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Abstract

Acute pain and opioid analgesia demonstrate inter-individual variability and polygenic influence. 

In 241 children of African American and 277 of European Caucasian ancestry, we sought to 

replicate select candidate gene associations with morphine dose and postoperative pain and then to 

estimate dose prediction limits. Twenty-seven single nucleotide polymorphisms (SNPs) from 9 

genes (ABCB1, ARRB2, COMT, DRD2, KCNJ6, MC1R, OPRD1, OPRM1, UGT2B7) met 

selection criteria and were analyzed along with TAOK3. Few associations replicated: morphine 

dose (mcg/kg) in African American children and ABCB1 rs1045642 (A allele, ß=−9.30, 95% CI 

−17.25–−1.35, p=0.02) and OPRM1 rs1799971 (G allele, ß=23.19, 95% CI 3.27–43.11, p=0.02); 

KCNJ6 rs2211843 and high pain in African American subjects (T allele, OR 2.08, 95% CI 1.17–

3.71, p=0.01) and in congruent European Caucasian pain phenotypes; and COMT rs740603 for 

high pain in European Caucasian subjects (A allele, OR 0.69, 95% CI 0.48–0.99, p=0.046). With 

age, body mass index, and physical status as covariates, simple top SNP candidate gene models 

could explain theoretical maximums of 24.2% (European Caucasian) and 14.6% (African 

American) of morphine dose variances.
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Introduction

Pain and opioid response are complex, interrelated phenotypes with interacting genetic and 

environmental factors that contribute to significant inter-individual variability. Although 

more than 400 genes have been reported to regulate pain pathways1, smaller subsets may 

influence specific pain modalities2. Few genes (e.g. OPRM1 and COMT) have shown even 

moderately consistent associations with acute postoperative pain and opioid analgesia and 

individual single nucleotide polymorphism (SNP) effect size has been uniformly small.3–8 

Adult studies draw principally on European Caucasian and Asian populations and 

demonstrate significant influence of racial and ethnic backgrounds.4, 7, 9–11

Exploratory pediatric studies using small candidate gene panels have shown mixed results 

for racial/ethnic differences in postoperative pain and opioid response, but also suggest 

polygenic and racial effects.12, 13 Maximal contributions of known covariates and candidate 

genes have not been determined expressly for morphine dosing and no multi-locus candidate 

gene study has addressed children of African American descent. We previously investigated 

acute pain and morphine requirement following day surgery tonsillectomy and 

adenoidectomy in opioid-naïve children of African American or European Caucasian 

ancestry and, using genome wide association study (GWAS) methodology, identified a novel 

locus (TAOK3) that accounted for 8% of morphine dose variance in European Caucasian 

subjects.14 In our retrospective African American and European Caucasian GWAS discovery 

cohorts, we sought to replicate associations of select candidate genes for morphine dose, 

high (≥7/10) pain, and low (≤3/10) pain, and, using top SNP candidate gene array modelling, 

estimate the upper limits of predicted race-specific morphine dose variance.

Materials/Subjects and methods

Subjects

This retrospective study was approved by the Children’s Hospital of Philadelphia 

Institutional Review Board with waiver of consent/assent. Final study subjects, genotyped at 

the Center for Applied Genomics (CAG), had given consent/assent previously and were 

enrolled in the Institutional Review Board-approved Study of the Genetic Causes of 

Complex Diseases. All genotyped subjects from the two largest racial cohorts in the CAG 

database meeting inclusion/exclusion criteria were studied: 241 children of African 

American ancestry and 277 children of European Caucasian ancestry. (Table 1) Subjects had 

undergone day surgery tonsillectomy and adenoidectomy, were 4–18 y of age, had no 

significant obstructive sleep apnea, were managed with morphine as the sole intravenous 

analgesic, and had documented, serial recovery room pain scores. Full descriptions of these 

discovery cohorts were reported previously.14 The primary phenotype was total 

(intraoperative plus postoperative) morphine in mcg/kg absolute body weight titrated to 

achieve comfort sufficient to go home. Two pain score-defined phenotypes were used as 

secondary outcomes: high maximum pain (≥7/10) for which additional intravenous 

analgesics were administered in the recovery room, and low maximum pain (≤3/10) where 

no further intravenous analgesia was required.
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SNP genotyping

All samples were genotyped as a part of our initial GWAS. Briefly, genomic DNA was 

extracted from blood samples of patients and genotyped on the Illumina Human-Hap550 

SNP array (Illumina, San Diego, CA, USA) or the Illumina Human610-Quad version 1 SNP 

array. Saliva-derived DNA samples from five subjects failed quality control (QC) filtering 

and were excluded from analyses. For all samples, QC filtering excluded SNPs with call rate 

<95%, Hardy-Weinberg equilibrium P-value <0.0001, and minor allele frequency <0.01.

Candidate gene selection

Using the Gene Database derived and published by the National Center for Biotechnology 

Information (NCBI) Reference Sequence and Genome Annotation Groups (https://

ncbi.nlm.nih.gov), we conducted a systematic search for genetic loci affecting acute 

postoperative or experimental pain and morphine response demonstrating both clinical and 

basic science support. Electronic query included the combined search terms “morphine and 

pain,” yielding 143 genetic loci for which 36 had supporting human clinical data. We 

excluded 23 loci because their associations were limited to chronic pain phenotypes or they 

lacked supporting mechanistic study. Only genetic variation due to individual SNPs was 

considered; copy number variation and variable tandem repeat were excluded. The final set 

of 9 established candidate genes and their 27 clinically significant variants are listed in Table 

2. The TAOK3 locus was also included for the gene-based analyses and dose prediction 

models based on its significance in our prior GWAS. Specific candidate gene and SNP 

features are further described in Supplementary Tables 1 and 2.

