically compromised by an initial infection (Mendes
et al., 1980; Cantiera et al., 2019). Various brain cells – microglia
(resident macrophages), endothelial, ependymal, neuronal and
glial (astrocytes and oligodendrocytes) – convey innate immune
molecules that prompt the recruitment of leukocytes into the
infected CNS compartments, in order to combat invading
neurotropic bacteria (Klein et al., 2017). This process results in
a series of initial neuroinflammatory events within the brain,
as well as phagocytosis of the infecting bacteria, in an attempt
to control disease progression. Neuroinflammation in the CNS
is mediated by the production of cytokines and chemokines,
that are pivotal in the coordinated communication between
the immune system and the brain (DiSabato et al., 2016). The
host’s inflammatory reaction in the CNS is initiated by the
recognition of the invading pathogens, which in turn leads to
the local production of mediators by the glial cells comprising
microglia and astrocytes (Grandgirard et al., 2013). Thus, acute
inflammatory feedback is triggered by rapid and early activation
of mediators released by activated glial cells in the CNS due

to the infectious agent. However, when the presence of an
infectious agent persists, a chronic state of inflammation within
the brain results (Sochocka et al., 2017a) and the activated
glial cells are altered beyond “normal” proportions, which
results in progressive neurodegeneration (Kempuraj et al., 2017;
Sochocka et al., 2017a). Pattern recognition receptor (Newton
and Dixit, 2012; Suresh and Mosser, 2013) activation initiates
the release of pro-inflammatory cytokines and chemokines, in
order to modulate the immune response, leading to pleocytosis
of white blood cells (Janowski and Newland, 2017). This in
turn triggers an increased BBB permeability and the influx
of leukocytes from the blood into the CNS at the site(s)
of infection (Waisman et al., 2015; Kempuraj et al., 2017).
Although this is the mechanism by which the brain attempts
to restore homeostasis and protect itself against the invading
pathogen (More et al., 2013), the chronic production of immune
cells induces neurodegeneration. Since activated microglia have
both neuroprotective and neurotoxic functions (Kim, 2003;
Nimmerjahn et al., 2005; Dando et al., 2014; Liechti et al.,
2015; Doran et al., 2016), various toxic molecules released by
the microglia during the immune response may also inflict
neuronal injury.

BACTERIAL INFECTIONS OF THE CNS
AND THEIR EFFECT ON THE
BRAIN–GUT AXIS

Most bacterial CNS infections present acutely, including subacute
and chronic forms. Common acute bacterial CNS infections
involve Streptococcus agalactiae, Gram-negative bacilli including
Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes,
Neisseria meningitidis, and Streptococcus pneumoniae (Durand
et al., 1993; Gray, 1997; Grandgirard et al., 2013; Zhou,
2019), while subacute and chronic bacterial CNS infections,
besides Mycobacterium tuberculosis, involve Borrelia burgdorferi,
Leptospira interrogans, Treponema pallidum, Mycobacterium
leprae. Microbial pathogens can gain entry into CNS by
penetrating the BBB or via the olfactory (Kristensson, 2011). The
nasopharynx is the usual portal of entry for major meningeal
pathogens. Pathogens penetrate the olfactory epithelium, and
could potentially cross epithelial barriers into the subarachnoid
space; compromising the epithelial tissue by exposure to bacterial
virulence factors, directly infecting the olfactory sensory neurons
(Dando et al., 2014; Rey et al., 2018). Meningeal invasion
subsequently follows via penetration of the cellular barriers of
the CNS. The putative cascade of events caused by bacterial
infection(s) of the brain that alter permeability of the gut –
discussed in detail below, ultimately leads to dysbiosis.

(1) Within the cascade, the first step of bacterial invasion
involves transitioning across the compromised BBB into
the subarachnoid space. Pathogens can cause disruption
of the BBB, which enables their passage into the brain.
The various host defenses are usually inadequate to
control the infection. Leukocytes traverse the BBB and
patrol the brain parenchyma under normal conditions.
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During inflammation, as result of infection, the BBB
junctions (adherens and tight) that regulate the flux of ions,
polar molecules, and macromolecules from the systemic
circulation can be compromised, thus traffic is greatly
increased at these junctions. Bacteria may cross the BBB
by transcellular penetration after bacterial adhesion to
endothelial cells or via infected leukocytes. Pinocytosis,
increased by leukocytes combating bacteria that might
have invaded following disruption of tight junctions
or via the “Trojan horse” mechanism – phagocytes
infected with the pathogen transverse the BBB (Kim,
2003; Pulzova et al., 2009). Leukocytes, activated by
inflammatory molecules released during infection, cross
the BBB by a multistep process that involves attachment to,
and invasion through, the post-capillary venule wall and
the surrounding endothelial and parenchymal basement
membranes which differ in their laminin composition and
permeability (Owens et al., 2008; Kristensson, 2011; Dando
et al., 2014). During infection of the CNS various acute
pathological events may occur which further compromise
the CNS. The brain parenchyma is populated by resident
immune cells, the microglia, which are highly specialized
tissue macrophages.

(2) Microglia cells, the primary immune effector cells in
the brain, continuously survey the brain parenchyma
and respond to very subtle alterations in their
microenvironment and in the brain’s structural integrity
(Nimmerjahn et al., 2005). Microglia are highly motile
immune effector cells in the brain that respond to neuronal
infection and damage. The role of microglia in a healthy
brain, along with immediate reaction to brain damage, is
paramount in response to the prevention of any kind of
major brain damage. Microglia are considered essential
for communication in the intrinsic immune system
of the CNS, as well for intercellular crosstalk between
astrocytes and neurons (Kreutzberg, 1996; Stollg and
Jander, 1999; Streit, 2002; Streit et al., 2004; Akiyoshi
et al., 2018). Microglia maintain CNS health via mediators
involved in the function of neurogenesis, modeling of
synapses, excitotoxicity prevention and regulation of
neuroinflammation. Short-chain fatty acids derived from
the gut-microbiome play a pivotal role in the function
and maturation of microglia. Hence, microglia are crucial
mediators in the interaction between the CNS and the gut
microbiota (Wang et al., 2018; Abdel-Haq et al., 2019).

(3) Bacterial cell wall material, enzymes, and toxins cause
direct injury to neurons and indirect damage by increasing
vascular permeability that causes edema and further
injury. Microglial cells respond to bacterial pathogens
and neuronal injury by the production of reactive oxygen
species (ROS), nitrous oxide, and peroxynitrite. Immune
response also contribute to neurotoxicity via release of
proteases and excitatory amino acids. Several signaling
molecules, such as catecholamines, serotonin, dynorphin
and cytokines, used by the host for neuronal and
neuroendocrine signaling, are also likely to be secreted into
the gut lumen (Rhee et al., 2009).

