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Abstract: Sea bass (Lates calcarifer) is rich in protein, amino acids, and long-chain omega 3 (omega-3),
which have many health benefits. In East Asian food culture, soup is often eaten as a nutritional
supplement. The purpose of this study was to investigate the benefits of Hi-Q sea bass essence
(SBE) supplementation for improved exercise performance and anti-fatigue. Fifty male Institute
of Cancer Research (ICR) mice were divided to five groups (10 mice/group) and administered
different doses of SBE (EC): (1) vehicle (water); (2) isocaloric (0.94 g casein/kg/mice/day); (3) SBE-1X
(1.04 g/kg/mice/day); (4) SBE-2X (2.08 g/kg/mice/day); and (5) SBE-4X (4.16 g/kg/mice/day).
We found that SBE supplementation significantly improved more than 1.96-fold endurance exercise
performance (p < 0.05) and more than 1.13-fold glycogen storage in the liver and muscles (p < 0.05),
and had dose-dependent by SBE dose (p < 0.05). In addition, supplementation with SBE at different
doses had significant effects on the fatigue-related biochemical markers, i.e., lactate, ammonia,
and blood urea nitrogen (BUN) levels were reduced significantly (p < 0.05), and were also dose-
dependent. In conclusion, supplementation with SBE for 4 weeks was able to effectively improve
exercise performance and had an anti-fatigue effect. In addition, it did not cause any physiological or
histopathological damage.

Keywords: fish; essence; exercise; anti-fatigue

1. Introduction

Fatigue is a common and complex non-specific physiological phenomenon defined as
the inability to maintain power output and strength, and includes central nervous system
fatigue and peripheral fatigue, which can lead to serious health problems [1]. During
exercise, with the prolongation of exercise time or an increase in exercise intensity, stored
energy reserves are rapidly depleted. This can lead to a shift from aerobic metabolism to
anaerobic metabolism [2]. At this point, glycogen in the liver and muscles is metabolized
to glucose by the lactic acid energy system, which is further metabolized to meet the higher
energy demands, and in this state, the body produces large amounts of lactate [3]. Muscle
fatigue occurs when metabolites such as lactate, ammonia, blood urea nitrogen (BUN),
and inorganic phosphorus accumulate to cause intracellular acidosis, and imbalances in
reactive oxygen species (ROS) levels, internal pH, and osmotic pressure [4]. At this time,
the body cannot maintain the energy supply, and a large amount of fatigue metabolites
accumulate, which leads to a decline in exercise performance [5]. To avoid this problem,
regular exercise training combined with a balanced diet can help delay and prevent fatigue
during exercise [6], and previous research has demonstrated that nutritional supplements
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developed from natural food extracts can improve athletic performance, reduce fatigue,
and speed up recovery [7].

The intake of nutrients is not only necessary for growth and the maintenance of
life, but is also closely related to physical fatigue and energy metabolism [8]. Previous
studies found that protein, amino acid, and active peptide supplementation can reduce the
accumulation of harmful metabolites, increase antioxidant levels, and reduce fatigue [9,10].
Among them, fish meat is rich in nutrients and is a source of high-quality protein, minerals,
and essential fatty acids, especially unsaturated fatty acids, such as docosahexaenoic acid
(DHA, C22:6n3) and eicosapentaenoic acid (EPA, C20:5n3) [11]. In addition, fish meat
protein is more digestible than the majority of terrestrial meat proteins and is richer in
essential amino acids [12]. Previously study has shown that fish protein hydrolysate
(FPH) has antioxidant properties, mainly resulting from dipeptides and tripeptides, which
are more readily absorbed than free amino acids and intact proteins [13], and also has
anti-hypertension, anti-cancer, anti-inflammatory, and anti-bacterial properties and other
effects [14]. As compared with whey protein hydrolysate of equal weight, FPH has a higher
total antioxidant capacity [15]. However, fish meat is extremely difficult to preserve and is
easily spoiled after being caught. Therefore, different processing methods are needed to
improve its shelf life [16].

Boiling into soup is one of the important ways to preserve food, and it can also
preserve the nutritional content of food. In East Asia, soup is one of the most important
components of the food culture. It has different properties and nutrient contents after
cooking, depending on the items used, and plays a vital role in the health and maintenance
of the body. In addition, drinking soup can increase satiety, help people stay fit, and reduce
the incidence of obesity [17]. In addition, bioactive compounds and peptides released
during digestion, thermal pretreatment, microbial fermentation, and other technological
processing further enhance the bioactivity of foods [18]. In particular, hot-processed ready-
to-drink gravies or flavored soups are currently very popular around the world. Processing
at high temperatures and pressures for long periods (≥5 h) helps to decompose macro-
molecules in meat into micro- or nano-sized particles, effectively inhibiting free radicals in
the body and thus reducing the incidence of related conditions [19].