Statistical analysis

For the reported candidate gene variants that existed in the post-QC dataset, we extracted 

their association statistics from our GWAS dataset. For those that did not, we conducted 

imputation with the Haplotype Reference Consortium (Release 1) as the reference panel on 

the Sanger Imputation Service (https://imputation.sanger.ac.uk/). All SNP QC steps before 

and after imputation were carried out following instructions of the Sanger Imputation 

Service. Association tests were performed on variants with INFO score >0.7, following the 

same steps as we previously reported for the genotyped SNPs in our GWAS dataset. Linear 

regressions were carried out to assess association between SNPs and total morphine sulfate 

dose requirement with age, body mass index (BMI), and American Society of 

Anesthesiologists’ physical status (PS) classification as covariates. Logistic regressions and 

Fisher’s exact tests were performed for high pain and low pain phenotypes.

To understand the overall associations between the candidate genes and the three 

phenotypes, and to boost power for detecting genetic associations, we conducted gene-set 

based tests for all 10 candidate genes (including TAOK3) using the Versatile Gene-Based 

Test for Genome-wide Association (VEGAS).15 This test is based on the sum of association 

statistics from single SNPs and includes corrections for linkage disequilibrium structure. We 

defined gene boundaries to include the 50kb regions upstream and downstream of the gene 

transcript. All SNPs within these boundaries were included in deriving gene-based 

association statistics.
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In addition to testing individual SNP associations within COMT, we tested its 4 SNP 

(rs6269, rs4633, rs4818, rs4680) foundational haplotype linked to pain using linear 

regression for morphine dose and logistic regression and Fisher’s exact tests for pain 

outcomes as above.

Predictive modeling

Due to the limited size of the study cohorts, contributions from all 27 variant SNPs in the 

established candidate genes could not be reliably estimated using GCTA software.16 

Furthermore, because of the varied linkage disequilibrium patterns across the many SNPs in 

each gene and because we sought to define upper limit prediction boundaries, we explored 

only the simplest model, utilizing the SNP within each gene having the lowest GWAS P-

value for total morphine dose. Using software R, (https://r-project.org) we were then able to 

construct a general linear regression model including this best variant for each of the 10 

candidate genes (including TAOK3) as well as the covariates of age, BMI, and PS. Lastly, 

we assessed the relative importance of each variable in the linear model using the software 

package Relaimpo.17

Results

Demographics and phenotypes

Patient demographics and phenotypes by African American and European Caucasian 

ancestry are summarized in Table 1. Average total morphine dose was greater in the 

European Caucasian cohort than that in the African American cohort (P<0.001) and was 

likely need-based, with significantly fewer European Caucasian children having had ≤ 3/10 

maximum pain, compared to African American subjects (P < 0.005), and slightly more 

children in the European Caucasian cohort having had ≥ 7/10 maximum pain. Regression 

analyses confirmed age, BMI and PS to be significant covariates for total morphine dose in 

both cohorts.

Candidate gene SNP variant analyses

The association statistics for 27 SNPs from the select 9 candidate genes are presented in 

Table 3. We confirmed that the multiple candidate SNPs within KCNJ618 were not in 

significant linkage disequilibrium. (Supplementary Figure) Because our first aim was to 

replicate individual SNP contributions in two new pediatric cohorts, we did not apply 

multiple testing correction, thus significance threshold was set at P-value<0.05. In the 

African American cohort, SNPs rs1045642 in ABCB1 and SNP rs1799971 in OPRM1 
replicated for total morphine dose requirement; for high maximum pain, two SNPs in 

KCNJ6 (rs2211843 and rs2835930) reached threshold; and for low pain phenotype two 

additional SNPs in KCNJ6 (rs928723 and rs6517442) were significant. In the European 

Caucasian cohort, for total morphine dose phenotype, no candidate SNP (with the exception 

of those in TAOK3) reached significance; for high maximum pain phenotype, only SNPs 

rs740603 in COMT and rs563649 in OPRM1 were significant; for low maximum pain 

phenotype, the KCNJ6 SNP rs2835925 and OPRD1 SNP rs569356 reached significance. 

Because effect directions for rs563649 and rs569356 countered those of reference studies,
19,20 however, these SNP associations failed replication. We noted that KCNJ6 SNP 
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rs2211843 was also marginally associated with high maximum pain and low pain maximum 

phenotype in the European Caucasian cohort (P=0.07 for both phenotypes); the direction of 

effects was consistent between these two phenotypes (OR > 1 for high maximum pain 

phenotype and OR < 1 for low maximum pain phenotype in both cohorts), suggesting that 

carriers of the minor T allele require more morphine than non-carriers. In the African 

American cohort, KCNJ6 rs2835930 ORs behaved similarly between high and low pain 

phenotypes, though the latter association reached only P=0.08.