(4) Bacterial pathogens may target neurons and glial cells,
inducing inflammation and exerting direct cytopathic
effect due to the release of their products. Thereafter, brain
cell apoptosis begins to occur. For example, Pneumolysin
and hydrogen peroxide (H2O2) are direct triggers of
Streptococcus pneumoniae. H2O2 rapidly diffuses through
eukaryotic cell membranes to damage intracellular
targets thus increasing intracellular Ca2+, damaging
mitochondria, and causing the release and translocation
of mitochondrial apoptosis-inducing factor. Increased
intracellular ROS and Ca2+ precedes morphologic changes
that lead to brain cell apoptosis (Mitchell and Andrew,
1997; Lipton and Nicotera, 1998; Braun et al., 2002;
Janowski and Newland, 2017). Brain cell apoptosis leads
to neuronal injury in the form of brain manifestations,
such as: basal ganglia and thalami communication that
become obstructive, cranial nerve dysfunction, minor
focal neurological signs, infiltrates of inflammatory cells,
exudation of protein-rich fluid, and edema (Gray, 1997;
Hussein and Shafran, 2000; Van de Beek et al., 2004;
Østergaard et al., 2005; Al Khorasani and Banajeh, 2006;
Hähnel and Bendszus, 2009; Abdulrab et al., 2010).

(5) Pathogenic bacteria that causes meningitis exhibit
antiphagocytic capsular polysaccharide ability which
enables survival within the blood. Hence, changes in the
gut involves hematogenous dissemination of bacteria,
initiating meningitis via mucosal adhesion of the organism
and subsequent systemic invasion (Seib et al., 2009; Harvey
et al., 2011; Dando et al., 2014). The intestinal immune
system is tasked to maintain homeostasis within the
gut-microbiome via the processes of minimizing direct
contact between intestinal bacteria and the epithelial cell
surface (stratification), and confining penetrant bacteria to
intestinal sites and limiting their exposure to the systemic
immune compartment (compartmentalization) (Hooper
et al., 2012; Macpherson and McCoy, 2013). Mucosal
surfaces represent the major interface and constitute the
point of entry of most infectious pathogens, and are in
contact with potentially injurious antigens (Janeway et al.,
2001; Kaetzel, 2005).

(6) Stratification of intestinal bacteria on the luminal
side of the epithelial barrier also depend on secreted
immunoglobulin A (IgA). IgA specific for intestinal
bacteria is produced with the help of intestinal dendritic
cells that sample the small numbers of bacteria penetrating
the overlying epithelium. Some meningeal pathogens
produce proteases that cleave to human immunoglobulin
subclasses (e.g., IgA1), allowing adherence of bacterial
strains to mucosal surfaces and crossing the mucosal
barrier (Lorenzen et al., 1999; Hooper et al., 2012; Brooks
and Mias, 2018). IgA1 proteases separate the pathogen-
recognition (Fab) and host signaling (Fc) components
of the antibody, thereby severing communication with
host defense cells. This also leaves pathogens coated
with cleaved Fab fragments and camouflaged from the
immune system. IgA1 proteases disable this important
defense immune molecule allowing for direct escape of the
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invading pathogen from host immunity (Woof and Russell,
2011; Marshall et al., 2017). This communication/crosstalk
involving the gut microbiota from the CNS encompasses
several channels along various neural, enteric and immune
systems. Sensory and motor fibers from the vagus nerve
connect the gut and the brainstem, and serve as a conduit
for neural signals involving the microglia. Increased
CNS inflammation signals vagal efferent nerves to relay
information about the immune status of the brain to
the gut and the gut microbes. In the same manner, vagal
afferents transduce and relay information from the GIT
to the CNS, signaling microglia via increased production
of various pro-inflammatory cytokines that modulate
neuroinflammation (Goehler et al., 1999, 2005; Borovikova
et al., 2000; Forsythe et al., 2014; Abdel-Haq et al., 2019).

URINE REFLECTS DYSBIOSIS WITHIN
BACTERIAL CNS INFECTION(S)

The CNS can communicate with the gut via signaling molecules
carried by the CSF and blood, which in turn may alter gut
composition and physiology. Evidence for this communication
between the gut and the brain includes the following: (1) it
is well known that toxins or abnormal metabolites that enter
the bloodstream are ultimately removed from the blood, in
an attempt to maintain a state of cellular homeostasis, and
excreted via the urine (Li, 2015; Wu and Gao, 2015); (2)
biomarkers for various neurological diseases are detected using
body fluids including CSF, blood and urine (An and Gao,
2015). The CSF transfers waste products to the blood, which
is filtered by the kidneys, whereby blood-borne waste products
accumulate in the urine and are then excreted (Wu and Gao,
2015). It is also well known that various perturbations or other
physiological changes in the human body – such as an altered
microbiome, for instance – may change what is considered
a normal urinary metabolome fingerprint into a new disease-
specific fingerprint (Want et al., 2010; Emwas et al., 2015;
Wu and Gao, 2015). There exists well-described examples in
the literature of metabolites found in urine that are associated
with microbial metabolism or microbial–host co-metabolism and
found to change in response to diseases where gut dysbiosis is the
predominant perturbation (Holmes et al., 2011; Vernocchi et al.,
2016; Dumas et al., 2017; Malatji et al., 2019). Furthermore, urine
is considered the preferred sample matrix for the detection of
certain metabolites, which are otherwise difficult to detect from
a blood sample due to their low concentrations. Moreover, urine
collection is considered relatively non-invasive (Bouatra et al.,
2013; Li, 2015). For these reasons, the metabolomics of urine
has been successfully exploited for new biomarker discovery in
various diseases, including neuropsychiatric disorders, such as
schizophrenia, major depressive disorder, bipolar disorder, and
autism spectrum disorder (Yap et al., 2010; Cai et al., 2012; Zheng
et al., 2013; Chen et al., 2014), and various neurodegenerative
diseases, such as PD, AD, and MS (Luan et al., 2014). Based
on the premise that the urine contains the accumulation of all
end-product metabolites of the body, logic dictates that chronic

bacterial infection(s) of the CNS should, in principle, result
in persistent feedback on the gut via the BGA, communicated
via the CSF and blood, leading to dysbiosis and an altered
urinary metabolome.

In research on infectious diseases, urinary profiling has
received much attention, in particular regarding pulmonary
tuberculosis (TB) – a disease caused by Mycobacterium
tuberculosis (Mtb) – about which several studies have been
conducted using urine for the detection of clinically relevant
biomarkers (Banday et al., 2011; Bonkat, 2012; Das et al., 2015;
Luies and Loots, 2016; Luies et al., 2017; Preez et al., 2017;
Isa et al., 2018). The detection of lipoarabinomannan (LAM),
for instance, a Mycobacterium-specific liposaccharide from the
Mtb cell wall, is an example of the basis of a well-studied
commercial ELISA assay that shows promise for its diagnostic
use in urine with a reported sensitivity of 74% and specificity
of 86.9% in a study performed on 148 confirmed TB patients
(Tessema et al., 2001); a sensitivity of 80.3% and specificity of
99% in a study conducted on 132 confirmed TB patients (Boehme
et al., 2005); and a sensitivity of 44% and specificity of 89% in
a study conducted on 195 TB-positive patients in a high-HIV
prevalence setting (Mutetwa et al., 2009). Within TBM cases
(see Box 1), the direct LAM-ELISA assay of CSF has similarly
shown a sensitivity of 64% and specificity of 86.9% in a study
including 50 TBM cases in a high-HIV-prevalence setting (Patel
et al., 2009); and a sensitivity of 43% and specificity of 91% for
definite TBM cases in a study performed on CSF collected from
the 4th ventricle, post-mortem (Cox et al., 2015). However, Bahr
et al. (2015) determined that this LAM-based TB antigen test
yielded negative results for all the CSF samples (∼100) analyzed
in their study, of whom 18 had a confirmed diagnosis of TBM.
In a short communication the following year, Bahr et al. (2016)
voiced their concern about the reliability of the LAM assay for