Asia sea bass (Lates calcarifer) is an economically important fish in Southeast Asia and
it contains high levels of protein and essential amino acids [20]. Moreover, it contains
many health-promoting polyunsaturated fatty acids, including omega-3 and omega-6 [21].
Simmering sea bass soup for long periods does not affect the free amino acids and essential
amino acids, helps to increase the availability of phenolic substances, amino acids, and
Maillard reaction products (MRPs), and has antioxidant effects [22]. Currently, it is often
used as a nutritional supplement for pregnant women, postpartum women, the elderly,
and frail and postoperative patients to enhance energy and physique. However, there
are still very few fish-related products used as sports nutrition supplements. Therefore,
the purpose of this study was to explore the potential benefits of sea bass extract (SBE)
supplementation for 4 weeks in terms of improving exercise performance and anti-fatigue
in order to elucidate the underlying mechanisms of the anti-fatigue effects and to assess
whether there are adverse effects on the body.

2. Results
2.1. Effect of SBE Supplementation on Exercise Performance

As shown on Figure 1, the exhaustive swimming times for the vehicle, isocaloric,
SBE-1X, SBE-2X, and SBE-4X groups were 6.68 ± 0.46, 6.89 ± 0.59, 13.48 ± 1.80, 16.97 ± 1.78,
and 18.33 ± 1.34 min, respectively. The values from the SBE-1X, SBE-2X, and SBE-4X groups
were 2.02-fold, 2.54-fold, and 2.74-fold (p < 0.0001) higher, respectively, than those of the
vehicle group. In addition, they were 1.96-fold, 2.46-fold, and 2.66-fold higher (p < 0.0001),
respectively, than the values from the isocaloric group. For the trend analysis, exhaustive
swimming time dose-dependently increased with SBE supplementation (p < 0.0001).
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Figure 1. Effect of supplementation with SBE on exhaustive swimming time in mice. Data are
expressed as mean ± SD (n = 10 mice per group). The different superscript letters (a, b, c, d) above
each bar indicate a significant difference between the groups (p < 0.05).

2.2. Effect of SBE Supplementation on Serum Lactate Levels after the 10-min Swim Test

Before swimming, the serum lactate level differences between each group were not
significant (p > 0.05). After 10 min of swimming, the serum lactate levels in the SBE-1X,
SBE-2X, and SBE-4X groups were 18.90% (p = 0.0007), 23.60% (p < 0.0001), and 29.00%
(p < 0.0001) lower, respectively, than those in the vehicle group. In addition, they were
lower than the isocaloric group by 18.30% (p = 0.0009), 23.00% (p < 0.0001), and 28.40%
(p < 0.0001), respectively. The lactate production rate was calculated from the lactate levels
before and 10 min after exercise. The results suggest that, as compared with vehicle group,
the SBE-1X, SBE-2X, and SBE-4X groups were significantly decreased by 16.20% (p = 0.0046),
22.50% (p = 0.0002), and 29.50% (p = 0.0001), respectively. Moreover, the values from
the SBE-1X, SBE-2X, and SBE-4X groups were 18.10% (p = 0.0015), 24.30% (p < 0.0001),
and 31.10% (p < 0.0001) lower, respectively, than those of the isocaloric group. At 10 min
after swimming, the lactate production rate had decreased dose-dependently with SBE
supplementation, with a significant trend (p < 0.0001) (Table 1).

Table 1. Effects of SBE supplementation on serum levels of lactate after the 10-min swim.

Time Point
Groups Vehicle Isocaloric SBE-1X SBE-2X SBE-5X

Lactate (mmol/L)

Before swimming (A) 3.34 ± 0.38 a 3.32 ± 0.32 a 3.25 ± 0.37 a 3.45 ± 0.29 a 3.33 ± 0.36 a

After swimming (B) 7.65 ± 0.57 c 7.26 ± 0.50 c 6.18 ± 0.71 b 6.00 ± 0.72 ab 5.54 ± 0.74 a

After a 20 min resting (C) 6.39 ± 0.47 c 6.09 ± 0.54 c 4.92 ± 0.52 b 4.76 ± 0.42 b 4.27 ± 0.52 a

Rates of lactate production and clearance

Production rate = B/A 2.30 ± 0.10 e 2.19 ± 0.09 d 1.90 ± 0.06 c 1.74 ± 0.08 b 1.66 ± 0.06 a

Clearance rate = (B − C)/B 0.16 ± 0.01 a 0.16 ± 0.03 a 0.20 ± 0.04 b 0.21 ± 0.03 b 0.23 ± 0.04 b

The lactate production rate (B/A) was the value of the lactate level after exercise (B) divided by that before exercise
(A). The clearance rate (B − C)/B was defined as the lactate level after swimming (B) minus that after 20 min of
rest (C) divided by that after swimming (B). Data are expressed as mean ± SD (n = 10 mice per group). Values in
the same row with different superscript letters (a, b, c, d, e) differ significantly between groups, p < 0.05.