Gene-set based analyses

The VEGAS association tests are shown in Table 4. The majority of candidate genes contain 

SNPs with nominal significance (P < 0.05) for each of the three outcomes, but the tests for 

most of the selected candidate genes did not reach significance. In the African American 

cohort, ABCB1 reached significance for both morphine requirement and high pain 

phenotypes (P=0.030) and KCNJ6 was marginally associated with low pain (P=0.081). As 

expected from our prior GWAS findings, TAOK3 was associated with high pain in African 

American subjects (P=0.049). In the European Caucasian group, we also reconfirmed 

significant associations between TAOK3 and total morphine sulfate dose (P=6 ×10−5), as 

well as with high maximum pain phenotype (P=0.0015). For the remainder of candidate 

genes studied in European Caucasian subjects, we only observed significant association for 

ARRB2 with low maximum pain phenotype (P=0.026) and marginal significance of OPRM1 
(P=0.079) and COMT (P=0.057) with total morphine sulfate dose.

Association of COMT foundational haplotype with morphine requirement and pain 
phenotypes

In European Caucasian children, we confirmed the three major COMT haplotypes, with 

ATCA being most prevalent (48%) and ACCG being the least common (8.1%). (Table 5) 

The latter haplotype was associated with reduced total morphine dose requirement 

(P=0.023), a finding principally driven by male subjects. (Supplementary Table 3) The 

African American cohort exhibited greater heterogeneity in COMT haplotype combinations. 

(Table 5) The three most frequent were ACCG (28%), ATCA (26%) and GCCG (20%). 

Interestingly, a less frequent haplotype (ATCG, 4.5%) displayed consistent associations with 

all three phenotypes and was not significantly influenced by gender. (Supplementary Table 

4)

Statistical modeling for total morphine dose requirements and prediction limits

Results of the top SNP array and covariate linear regression models for African American 

and European Caucasian subjects are shown in Table 6. In African American subjects, only 

two variants reached relative importance > 0.02: rs6957599 in ABCB1 and rs858008 in 

KCNJ6. Top variants in TAOK3, OPRM1 and COMT all were of relative importance < 0.01. 

In the European Caucasian cohort, the relative importance of TAOK3 SNP rs795484 was 

0.0642. Other variants of relative importance > 0.02 include rs3778153 in OPRM1 and 

rs3788317 in COMT. The genetic factors and covariates together contributed to 24.2% 

variance in total morphine dose requirement in the European Caucasian cohort and 14.6% in 

the African American cohort.
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Discussion

This candidate gene replication study lends further support to several loci previously 

associated with acute postoperative pain and morphine analgesia (ABCB1, ARRB2, COMT, 
KCNJ6, OPRM1) and to TAOK3, but highlights the limits of and inconsistencies within the 

current opioid pharmacogenetics literature. As other investigators were unable demonstrate 

associations between 22 candidate genes and opioid analgesia in adult oncologic pain,21 we 

too were unable to replicate the majority of prior acute pain/opioid analgesia genetic 

association findings in children. Establishing the upper bounds of race-specific prediction 

models using the most significant SNPs within 10 candidate genes and 3 demographic 

covariates, we could not explain more than 25% of morphine dose variability.

In the largest genotyped African American cohort with detailed analgesia/pain phenotype 

data to date, we validated associations between morphine requirement and postoperative 

pain and SNPs within ABCB1 and OPRM1. Using gene-based testing, ABCB1 was further 

associated with both morphine requirement and high pain. The minor allele A at rs1045642 

within ABCB1 was associated with decreased morphine requirement consistent with that in 

postnephrectomy adults22 and following abdominal hysterectomy.23 In postoperative 

children treated with comparable morphine dose across rs1045642 genotype, episodes of 

severe pain were fewer in minor variant subjects.13 Furthermore, fentanyl requirements in 

intensive care24 and postoperative pain25 were reduced for those with the minor allele. 

Small, morphine-specific studies in predominantly European Caucasian subjects have not 

shown analgesic dose effects for this SNP, however.12,26–28 Differences in allelic frequencies 

of ABCB1 variants by race/ethnicity have been reported (T allele, 56.1% for European 

Caucasian subjects; 20.2% for African American.)29 With varied linkage disequilibrium 

patterns about rs1045642 and racial/ethnic frequency differences for distinct ABCB1 
haplotypes,29 consistent association for this locus cannot be expected across race.

The minor allele (G) at rs1799971 in OPRM1 was strongly associated with increased 

morphine requirement (ß= 23.2 mcg/kg, P=0.02) in children of African American descent, 

but this finding did not extend to European Caucasian subjects, where the OPRM1 locus 

overall only reached gene-based marginal significance. The non-synonymous rs1799971 

SNP in OPRM1 is the most extensively studied in opioid pharmacogenetics and has been 

shown to alter receptor expression and second messenger coupling.30,31 A comprehensive 

review and meta-analysis of this SNP and adult postoperative opioid requirements shows 

heterogeneity of effect, but robust association for G-allele carriers and higher opioid dose in 

Asians, morphine users, and patients recovering from surgery on a viscus.7 That the effect 

was stronger in morphine (versus fentanyl) analgesia-based studies,11,26,32–36 supports 

ligand-specific, variant-mediated pharmacodynamic differences at OPRM1.37 None of these 

studies included subjects of African American ancestry; however, in a study of adult 

experimental pain, the 7.4% of African American subjects with the minor allele exhibited no 

sensitivity differences.38 We hypothesize that our primary rs1799971 association finding for 

morphine dose, rather than pain, best supports OPRM1 as a pharmacogene, much as we 

believe TAOK3 to be.39 Our cohorts show that allele rarity (G minor allele frequencies of 