BOX 1 | Tuberculous meningitis (TBM).
TBM, a severe infectious disease caused by Mtb, is a chronic form of bacterial
meningitis (BM), resulting in chronic neuroinflammation often associated with
irreversible neurological damage/dysfunction. TBM develops in severity in
progressive stages (TBM stages I, II and III), and a uniform case definition
(definite, probable and possible TBM) for diagnosis has been standardized
(Marais et al., 2010). TBM is the most common form of CNS-tuberculosis (TB)
(Van Well et al., 2009) and is considered severe due to its high associated
prevalence of mortality and morbidity (Rohlwink et al., 2019). Transmitted via
infectious aerosols into the lung, Mtb may enter the circulatory system,
traverse the BBB and then enter the brain meninges (Rock et al., 2008;
Nicholas et al., 2012). Microglia, the resident macrophages of the brain, are
the cells preferentially infected by the Mtb bacilli (Rock et al., 2005). The Rich
foci (Rich and McCordock, 1933), lesions that form in the meninges,
eventually rupture, spilling the Mtb microbes, cytokines and chemokines into
the subarachnoid space, resulting in infection and extensive inflammation of
the meninges (Dastur et al., 1995; Donald et al., 2005; Rock et al., 2008). The
pathogenesis of TBM is dynamic and Mtb bacteria exhibit a resilience that
allows them to survive hostile environments, which results in a persistent
neuroinflammatory response if not treated correctly and swiftly (de Carvalho
et al., 2010; Beste et al., 2011, 2013; Warner, 2015). Despite all efforts
toward improved solutions to curbing TB since the discovery of Mtb as the
causative agent in 1882, there is still a very limited understanding of Mtb
infection within the host, especially so for TBM, and hence the need for new
biomarkers better describing this.
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use on CSF for diagnosis of TBM, and also discussed the study by
Cox et al. (2015). Ultimately, the LAM-ELISA, like many other
TB diagnostic tests, is not sufficient as a stand-alone assay for a
definitive diagnosis of TB.

Of particular interest, as it pertains to our review, is that
bacterial antigen-specific assays perform particularly poorly
when used for diagnosing bacterial CNS infection from urine
collected from patients, even in documented septicemia cases
(Barnes et al., 1998). Barnes et al. postulated that the reason for
this is that these complex polysaccharide antigens break down
before excretion in urine. Using the well-tested LAM-ELISA
assay, Blok et al. (2014) analyzed urine collected from 21 TBM
cases and obtained a sensitivity of only 4.8% and specificity of
93.1%, and hence concluded that urinary LAM detection offers
little value for the diagnosis of TBM. Although LAM is detectable
in the urine of TB cases and the CSF of TBM patients, it is
almost undetectable in urine collected from patients with TBM.
A postulated reason for this inconsistency is the inability of LAM
to transgress the BBB. This hypothesis can likely be extended
to complex bacterial antigens in general, as supported by the
results of Barnes et al. (1998). We therefore conclude from these
Mtb-antigen-specific assay studies that the diagnosis of bacterial
infection(s) of the CNS, based on the detection of bacterial
antigens in urine, is not a viable option.

For this reason, we believe that the detection of the catabolic
components (metabolites) of complex signaling pathways is a
better option for the accurate and sensitive differential diagnosis
of bacterial CNS infection(s), using urine collected from patients.
Mason et al. (2016) provided proof-of-concept by using an
untargeted gas chromatography–mass spectrometry (GC-MS)
metabolomics approach to analyze the urine of 12 confirmed
TBM cases, 19 non-TBM cases (sick controls proven negative
for both TB and meningitis) and 29 controls. This explorative
study identified urinary metabolite markers that showed two
important changes in the TBM cases: (1) a dysfunctional host
metabolism, and (2) indicators of an altered host–microbe
response in TBM (Mason et al., 2016). The indicators of
dysfunctional host metabolism included: lipolysis and ketosis
(elevated 2-hydroxybutyric acid, 3-hydroxybutyric acid, 2-
methyl-3-hydroxybutyric acid, and acetoacetic acid); perturbed
energy metabolism (elevated branched-chain amino acid
derivatives, citric acid cycle intermediates and vanillylmandelic
acid); liver damage (from the presence of 4-hydroxyphenyllactic
acid and 4-hydroxyphenylacetic acid, and highly elevated
4-hydroxyphenylpyruvic acid). Of greater importance to this
review was the discovery of those markers serving as indicators
of an altered host–microbe response in TBM, as is discussed in
greater detail below.

First, Mtb-induced changes to tryptophan metabolism was
evident, due to the presence of elevated urinary concentrations
of indole-3-acetic acid, 5-hydroxyindole acetic acid, tryptophan,
kynurenic acid and quinolinic acid, accompanied by significantly
elevated levels of N-acetylanthranilic acid (the N-acetylated
product of anthranilic acid; Paul and Ratledge, 1970, 1971, 1973),
the latter of which is a novel microbial metabolite indicative
of gut microbiota involved in the perturbed host’s tryptophan
metabolism (Mason et al., 2016). Using a similar but more

sensitive metabolomics analytical platform (GC× GC–TOFMS),
Luies and Loots (2016) independently compared urine collected
from 46 confirmed TB adults to 30 TB-negative healthy controls,
and identified similar urinary markers indicative of the same
alterations for the host’s tryptophan metabolism. They attributed
these to the result of an inflammatory response due to releases of
cytokines, specifically IFN-γ. Hence, an inflammatory response
induced by Mtb-infection, whether in the lungs or brain, results
in the release of IFN-γ, which stimulates the upregulation
of tryptophan catabolism (Yoshida et al., 1981; Taylor and
Feng, 1991; Blumenthal et al., 2012; Hashioka et al., 2017; Lu
et al., 2017). The presence of increased urinary tryptophan
catabolites therefore contributes to a differential diagnosis
of Mtb-based infection, but they do not serve as uniquely
distinctive biomarkers.

Second, Mtb–host related metabolites were identified. In
particular, significantly elevated concentrations of methylcitric
acid were speculated to be likely to have originated from
the well-characterized methylcitrate cycle of Mtb (Muñoz-
Elías et al., 2006; Savvi et al., 2008). Interestingly, a positive
correlation between urinary quinolinic acid and methylcitric acid
concentrations was observed by Mason et al. (2016) in all the
TBM patients’ urine samples collected both before and after Mtb-
specific treatment commenced. Hence, the roles of quinolinic
acid and methylcitric acid in the host are intertwined during Mtb
infection, and its treatment.