After 20 min of resting following the swimming test, the serum lactate levels in the
SBE-1X, SBE-2X, and SBE-4X groups were significantly decreased as compared with the
vehicle group, i.e., by 16.30% (p = 0.0006), 25.90% (p < 0.0001), and 34.50% (p < 0.0001),
respectively. They were also 17.00% (p = 0.0009), 26.50% (p < 0.0001), and 35.00% (p < 0.0001)
lower, respectively, than those of the isocaloric group, and had decreased dose-dependently
with SBE supplementation, with a significant trend (p < 0.0001). However, the clearance
rates (the recovery effect of lactate after 10 min of exercise followed by 20 min of rest) in
the vehicle, isocaloric, SBE-1X, SBE-2X, and SBE-4X groups were 0.19 ± 0.12, 0.18 ± 0.13,
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0.16 ± 0.16, 0.23 ± 0.09, and 0.26 ± 0.08 (mmol/L). There was no significant difference
between groups (Table 1).

2.3. Effect of SBE Supplementation on Fatigue-Related Biochemical Indicators after the 10-min
Swim Test or a 90-min Swim Test and a 60-min Rest

We also evaluated the NH3 and BUN concentration after the 10-min swim test. As
shown in Figure 2A, the NH3 levels in the vehicle, isocaloric, SBE-1X, SBE-2X, and SBE-5X
groups were 167 ± 18, 144 ± 19, 145 ± 17, 133 ± 18, and 148 ± 17 (umol/L), respectively.
The SBE-1X, SBE-2X, and SBE-5X groups significantly lower than the vehicle group, i.e.,
by 13.11% (p = 0.0089), 20.42% (p = 0.0001), and 11.38% (p = 0.0221), respectively, but no
dose-dependent trend was observed.

We measured the serum BUN level after 90-min swimming test followed by 60 min of
rest. As shown in Figure 2B, the BUN levels in the SBE-1X, SBE-2X, and SBE-5X groups
were 46.5 ± 1.8, 46.5 ± 2.0, 38.5 ± 2.2, 35.5 ± 2.2, and 34.8 ± 1.5 (mg/dL), respectively.
Compared with vehicle group, the SBE-1X, SBE-2X, and SBE-5X groups were significantly
lower by 17.26% (p < 0.0001), 23.78% (p < 0.0001), and 25.22% (p < 0.0001), respectively. In
addition, they were significantly lower than isocaloric group by 17.27% (p < 0.0001), 23.79%
(p < 0.0001), and 25.23% (p < 0.0001), respectively. For the trend analysis, serum BUN levels
after the 90-min swimming test followed by 60 min of rest had decreased dose-dependently
with SBE supplementation (p < 0.0001).

Figure 2. Effect of supplementation with SBE on serum (A) NH3 and (B) BUN. Data are expressed
as mean ± SD for n = 10 mice per group. The different superscript letters (a, b, c) above each bar
indicate a significant difference at p < 0.05. NH3: blood ammonia; BUN: blood urea nitrogen.

2.4. Effect of SBE Supplementation on Liver and Muscle Glycogen Contents

The liver glycogen content in the vehicle, isocaloric, SBE-1X, SBE-2X, and SBE-5X
groups were 15.87 ± 0.93, 15.69 ± 1.24, 20.76 ± 3.65, 23.24 ± 1.98, and 23.97 ± 0.51 (mg/g
liver), respectively. The SBE-1X, SBE-2X, and SBE-5X groups were significantly greater
than vehicle group by 1.31-fold (p < 0.0001), 1.46-fold (p < 0.0001) and 1.51-fold (p < 0.0001),
respectively, also were significantly greater than isocaloric group by 1.32-fold (p < 0.0001),
1.48-fold (p < 0.0001) and 1.53-fold (p < 0.0001), respectively (Figure 3A).

The muscle glycogen content in the vehicle, isocaloric, SBE-1X, SBE-2X, and SBE-5X
groups were 1.35 ± 0.08, 1.36 ± 0.07, 1.57 ± 0.08, 1.67 ± 0.05, and 1.73 ± 0.06 (mg/g
muscle), respectively. The SBE-1X, SBE-2X, and SBE-5X groups were significantly greater
than vehicle group by 1.16-fold (p < 0.0001), 1.24-fold (p < 0.0001) and 1.28-fold (p < 0.0001),
respectively, were also significantly greater than isocaloric group by 1.15-fold (p < 0.0001),
1.22-fold (p < 0.0001) and 1.26-fold (p < 0.0001), respectively (Figure 3A).