0.13, European Caucasian; 0.034, African American does not, in this instance, explain 

association disparities across races/ethnicities as has been proposed previously.7, 40
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Association was validated in European Caucasian children with ARRB2 and low pain 

phenotype using gene-based testing. In mice, this locus has been shown to enhance 

morphine analgesia in a knockout model41 and also following antigene RNA administration 

that selectively targets ARRB2 transcription start sites, downregulating expression.42 

ARRB2 variants can alter morphine analgesic response in adult European Caucasian 

oncology patients43 and acute nociception response variability under general anesthesia.44 

While rs7223183 represented our best SNP association, functional studies are limited and it 

remains unclear which SNP(s) is(are) most relevant. Haplotype effects are likely as has been 

shown for methadone responsiveness.45

Although several SNPs in COMT, both single variants and SNPs in combination haplotype 

have been associated with pain and opioid analgesia, only rs740603 replicated. In our 

European Caucasian subjects the A minor allele was associated with reduced odds of high 

pain, consistent with European Caucasian adult minor allele homozygotes who reported 

decreased pain levels following third molar extraction.46 It is unclear why this 2kB upstream 

intron 1 variant replicated, while the more established functional variant, rs4680, did not. 

Most studies showing decreased morphine requirements associated with the rs4680 minor 

allele (A) have been in adults of European Caucasian or Asian descent.3,8,47,48 Small, 

mixed-race pediatric studies have not consistently supported rs4680 effect direction: the A 

allele may be associated with increased pain on mobilization following surgery13 and with 

decreased postoperative analgesic administration.49 For children of African American 

descent rs4633 was of marginal significance with the T allele conferring reduced odds of 

having high pain. This is consistent with adult female T carriers of Asian descent requiring 

less postoperative morphine8 and, in a primarily European Caucasian pediatric population, 

TT homozygotes having lower maximum postoperative FLACC scores.49

The COMT locus may be better linked to functional outcomes through haplotype 6,50 and 

multigene epistatic analyses.51,52 COMT haplotype was shown to predict in vitro COMT 

activity and correlate with chronic temporomandibular joint pain development in European 

Caucasian adults.50 Although gene-based analysis showed COMT to be marginally 

associated with morphine requirement in European Caucasian subjects, foundational 

haplotypes failed replication. In fact, the high pain sensitivity haplotype (ACCG) was 

associated with decreased morphine requirement, an effect driven by males. Our effect 

direction also contrasts with a recent report of increased postoperative fentanyl requirements 

in Asian subjects with ACCG haplotype.53 However, in vivo differences in COMT activity 

and pain associated with the ACCG haplotype may result from epistatic interactions with 

other genes,52 and along with ligand-specificity, may explain result discrepancies. The less 

common ATCG haplotype, previously described in 1% of European Caucasian and African 

American subjects,49 was more likely in an African American child with low pain and had a 

consistent marginal correlation with lower morphine dose requirement. This haplotype 

deserves further investigation regarding COMT enzyme activity and opioid analgesic 

associations. Because of complex global differences in genetic variation and linkage 

disequilibrium at COMT,54 race-stratified studies are essential.

With significant and marginally significant associations representing multiple relational 

nodes across phenotype and race, our composite data suggest an important role for KCNJ6 
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in postoperative pain managed with morphine. Early studies showed gene-based differences 

in both nociception and opioid analgesia,55,56 and recent work has shown the gene product 

GIRK2 to be required for opioid-mediated peripheral analgesia.57 In European Caucasian 

adults having had total knee arthroplasty, Bruehl et al found 8 SNPs within KCNJ6 
associated with analgesic order phenotype.18 Although our replication findings for several of 

these SNPs centered on pain phenotype, each association was in the same effect direction: 

for subjects of African American ancestry, significance was replicated at rs2211843 for high 

pain (marginal in the European Caucasian cohort for both pain phenotypes); rs2835930 for 

high pain (marginal for low); and rs928723 for low pain. Children of African American 

ancestry demonstrated significant association at rs6517442 for low pain and marginal 

significance for morphine dose, also consistent with Elens et al.58 In subjects of European 

Caucasian ancestry, an additional SNP identified by Bruehl, rs2835925, was associated with 

low pain in a direction consistent with the initial discovery cohort. Despite many phenotype 

and racial consistencies, gene-based analyses for KCNJ6 showed only marginal significance 

for low pain. Few SNPs have shown functional significance in vitro, although rs2835930 

may influence KCNJ6 expression in the brain.59

With these replication results and reconfirmation of TAOK3 significance at a gene-based 

level, we were encouraged to model best SNP arrays for all studied candidate genes to 

estimate their maximum genetic contribution to morphine dose variability. Others have 

shown that SNP combinations across ABCB1, COMT, ESR1, OPRM1, and UGT2B6 better 

predict morphine requirement and pain phenotype than isolated SNP or single gene variants 

alone.5,23,51,60 While heritability may reach 60% for experimental pain and opioid analgesia 

phenotypes,9 recent work on COMT, ESR1, and OPRM1 suggests that an array of 3 – 9 

SNPs explain only 5–10.7% of variance in adult postoperative morphine consumption.5 Our 

results, which include 10 SNPs/genes and 3 demographic covariates, vary by race and 

confirm the limited potentials of current candidate gene arrays to predict morphine 

requirements. Compared to well-characterized disease states such as pediatric onset 

autoimmune disorders where GWAS-significant SNP contribution to phenotypic variance 

ranges from 16 – 85%,61 clinical opioid response in children is less well defined and more 

variable, significantly reducing potential SNP-explained phenotypic variance.