Lastly, urinary metabolite markers associated with alterations
to the gut-microbiome were identified as a major consequence of
perturbed metabolism associated with TBM. Of the significant
urinary metabolites, those that are linked to gut microbiota
were identified as uracil, hippuric acid, 4-hydroxyhippuric acid,
phenylacetylglutamine and 4-cresol (Mason et al., 2016). Luies
and Loots (2016) also identified elevated urinary concentrations
of oxalic acid and rhamnulose, as evidence for an altered
gut-microbiome in pulmonary TB. In a follow-up study
by Luies et al. (2017), the failure of treatment of TB via
standard anti-TB combination therapy was characterized
by an imbalanced gut-microbiome, with the two largest
predictors for a poor treatment outcome being two altered
micobiome urinary markers [3,5 dihydroxybenzoic acid and
3-(4-hydroxy-3-methoxyphenyl)propionic acid]. Additionally,
another independent GC-MS metabolomics longitudinal
treatment study conducted on TB patient urine (Das et al.,
2015) showed a treatment-dependent trend of a deregulated
tyrosine–phenylalanine axis, also associated with an abnormal
microbiome. Considering these urinary TB metabolomics
studies, although not yet fully understood, strong evidence exists
for the association of TB disease and an altered microbiome,
detectable via altered metabolite markers present in urine
collected from TB patients.

Independent urinary metabolomics studies on pulmonary TB,
therefore, although not related to the CNS but still involving
an infectious disease distinguished by chronic inflammatory
response(s), support the findings of Mason et al. (2016) in
characterizing chronic neuroinflammation from TBM through
urinary profiling. Herein lies the strength of untargeted
metabolomics studies – the complementary evidence of three
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independent, open-minded analyses of metabolomics data
obtained from urine on a similar analytical platform with a
common, general hypothesis of the importance of the gut
microbiota. For the remainder of this review, we focus on TBM
and take a validated 3-marker CSF immunological signature of
TBM and discuss it in conjunction with previously identified,
altered urinary metabolomics markers of TBM.

VALIDATED 3-MARKER CSF
IMMUNOLOGICAL SIGNATURE OF TBM

Bacteriological confirmation of TBM from CSF is not always
possible, especially in children, so that diagnosis is mostly
based on a combination of clinical findings, CSF analysis and
radiological results (Marais et al., 2010). Since various biomarker-
based tests of the host have shown promise in extrapulmonary
pleural-TB diagnostics, it has been thought that these same tests
could also be used to diagnose TBM (Chegou et al., 2008).
Recent technology has allowed for the screening for many
such biomarkers, using as little as 3 µL of CSF via Luminex
multiplex cytokine-beaded arrays. With clinical application, host
biomarkers could potentially be added to the current TBM
diagnostic armamentarium, in order to provide an earlier and
more efficient diagnosis.

A preliminary 3-marker CSF biosignature, comprising VEGF,
IL-13 and cathelicidin LL-37 (cut-off values 42.92, 37.26, and
3221.01 pg/mL, respectively), correctly diagnosed childhood
TBM with a sensitivity and specificity of 52 and 95%, respectively
(Visser et al., 2015). The same 3-marker CSF biosignature, tested
on a different cohort of 23 children, however, revealed lower
sensitivity (30.4%), yet a similar specificity (91.7%), with different
cut-off values. In this same cohort of 23 children with TBM and
24 controls, VEGF, IFN-γ, and MPO provided good accuracy
with an AUC of 0.97, up to 91.3% sensitivity and up to 100%
specificity, with cut-off values of >9.4, >99.5, and >25,823
pg/mL, respectively (Manyelo et al., 2019). Hence, VEGF, IFN-
γ, and MPO in combinaton was validated by Manyelo et al.
(2019) as a 3-marker CSF immunological signature of TBM.
The background behind these three markers is now described,
in order to provide insights into how they led to our predictive
metabolic model.

VASCULAR ENDOTHELIAL GROWTH
FACTOR (VEGF)

VEGF, a 46 kDa glycosylated homodimeric cytokine protein,
is expressed intracellularly in several cell types, including
microglia (Cohen et al., 1996). It is a potent growth factor
inducer of vascular endothelial cell proliferation, vascular
permeability (Soker et al., 1997) and angiogenesis (Connolly,
1991; Yancopoulos et al., 2000). Endothelial changes associated
with VEGF include: (1) separation of intercellular tight
junction, (2) increased vesicle transport, and (3) formation of
vesico-vacuolar organelles, all of which results in increased
macromolecular transport over the endothelial barrier (Feng

et al., 1996; Wang et al., 2001). Classically associated with chronic
inflammatory diseases, such as rheumatoid arthritis (Fava et al.,
1994), VEGF is also associated with the increased permeability,
and subsequent dysfunction, of the BBB (Dobrogowska et al.,
1998; Proescholdt et al., 1999; Harrigan et al., 2002) and in
the pathogenesis of brain edema related to ischemia, trauma,
vasculitis and tumors (Van Bruggen et al., 1999; Viac et al., 1999).
VEGF exhibits direct neuroprotective effects during in vitro
ischemia (Jin et al., 2000). Another study showed that topical
application of VEGF on the cerebral cortex induces a reduction
of infarct size in a rat model of transient cerebral ischemia
(Hayashi et al., 1998).

In 2001, Van der Flier et al. showed no detectable CSF
VEGF concentrations in patients with viral meningitis (VM),
whereas 30% (11/37) of those patients with bacterial meningitis
(BM) displayed detectably elevated concentrations of CSF VEGF
(ranging from <25 to 633 pg/mL). Furthermore, elevated VEGF
has been associated with an upregulation of MMP-9 (Wang and
Keiser, 1998) – see Box 2 – which additionally contributes to
BBB disruption in BM (Paul et al., 1998). Van der Flier et al.
(2001) also indicated the VEGF index in BM (calculated as
[VEGFCSF/VEGFplasma]/[albuminCSF/albuminplasma]) to be 6.2
[0.6–42], which indicates that CSF VEGF is a result of intrathecal
production. This increase in CSF VEGF could be associated with:
(1) a change in mental status, (2) seizures, (3) an elevated CSF
WBC count (with neutrophils being the main source of VEGF),
(4) elevated CSF protein and higher CSF:serum albumin ratios
(marker of BBB breakdown), (5) severe BBB disruption, and,
eventually, (6) death.

Within TBM, VEGF is localized in the microvessels and
perivascular cells (Matsuyama et al., 2001). Tumor necrosis-alpha
(TNF-a), associated with pathogenesis of TBM (Tsenova et al.,
1999), is a known inducer of VEGF (Ryuto et al., 1996). In a
follow-up investigation conducted by Van der Flier et al. (2004),
the prevalence of elevated CSF VEGF concentrations in TBM
patients was 58% (15/26) (at 98 ± 31 pg/mL) with a calculated
VEGF index of 486 ± 976, the latter once again indicative of

BOX 2 | Matrix metalloproteinases (Kolb et al., 1998; Leib et al., 2000;
Shapiro et al., 2003; Lee et al., 2004).
MMPs are a large family of zinc-dependent proteolytic enzymes. Their main
function involves remodeling of the connective tissues by degrading
extracellular matrix molecules and are regulated by tissue inhibitors of
metalloproteinases. These many compounds are subdivided according to
their main substrates:

• Gelatinases: MMP-2, MMP-9.
• Collagenases: MMP-1, MMP-8, MMP-13.
• Stromelysins: MMP-3, MMP-10, MMP-11.