In the trend analysis, SBE supplementation dose-dependently increased liver and
muscle glycogen contents (p < 0.0001).
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Figure 3. Effect of supplementation with SBE on (A) liver and (B) muscle glycogen. Data are
expressed as mean ± SD for n = 10 mice per group. The different superscript letters (a, b, c) above
each bar indicate a significant difference at p < 0.05.

2.5. Effect of SBE Supplementation on Biochemical Variables at the End of the Experiment

We assessed whether 4 weeks of SBE supplementation caused biochemical changes
in the blood. The results showed that there was no significant difference between the
groups in terms of liver function, renal function, blood lipids, and other indicators (p > 0.05)
(Table 2).

Table 2. Effects of SBE supplementation on biochemical parameters.

Parameters
Groups

Vehicle Isocaloric SBE-1X SBE-2X SBE-5X

AST (U/L) 73 ± 11 71 ± 7 75 ± 8 72 ± 6 74 ± 5
ALT (U/L) 47 ± 5 47 ± 5 49 ± 5 47 ± 5 47 ± 5

ALB (mg/dL) 3.44 ± 0.11 3.28 ± 0.23 3.37 ± 0.24 3.37 ± 0.32 3.35 ± 0.21
BUN (mg/dL) 27.1 ± 3.7 26.1 ± 1.9 26.3 ± 2.3 26.2 ± 2.6 26.3 ± 2.7

CREA (mg/dL) 0.43 ± 0.02 0.43 ± 0.02 0.44 ± 0.03 0.44 ± 0.03 0.43 ± 0.03
UA (mg/dL) 2.1 ± 0.8 2.1 ± 0.5 2.0 ± 0.5 2.2 ± 0.4 2.1 ± 0.8
TP (mg/dL) 5.7 ± 0.4 5.7 ± 0.4 5.7 ± 0.3 5.8 ± 0.3 5.8 ± 0.3
TG (mg/dL) 130 ± 12 131 ± 16 131 ± 13 129 ± 12 129 ± 10

CK (U/L) 252 ± 48 269 ± 46 259 ± 47 269 ± 49 269 ± 46
Data are expressed as mean ± SD (n = 10 mice per group). AST, aspartate aminotransferase; ALT, alanine
transaminase; ALB, albumin; BUN, blood urea nitrogen; CREA, creatinine; UA, uric acid; TP, total protein; TG,
triacylglycerol; CK, creatine kinase.

2.6. Subchronic Toxicity Evaluation of SBE Supplementation

As shown on Table 3, after supplementation with SBE for 4 weeks, the weight of
mice in each group exhibited a steady increase every week. Among them, there was
no significant difference in mouse water intake in each group in the 4 weeks after SBE
intervention (p > 0.05). There was also no significant difference in tissue weight among
mice, which exhibited a relatively steady weight gain. Therefore, SBE supplementation
for 4 consecutive weeks did not cause any organ hypertrophy or atrophy. In addition, as
can be observed from the histopathological section results in Figure 4, the livers, kidneys,
muscles, hearts, lungs, EFP, and BAT of the mice did not exhibit abnormalities in any group.
Therefore, we confirmed that SBE had no adverse effects on organs and tissues at the doses
tested in this study.
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Figure 4. Effect of SBE supplementation on (A) liver, (B) kidney, (C) muscle, (D) heart, (E) lung,
(F) adipocyte tissue, and (G) BAT tissue in mice. H&E stain, magnification: 200×; bar, 40 µm; BAT
magnification: 100×; bar, 80 µm.

Table 3. Effect of SBE supplementation on body weight, body composition, and water and diet intake.

Characteristics Vehicle Isocaloric SBE-1X SBE-2X SBE-5X

Initial BW (g) 29.9 ± 0.7 29.7 ± 0.6 29.7 ± 0.9 29.7 ± 0.7 29.7 ± 0.4
1st wk BW 33.8 ± 1.1 33.5 ± 1.4 33.3 ± 0.7 33.4 ± 1.3 33.4 ± 1.2
2nd wk BW 35.5 ± 1.9 35.5 ± 1.4 35.2 ± 1.4 34.8 ± 1.6 34.4 ± 1.3
3rd wk BW 36.6 ± 2.0 36.8 ± 2.0 36.7 ± 2.0 36.2 ± 2.2 35.7 ± 1.5
4th wk BW 37.4 ± 2.4 37.6 ± 2.1 37.5 ± 2.2 36.9 ± 2.3 36.5 ± 1.7
5th wk BW 37.9 ± 2.5 38.4 ± 2.1 37.9 ± 2.3 37.4 ± 2.2 36.9 ± 1.7