Of the associations we investigated, many were established for somewhat different 

phenotypes and each could have risen to inclusion through positive publication bias. 

Importantly, all were derived in European Caucasian or Asian populations; relevant, but 

unexamined loci with stronger genetic effects in African American subjects are possible. 

European Caucasian-derived, African American-replicated associations may reflect 

particularly robust associations, as shown for asthma.62 Our small cohorts do not allow for 

comprehensive analysis of multiple SNPs each expected to make modest contributions to 

phenotype. Candidate gene variant odds ratios are also small, making them more difficult to 

replicate. Individual SNP associations are not necessarily responsible for phenotype; causal 

SNPs could be in linkage disequilibrium with those studied. Finally, we expect that rare 

variants and additional GWAS-identified loci, such as TAOK3, now showing increased 

importance across other clinical pain and analgesia phenotypes,63 will become essential 

components of larger and more precise genetic testing arrays for morphine analgesia and 

acute postoperative pain.
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Summary

This candidate gene replication study in pediatric postoperative pain and opioid analgesia 

lends additional support to SNPs in ABCB1 (rs1045642) and OPRM1 (rs1799971) for 

morphine dose phenotype in African American subjects; COMT (rs740603) for high pain in 

European Caucasian subjects; and KCNJ6 (rs928723, rs2211843, rs2835925, rs2835930, 

rs6517442) for interrelated pain phenotypes across both races. ABCB1 (African American) 

and ARRB2 (European Caucasian) show gene level significance. COMT foundational 

haplotypes failed replication. Our prediction models explain between 14.6% (African 

American) and 24.2% (European Caucasian) of morphine dose variability. TAOK3 
(rs795484) remains a principal contributor to morphine dose in European Caucasian 

subjects.

Supplementary Material
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Table 1.

Subject Demographics and Phenotypes

Characteristics European Caucasian (n=277) African American (n=241)

Age (mo) 100.9 (45.2) 102.6 (40.2)

Sex M/F (%) 49.1/50.9 45.6/54.4

Weight (kg) 33.7 (18.9) 40.1 (23.3)

Height (cm) 129.6 (20.7) 134.1 (19.4)

BMI (kg/m2) 18.6 (4.5)
a

20.6 (6.5)
a
 p<0.001

Physical status (%) 1/2/3 20.9/75.1/4.0 15.8/81.3/2.9

Morphine (mcg/kg)
132.4 (40.9)

b
118.6 (39.8)

b
 p<0.001

Pain ≤ 3* (%) 15.7
c

26.7
c
 p<0.01

Pain ≥ 7* (%) 49.3
d

46.6
d
 p=0.596

Summary demographics including age, weight, height, and BMI and the total morphine dose phenotype are reported as mean followed by SD in 
parentheses. Specific statistical comparisons are indicated with lettered superscripts.

a,b
based on t-test for equal means

c,d
based on Fisher’s exact test

*
Maximum pain scores (normalized to a 0 – 10 scale) were not consistently reported in 10.4% of subjects and could not be included. BMI = body 

mass index, SD = standard deviation.
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Table 2.

Candidate genes and variants associated with acute postoperative or experimental pain and morphine analgesia

Gene SNP Functional Consequence Supporting Clinical Studies Supporting Basic Science

ABCB1 rs1045642 SC
3435T>C

13,22 29,64–68

ARRB2 rs1045280 SC, IV, NcTV
Ser280

44 41,42,69,70

COMT rs4680 MS, UV
Val158Met

3,8,13,47,49–52,71–74 50

rs4818 SC, UV
Leu136
408C>G/T

3,49,50,72,73,75 50

rs6269 IV, UV, UtrV5’
Promoter region for S-COMT

49,50,72,75 50

rs4633 SC, UV
His62
186C>T

8,49,50,72 50

rs740603 IV, UV
3545A>G

46

DRD2 rs6277 SC
957C>T

76 77,78

KCNJ6 rs2835859
rs1543754 rs858035
rs9981629 rs928723
rs2835925
rs2211843
rs1787337
rs2835930
rs6517442

IV, UV 18,58,79,80 55–57,81–83

MC1R rs1805007
rs1805008
rs1805009

MS, UV
Arg151Cys
Arg160Trp
Asp294His

84 84–86

OPRD1 rs1042114
rs2234918
rs569356

MS, SC, UV
Phe27Cys
Gly307

19,48 87–91

OPRM1 rs1799971
rs563649

MS, IV, NcTV,UtrV5’
A118G

7,11,20,23,32,33,36,38,40,51,92–94 95–103

UGT2B7 rs7439366 MS
Tyr268His
802C>T

23,104 105

Candidate genes from the National Center for Biotechnology Information Gene Database meeting selection criteria. IV=intron variant, 
MS=missense, NcTV=non-coding transcript variant, SC=synonymous codon, UtrV5=untranslated region variant 5 prime, UV=upstream variant 
(2kB)
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Table 3.