MMP-2 and MMP-9 digest type IV collagen and are subsequently implicated
in the breakdown of the BBB via dissolution of the basement membrane
underlying the endothelial cells. MMP-2 and MMP-9 production is strongly
correlated with the development of neurological sequelae and induced by
pro-inflammatory cytokines (IFN-γ) and other mediators (such as MPO). The
amount of MMP present in CSF varies, depending on the severity of
inflammation. MMP-2 and MMP-9 are detected in elevated amounts in the
CSF of meningitis cases (TBM, VM and BM), with MMP- 9 correlating strongly
with the number of neutrophils in VM.
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TABLE 2 | Summary of CSF VEGF concentrations in different types of meningitis.

TBM BM VM

CSF VEGF 142.8 pg/mL
[28.1–225.7]a

144.4 ± 75.1 pg/mLd

106 ± 50 pg/mL
[44.9–336]e

14.5 pg/mL
[8.7–86.5]a

47 ± 9 pg/mL
[<10–174]b

37.5 pg/mL
[<20–160]c

80.1 ± 49.5 pg/mLd

27.9 pg/mL
[7.9–48.7]a

27.6 ± 26.3 pg/mLd

aVisser et al. (2015). bVan der Flier et al. (2005). cCoenjaerts et al. (2004).
dMatsuyama et al. (2001). eHusain et al. (2008).

intrathecal production. Van der Flier et al. furthermore associated
the elevated concentrations of CSF VEGF in TBM with: (1)
significantly greater mononuclear cell counts; (2) elevated CSF
protein and higher CSF:serum albumin ratios; (3) not being
significantly correlated with the elevated ICP, decreased CSF
glucose nor with cerebral infarct on a CT scan; and (4) the
inhibition explained the clinical effect of adjuvant corticosteroid
therapy. In 2008, Hussain et al. similarly indicated significantly
increased CSF VEGF levels (106 ± 50 pg/mL [44.9–336
pg/mL]) in TBM, accompanied by a strongly positive correlation
between microvessel density and VEGF expression. Additionally,
the investigation revealed that in excised tuberculomas: (1)
VEGF expression was highest in regions of the granulomatous
reaction; (2) no VEGF was present in the areas of caseous
necrosis; (3) areas of caseation were devoid of angiogenesis;
and (4) inflammatory mononuclear cells were positive for
VEGF antigen (these included epitheloid cells, histiocytes
and macrophages). Furthermore, immunohistochemical staining
of excised tuberculoma demonstrated an elevated expression
of VEGF in the granulomatous areas, with positivity in
inflammatory mononuclear cells, Langhan’s giant cells, as well as
reactive astrocytes and fibrocytes.

Matsuyama et al. (2001) and Visser et al. (2015) both indicated
CSF VEGF to be significantly increased in TBM compared with
other types of meningitis (Table 2). Among the TBM cases,
CSF VEGF was additionally significantly higher in those patients
with hydrocephalus (196.3 ± 60.2 pg/mL vs. 119.8 ± 69.6
pg/mL) and there was a significant correlation with increased
CSF protein and CSF total cell counts (Matsuyama et al.,
2001). Visser et al. (2015) associated elevated CSF VEGF with
raised hydrocephalus and CSF protein (>1 g/L), along with
basal meningeal enhancement and hyperdensity in the basal
cisterns on non-contrast CT scans. Lastly, Matsuyama et al.
(2001) indicated that CSF VEGF localizes to microvessels and
perivascular cells in TBM.

MYELOPEROXIDASE

Myeloperoxidase (MPO), a heme enzyme (EC 1.11.1.7) and
pro-inflammatory mediator present in the primary granules of
polymorphonuclear leukocytes (PMNs), participates in oxygen-
dependent microbiocidal activity of PMNs and triggers oxidative
stress during acute and chronic inflammatory processes, resulting
in the production of ROS. MPO can be measured in CSF as

an index of inflammation (Liechti et al., 2014) and leukocyte
influx (Grandgirard et al., 2012). In a review by Ray and
Katyal (2016), MPO was clearly associated with the etiology of
neurodegenerative disorders.

MPO is synthesized in reaction to infection (Pohanka, 2013),
resulting in elevated ROS. The occurrence of oxidative stress in
meningitis patients is well-described in the literature (Koedel and
Pfister, 1999; Ray et al., 2000; Tsukahara et al., 2000; Christen
et al., 2001; Kastenbauer et al., 2002; Klein et al., 2006; Hamed
et al., 2009; Loro, 2009; Koedel et al., 2010; Mirić et al., 2010;
Barichello et al., 2011). Furthermore, significant increases in
MPO activity have been shown in BM-induced rats (Giridharan
et al., 2017), particularly within the hippocampus and frontal
cortex (Barichello et al., 2011, 2014). In a study of 59 pediatric
BM cases, Mirić et al. (2010) showed no significant correlation
between MPO and neutrophil count in CSF; however, CSF MPO
activity did correlate with various lipid peroxidation products.
Additionally, H2O2 levels in CSF were associated with elevated
BBB permeability, CSF albumin concentrations, and serum H2O2
concentrations. Lastly, it is important to note that MPO reacts
with cell matrix metalloproteinases (MMPs – see Box 2), or their
tissue inhibitors, and this is thought to contribute to the BBB
dysfunction seen in such cases.