Final BW (g) 38.8 ± 2.7 39.0 ± 2.2 39.0 ± 1.6 38.5 ± 2.2 38.0 ± 1.2

Water intake (mL/mouse/day) 7.1 ± 0.4 7.2 ± 0.4 7.2 ± 0.5 7.1 ± 0.6 7.2 ± 0.5
Diet (g/mouse/day) 6.1 ± 0.9 6.2 ± 0.9 6.3 ± 0.8 6.1 ± 0.9 6.3 ± 0.7

Calorie intake from diet
(Chow 5001) (Kcal/mouse/day) (A) 20.5 ± 3.1 20.8 ± 2.9 21.2 ± 2.8 20.4 ± 3.0 21.1 ± 2.4
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Table 3. Cont.

Characteristics Vehicle Isocaloric SBE-1X SBE-2X SBE-5X

Calorie intake from supplements
(Kcal/mouse/day) (B) 0.0 ± 0.0 a 0.1 ± 0.0 b 0.1 ± 0.0 b 0.3 ± 0.0 c 0.5 ± 0.1 c

Total daily calorie intake
(Kcal/mouse/day) (A) + (B) 20.5 ± 3.1 20.9 ± 2.9 21.3 ± 2.8 20.7 ± 3.0 21.7 ± 2.4

Liver (g) 2.34 ± 0.30 2.31 ± 0.30 2.25 ± 0.21 2.29 ± 0.31 2.35 ± 0.16
Kidney (g) 0.64 ± 0.06 0.64 ± 0.08 0.64 ± 0.05 0.63 ± 0.05 0.63 ± 0.04
Muscle (g) 0.37 ± 0.03 0.38 ± 0.02 0.39 ± 0.04 0.36 ± 0.05 0.36 ± 0.03
Heart (g) 0.21 ± 0.03 0.21 ± 0.02 0.23 ± 0.02 0.21 ± 0.02 0.21 ± 0.02
Lung (g) 0.26 ± 0.03 0.26 ± 0.03 0.26 ± 0.03 0.26 ± 0.03 0.26 ± 0.04
EFP (g) 0.44 ± 0.08 0.43 ± 0.07 0.44 ± 0.05 0.43 ± 0.07 0.43 ± 0.05
BAT (g) 0.11 ± 0.03 0.10 ± 0.02 0.11 ± 0.02 0.11 ± 0.02 0.09 ± 0.02

Relative liver weight (%) 5.98 ± 0.38 5.86 ± 0.54 5.73 ± 0.57 5.88 ± 0.59 6.14 ± 0.27
Relative kidney weight (%) 1.63 ± 0.20 1.63 ± 0.17 1.62 ± 0.07 1.64 ± 0.14 1.64 ± 0.10
Relative muscle weight (%) 0.96 ± 0.10 0.98 ± 0.05 0.98 ± 0.12 0.94 ± 0.12 0.95 ± 0.08
Relative heart weight (%) 0.55 ± 0.07 0.52 ± 0.06 0.58 ± 0.07 0.54 ± 0.05 0.54 ± 0.05
Relative lung weight (%) 0.67 ± 0.08 0.67 ± 0.09 0.66 ± 0.07 0.66 ± 0.05 0.68 ± 0.11
Relative EFP weight (%) 1.12 ± 0.18 1.10 ± 0.17 1.11 ± 0.12 0.95 ± 0.03 0.93 ± 0.08
Relative BAT weight (%) 0.28 ± 0.07 0.26 ± 0.05 0.27 ± 0.04 0.28 ± 0.06 0.24 ± 0.05

Data are expressed as mean ± SD (n = 10 mice per group). EFP, epididymal fat pad; BAT, brown adipose tissue.
The different superscript letters (a, b, c) in the same row represent significant difference at p < 0.05.

3. Discussion

At present, the majority of studies on the anti-fatigue effects of meat protein sources
focus on terrestrial animals [23]. Moreover, studies on chicken essence account for the
vast majority of meat essence-related research [24]. A previous study noted that, despite
the same efficacy, various bioactive peptides differ between meat sources and that dif-
ferent boiling processes have an effect on nutritional content [25]. Although there are
currently few reports on the anti-fatigue properties of fish-related products, in this study,
we demonstrated that 4 consecutive weeks of SBE supplementation significantly improved
the exercise performance, glycogen storage, and significantly reduced post-exercise fatigue
metabolite production and accumulation in mice. In addition, we confirmed that SBE
supplementation does not adversely affect the organs or tissues of mice.