Candidate SNP associations with morphine dose and maximum postoperative pain in children of European 

Caucasian and African American ancestries

European Caucasians

Morphine sulfate dose (mcg/kg) High pain (≥7/10) Low pain (≤3/10)

Gene SNP A1 MAF Beta CI95 P OR CI95 P OR CI95 P

ABCB1 rs1045642 A 0.48 −4.34 −2.63,12.29 0.20 0.89 0.624,1.27 0.53 0.91 0.57,1.46 0.72

ARRB2 rs1045280 C 0.29 2.01 −5.46,9.48 0.60 0.90 0.611,1.33 0.59 0.75 0.44,1.29 0.36

COMT rs4680 A 0.48 4.22 −2.36,10.81 0.21 0.86 0.60,1.22 0.39 1.13 0.71,1.81 0.63

rs4818 G 0.43 0.71 −6.02,7.43 0.84 1.15 0.81,1.64 0.44 0.76 0.47,1.23 0.28

rs6269 G 0.44 0.09 −6.61,6.78 0.98 1.14 0.80,1.62 0.48 0.82 0.51,1.32 0.47

rs4633 T 0.48 4.22 −2.36,10.81 0.21 0.86 0.60,1.22 0.39 1.13 0.71,1.81 0.63

rs740603 A 0.46 2.96 −3.89,9.82 0.40 0.69 0.48,0.99 0.046 1.32 0.83,2.11 0.28

DRD2 rs6277 G 0.46 −4.22 −10.62,2.18 0.20 0.75 0.53,1.05 0.09 1.25 0.78,2.00 0.40

KCNJ6 rs2835859 C 0.081 −1.15 −12.57,10.27 0.84 1.28 0.68,2.39 0.44 0.42 0.13,1.41 0.18

rs1543754 C 0.5 −2.85 −9.35,3.66 0.39 1.15 0.81,1.63 0.43 1.05 0.66,1.67 0.91

rs858035 G 0.29 0.39 −6.86,7.63 0.92 1.05 0.72,1.54 0.80 1.10 0.66,1.82 0.70

rs9981629 C 0.42 −1.65 −8.52,5.21 0.64 0.84 0.59,1.21 0.35 1.11 0.69,1.78 0.72

rs928723 C 0.49 1.28 −5.60,8.16 0.72 1.05 0.74,1.51 0.77 1.24 0.78,1.98 0.41

rs2835925 G 0.19 1.70 −6.67,10.06 0.69 0.87 0.56,1.36 0.54 1.84 1.08,3.13 0.03

rs2211843 T 0.24 4.83 −2.63,12.29 0.21 1.44 0.97,2.13 0.07 0.56 0.30,1.03 0.07

rs1787337 A 0.39 0.13 −6.34,6.59 0.97 1.12 0.79,1.57 0.53 0.96 0.59,1.55 0.90

rs2835930 A 0.23 2.67 −5.33,10.67 0.51 1.19 0.78,1.80 0.43 0.99 0.57,1.73 1.00

rs6517442 C 0.36 −1.58 −9.07,5.91 0.68 1.23 0.83,1.81 0.31 0.85 0.52,1.39 0.54

MC1R rs1805007 T 0.071 0.35 −12.68,13.39 0.96 0.60 0.29,1.22 0.16 1.52 0.67,3.45 0.35

rs1805008 T 0.071 2.49 −10.89,15.88 0.72 1.00 0.50,2.01 1.00 0.80 0.30,2.10 0.82

rs1805009 C 0.022 −9.65 −31.47,12.18 0.39 1.50 0.40,5.54 0.55 0.00 IND 0.38

OPRD1 rs569356 G 0.12 −3.02 −13.3,7.26 0.57 0.70 0.40,1.22 0.21 1.92 1.03,3.56 0.05

rs1042114 G 0.12 −2.15 −12.4,8.10 0.68 0.72 0.42,1.25 0.24 1.87 1.01,3.48 0.069

rs2234918 C 0.43 −2.86 −9.48,3.76 0.40 1.25 0.88,1.76 0.22 0.86 0.53,1.38 0.55

OPRM1 rs1799971 G 0.13 −0.72 −10.4,8.96 0.88 1.30 0.78,2.16 0.32 0.96 0.48,1.90 1.00

rs563649 T 0.090 −5.96 −17.29,5.38 0.30 0.54 0.29,0.99 0.046 0.74 0.31,1.81 0.68

UGT2B7 rs7439366 C 0.46 −3.47 −9.99,3.06 0.30 0.79 0.56,1.13 0.20 1.00 0.63,1.60 1.00

African Americans

Morphine sulfate dose (mcg/kg) High pain (≥7/10) Low pain (≤3/10)

Gene SNP A1 MAF Beta CI95 P OR CI95 P OR CI95 P

ABCB1 rs1045642 A 0.21 −9.30 −17.25,−1.35 0.02 1.12 0.71,1.76 0.64 1.15 0.69,1.90 0.60

ARRB2 rs1045280 T 0.43 2.65 −3.91,9.22 0.43 0.95 0.65,1.39 0.78 0.94 0.61,1.45 0.78