Borelli et al. (1999) proved that purified MPO, in the
presence of H2O2, exerts a consistent killing effect on
Mtb, and that the MPO activity is both time and dose
dependent; it also requires chloride ions for efficacy. This
MPO–H2O2–Cl2 system produces hypochlorous acid (HOCl)
via activated leukocytes (Klebanoff, 2005), which in turn
serves as a strong, non-radical oxidant of a wide range
of biological compounds, although it is more selective than
hydroxyl radicals (Hampton et al., 1998), with the following
characteristics: (1) it has a preferred substrate selectivity
toward thiols and thioethers, (2) an ability to convert amines
to chloramines, (3) promotes chlorination of phenols and
unsaturated bonds, (4) oxidizes iron centers, (5) crosslinks
proteins, and (6) is membrane permeable. HOCl has also been
characterized as covalently modifying lipids and/or proteins,
resulting in local tissue damage and amplification of the
inflammatory cascade. Furthermore, HOCl, in the presence
of nitrite (NO2−) formed by stimulated PMNs, forms 3-
chlorotyrosine (3Cl-Tyr), and to a lesser degree, 3-nitrotyrosine
(3NO2-Tyr) and N-chlorotaurine (Eiserich et al., 1998). The
3Cl-Tyr is considered a specific marker of MPO-catalyzed
oxidation (Hazen and Heinecke, 1997), with GC-MS being
the preferred method for quantifying it (Hazen et al., 1997;
Winterbourn and Kettle, 2000). Other biomarkers of MPO-
derived HOCl include: chlorohydrins, protein carbonyls, anti-
HOP (hypochlorous acid-oxidized protein), antibodies, 5-
chlorocytosine, and glutathione sulfonamide. Each with their
advantages and disadvantages is described by Winterbourn
and Kettle (2000). Based on the analyses of CSF collected
from 79 confirmed pediatric BM cases, Rugemalira et al.
(2019) indicated that elevated ratios of 3Cl-Tyr:para-tyrosine
serves as a marker for MPO activation in CSF in pediatric
BM cases, and potentially also for grading the severity of
neuroinflammation. Furthermore, Rugemalira et al. (2019)
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also proved that 3NO2-Tyr can be used as a biomarker for
peroxynitrite formation and is associated with an unfavorable
outcome of BM. In a study of 59 children with confirmed
BM (Mirić et al., 2010), CSF MPO activity, although relatively
low, was significantly increased at baseline compared to
controls (n = 23), increasing even further by day 5 of
treatment. It was concluded that MPO may be involved in
the oxidative stress associated with BM, as well as potentially
contributing to BBB disruption. Marais et al. (2016) indicated
a significant increase in neutrophil-dependent inflammatory
response biomarkers, including MPO, in adult TBM and HIV
co-infection patients with paradoxical immune reconstitution
inflammatory syndrome. Lastly, Üllen et al. (2013) indicated
that BBB dysfunction associated with neuroinflammation caused
by MPO can be partially reversed by using para-aminobenzoic
acid (PABA) hydrazide, first shown by Forghani et al. (2012)
to effectively treat multiple sclerosis in mice. PABA (or vitamin
Bx) is non-essential for humans, but exhibits anti-fibrotic
properties. Fibrosis in the brain occurs via the proliferation
or hypertrophy of glial cells, such as microglia – microgliosis,
during neurotrauma caused by infection. Subsequently, PABA
may later be considered for its use as a possible adjunctive
therapeutic agent in TBM, since the inhibition of MPO has
been posited to be a valuable therapeutic approach to reduce
oxidative-stress-mediated damage in neurodegenerative diseases
(Green et al., 2004).

INTERFERON-γ

Interferon-γ (IFN-γ) is predominantly produced by CD4+ T
cells and functions by activating microglia, thereby stimulating
lymphocyte Th1 differentiation (Farrar and Schreiber, 1993)
and antimicrobial activity of the microglia (Mastroianni et al.,
1997), after infection. A plethora of literature studies report the
performance of IFN-γ release assays (IGRAs) for diagnosing TB
under different conditions. These studies are comprehensively
covered by systematic reviews and meta-analyses and include
applications to diagnosing: (1) latent Mtb infection (53 studies:
Diel et al., 2011); (2) latent Mtb infection in rheumatic patients
(11 studies: Ruan et al., 2016); (3) latent TB in patients with
autoimmune diseases under immunosuppressive therapy (17
studies: Wong et al., 2016); (4) active TB (27 studies: Sester et al.,
2011); (5) active TB among HIV-seropositive individuals (11
studies: Huo and Peng, 2016); (6) active TB in immunocompetent
children (15 studies: Laurenti et al., 2016), immunodiagnosis
of TB (75 studies: Pai et al., 2004); (7) active and latent
TB in HIV-positive populations (32 studies; Overton et al.,
2018); and (8) extra-pulmonary TB (22 studies: Zhou et al.,
2015). Similarly, several studies (Table 3) using IGRAs have
also been performed using CSF as a possible sample matrix
for diagnosing TBM, with the two main commercially used
IGRAs tested being T-SPOT.TB and QuantiFERON-TB. IGRAs
function by measuring the release of IFN-γ from T cells, after
in vitro stimulation with Mtb antigens, such as early secreted
antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-
10); they are influenced by (1) the antigenic load, (2) host

responsiveness to antigens, and (3) host–pathogen interactions
(Lu et al., 2017).

Consolidating from the literature, the CSF studies on IGRAs
as a diagnostic tool for TBM (Table 3), a weighted average of the
diagnostic performance of IGRAs (pooled from 326 TBM cases)
was calculated to give an overall average sensitivity and specificity
of 65 and 87%, respectively – insufficient for application as a
stand-alone diagnostic tool. On similar data, a meta-analysis of
6 studies from the literature, all using IGRAs conducted on CSF,
showed a pooled (156 cases) sensitivity of 77% (69–84%) and
specificity of 88% (74–95%) for TBM diagnostic applications
(Yu et al., 2016). Furthermore, IGRAs require 3–7 mL of
CSF, a volume often unobtainable, especially from children and
infants. Moreover, the measure of sensitivity and specificity is
dependent upon a pre-defined cut-off point which is currently
not yet standardized.

The use of IGRAs for the differential diagnosis of meningitis
has, however, yielded a practical outcome. Chonmaitree and
Baron (1991) analyzed CSF from 16 VM and 41 BM cases
and determined that elevated concentrations of IFN-γ were
present in 75 and 24% of these patient groups, respectively.
A review of the literature (1964–1991) by Chonmaitree and Baron
(1991) revealed a similar trend, showing elevated concentrations
of IFN-γ in 68% (133/196) of all VM patients (based on
11 studies), whereas in patients with BM, only 28% (59/189)
showed elevated IFN-γ in the pooled population (8 studies
used). Hence, patients with VM exhibit higher IFN-γ levels
than those with BM. Based upon quantified data in 50 patients
with VM, using a radioimmunoassay, Minamishima et al. (1991)
determined CSF IFN- γ to be on average 9.8 ± 7.5 UI/mL.
Minamishima et al. additionally suggested that IFN-γ produced
in the inflamed intrathecal space may be associated with the
pathogenesis of the disease, and associated the elevated CSF
IFN-γ levels with (1) CSF protein concentrations, (2) total cell
counts, and (3) number of febrile episodes. San Juan et al.
(2006), also using a radioimmunoassay on CSF collected from
patients, calculated a mean IFN-γ for definite (n = 12) and
probable (n = 8) TBM patients to be 28.7 ± 8.2 and 10.6 ± 2.8
UI/L, respectively. However, Ohga et al. (1994) showed only 3
out of the 13 BM patients investigated, and Kornelisse et al.
(1997) only 20 of 35 BM patients investigated, to have CSF
IFN-γ elevated to concentrations above the detection limit
of 10 pg/mL. In an analysis of 30 TBM patients, Lu et al.
(2016) determined, via ELISA, a mean CSF IFN-γ value for
patients with TBM to be 350.97 ± 372.94 pg/mL. Lu et al. also
determined that in 10 of these TBM patients the average CSF
IFN-γ levels were 500.48 pg/mL before treatment and 103.62
pg/mL following 4 weeks of treatment, indicating that while
IFN-γ decreased significantly (5-fold), it still remained elevated
compared to the norm, after 4 weeks of treatment (that is,
inflammation in the brain persisted). Mansour et al. (2005)
reported a highly elevated mean concentration of CSF IFN-
γ (794 ± 530 pg/mL) in 39 patients with TBM (all of whom
were HIV negative) prior to receiving medication, which was
correlated with markers of neuroinflamation in these individuals.
Mansour et al. (2005) also showed that the CSF IFN-γ remained
elevated for many weeks after treatment was begun in patients
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TABLE 3 | Performance of IGRAs on CSF from TBM cases as a stand-alone diagnostic tool.