Past research demonstrated that fish protein is easy to digest and rich in animal-
derived protein, essential amino acids, and the long-chain omega-3s found in polyunsatu-
rated fatty acids (PUFAs) [26]. The SBE supplements in this study were rich in branched-
chain amino acid (BCAA), which are considered to be important for tissue synthesis, energy
supply, and health maintenance [27]. Previous studies noted that leucine and isoleucine
can be metabolized to acetoacetyl-CoA through transamination (TA) and enter the citric
acid cycle to generate more energy for working muscles [28]. In addition, isoleucine and
valine can be converted into α-keto acid by transamination, metabolized to succinyl-CoA,
converted into malate and pyruvate, and finally converted into alanine [29]. Alanine is
a dispensable amino acid that is synthesized endogenously by the liver and acts as an
auxiliary energy source in extreme situations, such as starvation and prolonged endurance
exercise [30]. Alanine is shuttled through the blood to the liver, converted into pyruvate
through a transamination reaction, and catalyzed by glutamate–pyruvate transaminase [31].
Pyruvate can then serve as a metabolic substrate through the gluconeogenesis pathway,
where newly formed glucose can promote muscle formation. This conversion pathway
is known as the glucose–alanine cycle [32], and although BCAA is not as direct as sugar
supplementation, in terms of increasing hepatic glucose storage, it has a positive effect.
A previous study showed that 6 consecutive weeks of BCAA-enriched supplementation
with exercise training significantly increased hepatic glycogen storage in rats [33]. This is
in accordance with the results of this study that suggest that CAA-enriched SBE has the
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effect of significantly increasing glycogen storage in the liver and muscles of mice after
4 consecutive weeks of supplementation (Figure 3).

During prolonged or vigorous exercise, large amounts of ATP are depleted, and
muscle contractions activate AMP-activated protein kinase (AMPK) by increasing the
cellular AMP/ATP ratio [34]. Activation of AMPK inhibits the ATP utilization pathways
and promotes the ATP-producing pathways, which are critical for endurance exercise [35].
Therefore, during high-intensity exercise, which is highly dependent on glycogenolysis,
glycogen availability is critical to facilitate ATP resynthesis. Glycogen is considered the
primary fuel source during prolonged moderate- and high-intensity endurance exercise [36].
When glucose levels are low, the glycogen stored in the liver and muscles replenishes the
glucose needed by the body through the glycolytic pathway. Therefore, the more glycogen
stored in the body, the more glucose available to maintain blood circulation, and the
better the exercise performance [37]. According to research, BCAAs may play a role in
glycogen metabolism during prolonged exercise, as supplementation of these amino acids
preserves liver and muscle glycogen, thereby improving exercise performance [38]. In
previous human trials, 7-day BCAA-containing beverage supplementation significantly
increased VO2max and power output [39]. In another study, BCAA-enriched chicken
essence supplementation in mice for 4 weeks not only significantly increased glycogen
stores, but also significantly improved exercise endurance performance. Additionally, it
has the benefit of improving biochemical markers of post-exercise fatigue [40]. Similar to
our findings, in addition to a significant increase in glycogen, SBE significantly improved
exercise endurance performance after 4 consecutive weeks of supplementation (Figure 1).
Better exercise performance can delay fatigue, and delaying fatigue can improve exercise
performance. Results from a previous study found that BCAA supplementation combined
with swimming training for 6 weeks promoted a significant increase in liver and muscle
glycogen storage and significantly prolonged exercise-to-failure time as compared to a
sedentary control group [41]. Additionally, BCAA supplementation may delay CNS fatigue
and improve aerobic endurance performance by increasing the ratio of free tryptophan and
reducing serotonin synthesis in the brain [42].