COMT rs4680 A 0.28 1.26 −6.32,8.85 0.74 0.91 0.59,1.38 0.64 0.69 0.42,1.14 0.15

rs4818 G 0.16 2.56 −5.46,10.58 0.53 1.40 0.87,2.27 0.17 0.67 0.38,1.21 0.18
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rs6269 G 0.38 3.51 −3.32,10.34 0.32 1.33 0.90,1.96 0.15 0.79 0.51,1.23 0.30

rs4633 T 0.31 −2.69 −9.97,4.59 0.47 0.70 0.47,1.06 0.09 0.90 0.57,1.43 0.65

rs740603 G 0.43 −0.95 −7.68,5.79 0.78 1.01 0.69,1.49 0.94 0.92 0.60,1.42 0.71

DRD2 rs6277 A 0.14 0.80 −8.35,9.94 0.86 0.75 0.44,1.28 0.30 1.24 0.70,2.20 0.46

KCNJ6 rs2835859 C 0.35 −5.34 −12.33,1.65 0.14 1.17 0.79,1.74 0.42 0.71 0.45,1.12 0.14

rs1543754 G 0.43 2.73 −3.89,9.35 0.42 0.79 0.54,1.15 0.21 0.99 0.64,1.52 0.95

rs858035 G 0.26 −4.83 −12.37,2.72 0.21 0.94 0.61,1.44 0.77 1.24 0.77,2.00 0.37

rs9981629 C 0.37 −5.13 −11.77,1.52 0.13 0.74 0.50,1.09 0.13 0.88 0.56,1.36 0.56

rs928723 C 0.37 −4.83 −11.52,1.86 0.16 0.83 0.56,1.23 0.35 1.58 1.03,2.44 0.04

rs2835925 G 0.042 −0.65 −17.93,16.63 0.94 0.56 0.20,1.51 0.24 1.80 0.68,4.77 0.23

rs2211843 T 0.13 6.79 −3.12,16.71 0.18 2.08 1.17,3.71 0.01 0.72 0.37,1.42 0.35

rs1787337 G 0.18 −0.01 −9.29,9.28 1.00 0.75 0.46,1.24 0.26 1.38 0.81,2.36 0.23

rs2835930 A 0.29 1.03 −6.39,8.45 0.78 1.68 1.11,2.54 0.01 0.65 0.40,1.06 0.08

rs6517442 C 0.091 −9.52 −20.47,1.44 0.09 0.64 0.32,1.27 0.20 2.17 1.10,4.29 0.024

MC1R rs1805007 T 0.022 18.97 −3.46,41.39 0.10 2.71 0.69,10.63 0.14 0.30 0.04,2.40 0.23

rs1805008 T 0.016 −8.90 −35.12,17.32 0.51 0.22 0.03,1.93 0.14 2.81 0.56,14.1 0.19

rs1805009 C 0.0060 4.00 −38.32,46.32 0.85 IND IND 0.13 0.00 IND 0.39

OPRD1 rs569356 G 0.032 −7.23 −27.47,13 0.48 0.70 0.23,2.19 0.54 0.82 0.22,3.04 0.77

rs1042114 G 0.034 −4.29 −24.11,15.53 0.67 0.85 0.29,2.49 0.76 0.75 0.20,2.72 0.66

rs2234918 T 0.36 −0.60 −8.05,6.86 0.88 0.70 0.47,1.04 0.078 1.13 0.73,1.75 0.58

OPRM1 rs1799971 G 0.034 23.19 3.27,43.11 0.02 1.48 0.54,4.06 0.44 0.92 0.29,2.90 0.88

rs563649 T 0.095 4.65 −6.80,16.1 0.43 1.09 0.56,2.10 0.80 1.25 0.61,2.56 0.54

UGT2B rs7439366 T 0.29 −0.19 −7.90,7.51 0.96 0.83 0.54,1.26 0.38 1.22 0.77,1.95 0.39

SNP= single nucleotide polymorphism; MAF=minor allele frequency; CI95=95% confidence interval; P=P-value; OR=odds ratio. 
IND=indeterminant, based on minor allele frequency of 0 for either the phenotype of interest or its comparator. Significant p-values are indicated in 
bold.
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Table 4.

Candidate gene-based associations with morphine dose and maximum postoperative pain in children of 

European Caucasian and African American ancestries

European Caucasians

Gene Morphine sulfate dose High pain (≥7/10) Low pain (≤3/10)

Best SNP
a SNP Pval Gene Pval

Best SNP
a SNP Pval Gene Pval

Best SNP
a SNP Pval Gene Pval

ABCB1 rs4148732 0.047 0.652 rs7793196 0.0341 0.346 rs12720066 0.101 0.911

ARRB2 rs4346260 0.0765 0.374 rs11869640 0.00368 0.121 rs7223183 0.0076 0.0256

COMT rs3788317 0.00225 0.057 rs5993875 0.0325 0.233 rs3804047 0.0473 0.586

DRD2 rs4274224 0.0277 0.199 rs6589382 0.00534 0.227 rs4938025 0.102 0.81

KCNJ6 rs2836035 0.0174 0.542 rs11910276 0.0204 0.581 rs2836014 0.0181 0.871

MC1R rs885479 0.0618 0.138 rs3803688 0.0236 0.429 rs2302898 0.152 0.734

OPRD1 rs1338062 0.0716 0.338 rs157198 0.144 0.551 rs499062 0.0342 0.201

OPRM1 rs3778153 0.00749 0.0792 rs1319339 0.00926 0.572 rs7738859 0.0183 0.406

TAOK3 rs795484 1.01E-06 6.00E-05 rs795484 4.10E-05 0.00152 rs9943819 0.071 0.387

UGT2B7 rs7662632 0.107 0.354 rs7662632 0.0943 0.301 rs4348160 0.324 0.794

African Americans

Gene Morphine sulfate dose (mcg/kg) High pain (≥7/10) Low pain (≤3/10)