References IGRA TBM cases (n) Sensitivity % (range) Specificity % (range)

Pan et al. (2017) T–SPOT.TB 53 61 (40–92) 97 (75–100)

Lu et al. (2017) T–SPOT.TB 61 62 (49–74) 73 (62–82)

Qin et al. (2015) T–SPOT.TB 12 92 (62–100) 93 (76–99)

Park et al. (2012) T–SPOT.TB 25 72 (51–88) 79 (66–89)

Kim et al. (2010) T–SPOT.TB 31 71 (51–86) 89 (72–98)

Patel et al. (2010) T–SPOT.TB 38 58 (41–74) 94 (83–99)

Thomas et al. (2008) T–SPOT.TB 10 90 (56–100) 100 (59–100)

Caliman-Sturdza et al. (2015) QuantiFERON-TB 63 84 98

Vidhate et al. (2011) QuantiFERON-TB 36 13 (2–40) 63 (35–85)

Weighted average diagnostic performance of IGRAs 329 65 87

with TBM, whereas in those cases diagnosed with VM and
BM the CSF IFN-γ returned to undetectable concentrations
within a couple of days post-treatment. Considering all of
the above, patients with VM and TBM exhibit a similar
increase in CSF IFN-γ levels, both far greater than in patients
with BM. This suggests that CSF IFN-γ could potentially be
used as a differential diagnostic marker for the exclusion of
BM. Furthermore, CSF IFN-γ levels in TBM cases remain
elevated for weeks following treatment, differentiating TBM
from VM. However, as described previously, in order to
acquire a definitive TBM diagnosis additional measures of CSF
parameters are needed.

In summary, the overall trend across all CSF VEGF studies
is a significantly higher concentration of VEGF in TBM patients
than in other cases of meningitis. Of further note, Van der Flier
et al. (2004) reports significantly increased CSF VEGF (178 ± 52
pg/mL) in TBM patients with nausea and vomiting, indicating
that elevated CSF VEGF has a potential direct impact on the
BGA, leading to a perturbed gut. CSF IFN-γ levels show a similar
increase in TBM and VM but less so in BM. Hence, CSF IFN-γ
levels could potentially be used for the exclusion of the diagnosis
of BM. The HOCl produced by the MPO–H2O2–Cl2 system
yields similar oxidative markers in both TBM and BM.

The addition of VEGF and MPO with IFN-γ, as part of a 3-
marker immunological biosignature of TBM in CSF (Manyelo
et al., 2019), has yielded a diagnostic measure with an AUC of
0.97, and a sensitivity and specificity of up to 91.3% and up
to 100%, respectively. Hence, this 3-marker biosignature yields
excellent results for diagnosis of TBM from a CSF sample.
But, what of the urinary metabolomics profile? If these three
immunological markers are present in the CSF of a TBM patient,
then a downstream metabolic effect, based upon the BGA, should
be reflected in the urine. This concept is explored in our proposed
predictive metabolic model that follows.

PROPOSED PREDICTIVE METABOLIC
MODEL OF TBM IN THE BRAIN BASED
UPON IFN-γ, MPO AND VEGF

Given the background of IFN-γ, MPO, and VEGF described
above, and the associated metabolic pathways of these signaling

compounds, we propose a predictive metabolic model for TBM
in the brain based upon previously published biochemistry
fundamentals. This model, illustrated in Figure 1, shows the
interaction of the overlapping metabolic cascades initiated by
TBM, and its associated 3-marker CSF immunological signature.

Our predictive metabolic model shows how increased levels
of VEGF result in a persistent metabolic burst caused by the
induction of angiogenesis (Stapor et al., 2014; Treps et al.,
2016), whereby glycolysis, and the release of glycogen from
astrocyte stores to fuel glycolysis, is increased significantly.
Secondary pathways that are subsequently upregulated include:
(1) the pentose phosphate pathway, that contributes to an
elevated synthesis of glutathione (Ben-Yoseph et al., 1996),
elevated xylulose-5-phosphate (also via phosphoenolpyruvate
in the glycolysis pathway) to fuel tryptophan catabolism
(Stephanopoulos and Simpson, 1997; Simpson et al., 1999; Maria
et al., 2018), and elevated purine and pyrimidine synthesis
(Zimmer, 1988, 1996); (2) the hexosamine pathway, which
contributes to increased O- and N-protein glycosylation,
imperative for the host’s immune response since glycosylation
controls cell migration, host defense, and antigenicity (Varki,
1993); (3) increased β-oxidation providing substrate in
the form of diacylglycerol from downstream catabolism of
dihydroxyacetone phosphate and activation of protein kinase C
from VEGF (Takahashi et al., 1999; Harhaj et al., 2006), ultimately
yielding increased acetyl-CoA; and (4) the boosted mitochondrial
citric acid (TCA) cycle, due to the increased acetyl-CoA. The
elevated TCA intermediate α-ketoglutarate (α-KG), previously
indicated to be a urinary marker of TBM (Mason et al., 2016),
contributes to glutamate synthesis and downstream glutathione
(GSH) production, the latter being a needed antioxidant,
synthesized in response to the elevated MPO.

Increased levels of IFN-γ, stimulated by Mtb-induced antigens
(Blumenthal et al., 2012; Lu et al., 2017), specifically upregulate
indoleamine dioxygenase (Yoshida et al., 1981; Taylor and Feng,
1991; Hashioka et al., 2017), the initial enzyme in the tryptophan
catabolic pathway. A massive burst in tryptophan catabolism
results in astrocyte-based kynurenic acid and microglia-based
quinolinic acid synthesis – also previously identified urinary
markers of TBM (Mason et al., 2016). Several enzymes
within the tryptophan metabolic pathway require pyridoxal-5-
phosphate (P-5-P), an active form of vitamin B6, as a cofactor.
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FIGURE 1 | Model predicting the downstream metabolic effects of VEGF, IFN-γ, and MPO in the brain, and the expected attendant urinary profile, in a TBM patient.
The bold red arrows indicate the major upregulated metabolic pathways, namely tryptophan catabolism, induced by upregulated indoleamine dioxygenase due to
IFN-γ, and increased metabolic burst (angiogenesis) via increased glycolysis. The red boxes enclose metabolic end-products within the Mtb-infected brain – protein
glycosylation, α-ketoglutarate, quinolinic acid, kynurenic acid, 3-chlorotyrosine and glutathione sulfonamide – which are the predicted metabolic brain markers of
TBM. The blue arrows indicate the transport of important metabolic components. The dashed black line, indicating oxidation of glucose to gluconolactone,
represents a transient pathway that occurs when insulin is depleted, as indicated. 6-PG, 6-phosphogluconate; R5P, ribulose-5-phosphate; UDP-GlcNAc,
UDP-N-acetylglucosamine; PEP, phosphoenolpyruvate; DHAP, dihydroxyacetone phosphate; DAG, diacylglycerol; TCA cycle, tricarboxylic acid (citric acid) cycle;
α-KG, α-ketoglutarate; Glu, glutamate; Gln, glutamine; GSH, glutathione (reduced); P-5-P, pyroxidal-5-phosphate (vitamin B6).