In past studies, lactate, ammonia, and BUN levels increasing with exercise duration
and intensity and recovering at rest were often used as indicators of post-exercise muscle
fatigue [43]. Among them, lactate is the result of anaerobic metabolism of glucose during ex-
ercise and is one of the important indicators with which to judge muscle fatigue and muscle
activity limiting factors [44]. During prolonged or strenuous exercise, the H+ concentration
increases and the pH in blood and muscle tissue decreases, thereby inhibiting glycolysis. In
addition, Ca2+ release is associated with muscle contraction, causing various metabolic and
physiological side effects, leading to muscle damage and decreased exercise capacity [45].
Furthermore, during high-intensity exercise, muscles must obtain sufficient energy from
anaerobic glycolysis, which produces lactate from glycolytic metabolism. Lactic acid is an
oxidizable substrate in the skeletal muscle and a precursor to gluconeogenesis in muscles
or the liver after exercise. As exercise progresses, the amount of oxygen absorbed and
delivered by muscle tissue decreases, thereby regulating the body by preventing pyruvate
from efficiently entering the TCA cycle and converting it into lactate. In previous stud-
ies, BCAA supplementation has been shown to significantly reduce post-exercise blood
lactate concentrations [44]. A study in athletes took BCAA at 0.2 g/kg BW for one month
found significantly lower blood lactate concentrations after exercise compared to placebo
group [46]. Another study found that BCAA supplementation significantly reduced blood
lactate concentrations after prolonged exercise compared to control group [47]. This ap-
pears to confirm that, in the current study, 4 consecutive weeks of SBE supplementation
significantly reduced post-exercise lactate concentrations and decreased the lactate product
rate (Table 1). Another indication that ammonia is a ubiquitous metabolite after exercise.
Adenosine monophosphate (AMP) is converted into inosine monophosphate (IMP) during
ATP resynthesis when the availability of adenosine triphosphate (ATP) exceeds the rate
of ATP production. At this time, during high-intensity or long-term exercise, ammonia in
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the skeletal muscle significantly increases and accumulates, mainly due to the increased
activity of purine nucleotide cycling in the skeletal muscle [48,49]. Ammonia is metabolized
to BUN through the urea cycle, so BUN is not only a marker of renal function, but can also
be considered a biomarker of ATP metabolism [50]. The results of this study were validated
in previous trials, in which BCAAs were administered with a significant reduction in
post-exercise ammonia levels [51]. Another study gave rats 6 weeks of exercise training
(5 days/week) combined with a 4.76% BCAA diet and found that had a beneficial effect on
performance by sparing glycogen in the soleus muscle (p < 0.05) and by inducing a lower
concentration of plasma ammonia [41]. In our previous study, after 4 weeks of continuous
chicken essence supplementation, it was found that the concentrations of lactate and NH3,
and the BUN level after exercise were significantly reduced in mice. In addition, it had the
effect of improving exercise performance [24]. When we supplemented mice with SBE for
4 consecutive weeks, we observed a similar effect, i.e., significantly reduced post-exercise
NH3 and BUN concentrations (Figure 2A,B).

In the current study found that after 4 consecutive weeks of SBE supplementation, the
analysis of blood parameters confirmed that there were no significant differences in liver
function, renal function, and blood lipid-related indexes between different doses of SBE
groups, which were all within a reasonable range (Table 2). In addition, no tissue damage,
lesions, or fat accumulation were found in the liver, kidney, heart, and other parts through
pathological section observation. Therefore, we do not believe that SBE supplementation
will cause any adverse harm (Figure 4).

Although in this study we demonstrated that SBE helps improve exercise performance
and delay exercise fatigue; however, there is currently little research on meat protein
as a nutritional supplement. This is especially true of fish protein and may be related
to the high cost of edible farming and aquaculture [52]. Nevertheless, the use of food
industry technology to extract fish protein and retain special biologically active peptides is
an important field of study. We expect that under the scope of sustainable management,
further marine resources can be discovered that help improve sports performance, anti-
fatigue supplements, and other efficacy mechanisms, and can also improve the utilization
rate of food.

4. Materials and Methods
4.1. Hi-Q Sea Bass Essence (SBE) Preparation

Hi-Q sea bass essence (SBE), which is processed using a range of food technologies,
was provided by Hi-Q Marine Biotech International Ltd. (Taipei, Taiwan). The detailed
process is shown in Figure 5. The recommended daily intake of SBE for an adult weighing
60 kg is 60 mL (1 mL/kg body weight). However, in this study, SBE was lyophilized for
precise supplementation in animals. After 60 mL of the product was lyophilized, 5.07 g
of lyophilized solid was obtained (8.45% freeze-dried rate). The nutritional and total
branched-chain amino acids (BCAA) data of SBE were confirmed by SGS Taiwan, Ltd.
(New Taipei City, Taiwan) and are shown in Table 4.

Table 4. Nutritional content of the SBE supplement.

Nutrition Facts 100 mL SBE

Total calories (kcal) 30.4
Protein (g/100 mL) 7.6

Fat (g/100 mL) -
Saturated fat (g/100 mL) -

Trans fat (g/100 mL) -
Moisture (g/100 mL) 94.0
Sodium (mg/100 mL) 39.6

Carbohydrate (g/100 mL) -

Total BCAA (leucine, isoleucine, and valine) 6.86% in protein
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Figure 5. SBE production process.

In this study, the SBE dose designed for humans was 5.07 g per day (lyophilized
powder). However, a conversion factor of 12.3 was used to account for the difference
between the body surface area of mice and humans, according to suggestions from the US
Food and Drug Administration. After detailed calculations, we concluded that the daily 1X
dose for mice was to be 845 mg/kg. We administered 1X, 2X, and 4X doses in this study
to compare the benefits of different doses. In addition, we added an isocaloric group to
eliminate the effects of supplemental calories.