Best SNP
a SNP Pval Gene Pval

Best SNP
a SNP Pval Gene Pval

Best SNP
a SNP Pval Gene Pval

ABCB1 rs6957599 0.0137 0.0297 rs1922240 0.0192 0.0297 rs12720067 0.0427 0.578

ARRB2 rs754814 0.0678 0.727 rs9890937 0.0396 0.755 rs4790230 0.03302 0.256

COMT rs6518591 0.0331 0.5 rs737866 0.0717 0.426 rs7289747 0.00938 0.274

DRD2 rs4438071 0.0366 0.341 rs2587550 0.0279 0.446 rs4438071 0.0207 0.802

KCNJ6 rs858008 0.00294 0.563 rs2835931 0.0169 0.44 rs2835822 0.00196 0.0806

MC1R rs2302898 0.195 0.67 rs7205500 0.323 0.851 rs3803688 0.183 0.709

OPRD1 rs2236857 0.0632 0.309 rs150093 0.0053 0.119 rs150093 0.116 0.849

OPRM1 rs1294092 0.0221 0.164 rs6923231 0.00858 0.344 rs613355 0.0107 0.287

TAOK3 rs7307953 0.0958 0.504 rs428073 0.00964 0.0491 rs7299040 0.0822 0.727

UGT2B7 rs11931604 0.149 0.413 rs4587017 0.0319 0.112 rs6850028 0.00234 0.21

a
=Best SNP=SNP of the lowest P-value in each gene. Significant p-values are indicated in bold.
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Table 5.

Association of COMT foundational haplotype (rs6269, rs4633, rs4818, rs4680) with morphine dose and 

maximum postoperative pain in children of European Caucasian and African American ancestries

European Caucasians

Morphine sulfate dose (mcg/kg) High pain (≥7/10) Low pain (≤3/10)

Haplotype F Beta P F+ F− P F+ F− P

ATCA 0.48 4.22 0.21 0.45 0.50 0.386 0.51 0.47 0.502

GCGG 0.43 0.706 0.837 0.46 0.42 0.44 0.39 0.45 0.321

ACCG 0.081 −13.6 0.0227 0.085 0.078 0.784 0.098 0.079 0.565

African Americans

Morphine sulfate dose (mcg/kg) High pain (≥7/10) Low pain (≤3/10)

Haplotype F Beta P F+ F− P F+ F− P

ATCA 0.26 0.496 0.901 0.24 0.27 0.437 0.21 0.28 0.146

GCCA 0.021 8.63 0.499 0.026 0.01 0.386 0.018 0.020 0.877

GCGG 0.16 4.05 0.377 0.18 0.12 0.0852 0.12 0.16 0.204

ACGG 0.033 −8.01 0.463 0.031 0.034 0.848 0.031 0.034 0.870

ATCG 0.045 −14.1 0.0579 0.028 0.067 0.0558 0.085 0.035 0.0326

GCCG 0.20 0.731 0.861 0.21 0.21 0.892 0.20 0.21 0.911

ACCG 0.28 −0.393 0.921 0.29 0.28 0.815 0.34 0.26 0.108

F=frequency in all subjects; F+=frequency in subjects with pain phenotype; F−=frequency in subjects without.

Significant p-values are indicated in bold.
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Table 6.

Linear regression model components for morphine dose by race: top SNPs by candidate gene and covariates

European Caucasians African Americans

SNP variant Gene Estimate 
(mcg/kg)

Relative 
importance

SNP variant Gene Estimate 
(mcg/kg)

Relative 
importance

rs1338062_T OPRD1 −7.75 0.0128 rs2236857_G OPRD1 −9.61 0.0168

rs7662632_C UGT2B7 −5.84 0.0118 rs11931604_C UGT2B7 −12.48 0.0041

rs3778153_A OPRM1 9.53 0.0249 rs1294092_C OPRM1 −1.95 0.0005

rs4148732_G ABCB1 9.44 0.0152 rs6957599_A ABCB1 19.21 0.0263

rs4274224_G DRD2 9.96 0.0190 rs4438071_T DRD2 −6.32 0.0087

rs795484_A TAOK3 15.66 0.0642 rs7307953_C TAOK3 8.13 0.0078

rs885479_A MC1R 19.88 0.0112 rs2302898_T MC1R −3.36 0.0019

rs4346260_A ARRB2 3.89 0.0041 rs754814_G ARRB2 −4.73 0.0065

rs2836035_C KCNJ6 −13.57 0.0143 rs858008_T KCNJ6 10.52 0.0280

rs3788317_T COMT −10.48 0.0260 rs6518591_G COMT 6.11 0.0093

Age_(mo) 0.010 0.0099 Age_(mo) −0.25 0.0223

BMI (kg/m2) −3.13 0.0728 BMI (kg/m2) 0.85 0.0105

PS (1,2,3) −8.05 0.0139 PS (1,2,3) 7.62 0.0339

Linear regression model components for total morphine dose requirement in children of European Caucasian or African American descent. BMI= 
body mass index, PS= American Society of Anesthesiologists’ physical status classification, SNP= single nucleotide polymorphism.
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