Deficiency of P-5-P diverts tryptophan metabolism from
production of NAD to the excessive formation of xanthurenic
acid (Oxenkrug, 2013), and subsequently apoptosis. One of
the mechanisms of insulin resistance is inflammation-induced
upregulation of tryptophan metabolism in combination with
P-5-P-deficiency-induced diversion of tryptophan metabolism
leading to formation of xanthurenic acid and other kynurenine
derivatives that affect insulin activity (Oxenkrug, 2013). It
has been shown that reduced insulin levels may lead to
uncontrolled glucose metabolism – previously described in
individuals with diabetes (American Diabetes Association, 2013),
pulmonary TB (Preez et al., 2017) and, recently, in runners
after a marathon (Stander et al., 2018), all of which are
associated with a severe inflammatory response. As depicted
in our model, uncontrolled glucose metabolism can result
in glucose being oxidized via glucose oxidase to produce
gluconolactone, in addition to hydrogen peroxide, previously
reported to occur in both diabetes and pulmonary TB
(Preez et al., 2017). The gluconolactone subsequently becomes
siphoned into the pentose phosphate pathway via hydrolysis
to form gluconic acid and phosphorylation with ATP to
produce 6-phosphogluconate lactone (Dickens and Glock, 1951;

Rohatgi et al., 2014). The consequential elevated H2O2, and
its interaction with raised MPO, leads to the activation of
various oxidative stress pathways (Hampton et al., 1998; Podrez
et al., 2000; Klebanoff, 2005), as depicted in Figure 1, and
described above. The two final urinary markers of elevated
MPO and of HOCl, via the MPO–H2O2–Cl2 system, are
predicted to be glutathione sulfonamide and 3-chlorotyrosine
(Winterbourn and Kettle, 2000).

Furthermore, the burst from both the glycolysis (via pyruvate)
and tryptophan catabolism (via hydration of kynurenine to
form alanine; Kotake and Nakayama, 1941) pathways yields
increasingly elevated levels of extracellular lactate. This lactate
pool is essential in the lately proposed astrocyte–microglia lactate
shuttle (AMLS, Mason et al., 2015), since lactate plays a dual role
of being a preferred source of energy in the brain during TBM
as well as also being neuroprotective (Mason, 2017), diverting
lactate away from neurons (thereby deactivating neurons to
protect them) toward activated microglia in an attempt to
eradicate the immediate insult/infection. This increase in lactate
in TBM is predicted to be localized in the brain for immediate use
and is not expected to be present in elevated amounts in the urine
of TBM patients.
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The predictive metabolic model presented here, although
speculative, is based upon three validated immunological
markers of TBM. The subsequent activated metabolic pathways
in the brain are based upon biochemistry fundamentals and
supported by the literature, as discussed. The end-product
metabolites that act as metabolic markers of TBM are expected
to cross the BBB and travel in the blood circulation and
interact with the gut. The principal limitation of our model
is that, in its current form, it can predict only the end-
product metabolites from the TBM-infected brain, with the
assumption that no other systemic co-infection is present.
The complex interactions with the gut microbiota are poorly
understood and require further research. However, based upon
previous urinary metabolomics studies reported in this review,
experimental evidence is emerging that points toward an altered
gut metabolism. Hence, changes in gut metabolism became the
fourth component of our proposed urinary metabolic profile
of a TBM patient. The specifics of the complex relationship
between host and gut-microbiome and the details of the altered
metabolic profile of the gut under pathophysiological states
remain a hot topic.

CONCLUSION

The significance of this review is that it takes a newly
established paradigm within the neurosciences – the BGA – and
critically examines the literature from a relatively unexplored
niche perspective – chronic neuroinflammation caused by CNS
bacterial infection(s) of the brain, using TBM as an example.
We posit that if the BGA exists then chronic neuroinflammation
within the brain caused by pathogenic bacteria (Mtb) will
influence the gut microbiota, and the ideal biofluid to analyze
this, reflecting the associated systemic changes, is urine. We
support our postulate with data from published studies on
urinary metabolomics, as follows.

First, the strength of untargeted urinary metabolomics is
clearly demonstrated in the literature. A previous untargeted
urinary metabolomics study conducted on TBM cases, by
Mason et al. (2016), yielded data that, when analyzed in a
non-biased, holisitic manner, resulted in a putative urinary
metabolic signature characterizing TBM that was interpreted in a
hypothesis-generating perspective. Independently, using similar
analytical platforms in metabolomics, Das et al. (2015) and Luies
and Loots (2016) examined urinary metabolomics profiles of
pulmonary TB patients, and came to similar conclusions – the
most significant of which, in the context of this review, were
that infection by Mtb results in an altered gut-microbiome and
this is substantiated by altered microbiome markers in the urine
of these patients.

Second, we take an independent, and initially unrelated,
study that closely examined the immunological profile of TBM,
in which three specific immunological markers in the CSF
associated with neuroinflammation – VEGF, IFN-y, and MPO –
were validated as diagnostic markers of TBM. We explored the

background behind this 3-marker CSF immunological signature
of TBM, in the context of its influence on the gut-microbiome and
the subsequently altered urinary metabolome, using previously
discovered urinary metabolites in TBM patients as proof (such as
α-KG, and the tryptophan catabolites 3-hydroxykynurenic acid
and quinolinic acid) (Mason et al., 2016). By extension, we also
predict other metabolic pathways that would be expected to be
changed within our model.

Third, we combined the sciences of immunology and
metabolomics to create a novel integrated predictive metabolic
model of TBM in the brain. By integrating relevant information
from systems biology, our predictive cascading metabolic model
should be adjustable to account for other types of bacterial
infection(s) of the CNS that cause chronic neuroinflammation,
such as neurosyphilis, bacterial brain abscesses and Lyme disease,
as well as chronic non-bacterial CNS infections that are common
in resource-constrained settings of poor communities, and
sometimes difficult to distinguish from TBM, such as cerebral
malaria and cryptococcal meningitis. Being so identified, based
upon the literature, patients with VM and TBM exhibit a similar
increase in CSF IFN-γ levels, both far greater than in patients
with BM. Hence, a predictive metabolic model of cerebral
malaria and cryptococcal meningitis would likely exclude CSF-
based IFN-y and its subsequent downstream cascading metabolic
influence – that is, no downstream tryptophan metabolic
catabolites. What remains to be done is to identify the unique
immunological markers associated with these other bacterial
infection(s) of the CNS and predict and confirm their associated
downstream metabolic markers that should be reflected in urine,
which could be used diagnostically or to characterize these
diseases better.

In short, analysis of urinary metabolic profiles offers a
wealth of metabolic information that can be traced back to
an altered gut-microbiome, and to an inherently changed
BGA, induced by chronic neuroinflammation from bacterial
infection(s) of the CNS. This metabolic information from
urine holds within it the potential to contribute to improved
and early differential diagnosis of bacterial infection(s) in the
CNS – a quicker and less invasive method of diagnosis than
currently available. The review presented here provides support
that, by taking existing validated immunological markers of
infectious diseases in conjunction with metabolomics data and
biochemistry fundamentals, it is possible to predict downstream
metabolic products, most likely detectable via urinary metabolic
profiling methods.
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