4.2. Experimental Design

We used male institute of cancer research (ICR) mice (6 weeks old, 25–28 g/mouse)
from BioLASCO Taiwan (Yi-Lan Breeding Center, Yi-Lan County, Taiwan). All mice
were maintained at 12-h light/12-h dark cycle at room temperature (22 ± 2 ◦C) and
50–60% humidity. They were given a standard laboratory diet (No. 5001; PMI Nu-
trition International, Brentwood, MO, USA) and distilled water ad libitum, and were
allowed food ad libitum for 2 weeks prior to the experiments. The Institutional Ani-
mal Care and Use Committee (IACUC) of National Taiwan Sport University approved
this experiment (IACUC-10910). In total, 50 mice were randomly assigned to 5 groups
(10 mice/group) for oral gavage treatment for 4 weeks: (1) vehicle (vehicle control or wa-
ter only); (2) isocaloric (0.94 g casein/kg/mice/day); (3) SBE-1X (1.04 g/kg/mice/day);
(4) SBE-2X (2.08 g/kg/mice/day); and (5) SBE-4X (4.16 g/kg/mice/day). The body weight,
water consumption, and food intake were recorded each week.

4.3. Swimming Exercise Performance Test

All mice were loaded with a piece of lead that weighed 5% of the mouse’s body weight
(BW) on the tail. They were then individually placed in a cylindrical swimming pool
(65 cm high, 20 cm radius) that was filled with water to a depth of 40 cm and maintained
at 27 ± 1 ◦C. We recorded time until mouse exhaustion as the swimming endurance time.
Fatigue was defined as loss of coordinated movement or failure to return to the surface
within 8 s, as previously described [53].

4.4. Determination of Fatigue-Associated Biochemical Variables

The effects of SBE supplementation on fatigue-associated biochemical indices were
evaluated pre-exercise, post-exercise, and during rest. As previously described [54], all mice
were fasted for 12 h and blood samples were collected to analyze lactate, blood ammonia
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(NH3), and glucose at baseline, after swimming unloaded for 10 min, and after resting for
20 min. In addition, we evaluated blood urine nitrogen (BUN) after 90 min of prolonged
exercise and 60 min of rest. The serum was collected by centrifugation at 1500× g for
15 min from the blood and was measured with an automatic analyzer (model 7060, Hitachi,
Tokyo, Japan).

4.5. Clinical Biochemical Profiles

Thirty minutes after the final supplementation, all mice were euthanized using 95%
CO2 and blood samples were collected immediately. After centrifugation to collect serum,
the clinical biochemical variables, including aspartate aminotransferase (AST), alanine
transaminase (ALT), albumin, triglycerides (TG), blood urea nitrogen (BUN), creatinine,
uric acid (UA), total protein (TP), CK, and glucose, were measured using an autoanalyzer
(model 7060, Hitachi, Tokyo, Japan).

4.6. Visceral Tissue Weight and Histology Staining and Glycogen Determination

The liver, kidneys, heart, lungs, muscles, epididymal fat pad (EFP), and brown adipose
tissue (BAT) of mice were excised and weighed post-euthanization. We carefully removed,
chopped, and fixed of all the tissue in 10% formalin, and then embedded it in paraffin and
cut it into 4-µm-thick sections for morphological and pathological evaluation. Furthermore,
we used hematoxylin and eosin (H&E) to stain the sections and then a veterinary pathologist
using an optical microscope equipped with a CCD camera (BX-51, Olympus, Tokyo, Japan)
examined them. Parts of the muscle and liver tissues were stored in liquid nitrogen for
glycogen content analysis, as previously described [55].

4.7. Statistical Analysis

We used the statistical analyses software SAS 9.4 (SAS Inst., Cary, NC, USA) to calculate
the statistical differences among groups. One-way analysis of variance (ANOVA) and the
Cochran–Armitage test were used for the dose–effect trend analysis. All data are expressed
as mean ± SD for n = 10 mice per group. p < 0.05 was considered statistically significant.

5. Conclusions

In conclusion, we found that supplementation with SBE for 4 consecutive weeks not
only did not cause any physiological and pathological harm, but significantly improved
exercise endurance performance and glycogen storage. SBE could also significantly reduce
post-exercise fatigue biochemical markers, such as blood ammonia, lactate, and BUN in
a dose-dependent manner. Nevertheless, the use of food industry technology to extract
fish protein and retain special biologically active peptides is an important field of study.
This study not only confirms the benefits of meat protein as a nutritional supplement for
improving exercise performance and anti-fatigue, but also increases the future research
and application of meat protein food processing products to further explore the molecular
mechanism of its action.
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