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Abstract

Objective

The aim of this study was to investigate whether Transcranial Magnetic Stimulation (TMS)

applied over the medial line of the scalp affects the subjective perception of continuous pain

induced by means of electric stimulation. In addition, we wanted to identify the point of stim-

ulation where this effect was maximum.

Methods

Superficial electrical stimulation was used to induce continuous pain on the dominant hand.

At the beginning of the experiment we reached a pain rating of 5 on an 11-point numeric rat-

ing scale (NRS; 0 = no pain and 10 = maximum tolerable pain) for each subject by setting in-

dividually the current intensity. The TMS (five pulses at increasing intensities) was applied

on 5 equidistant points (one per session) over the medial line of the scalp in 13 healthy vol-

unteers using a double-cone coil to stimulate underlying parts of the brain cortex. In every

experimental session the painful stimulation lasted 45 minutes, during which pain and dis-

tress intensities NRS were recorded continuously. We calculated the effect of adaptation

and the immediate effect of the TMS stimulation for all locations. Additionally, an ALE (Acti-

vation Likelihood Estimation) meta-analysis was performed to compare our results with the

neuroimaging literature on subjective pain rating.

Results

TMS stimulation temporarily decreased the pain ratings, and pain adaptation was sup-

pressed when applying the TMS over the FCz site on the scalp. No effect was found for

distress ratings.
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Conclusions

The present data suggest that the medial cortex in proximity of the cingulated gyrus has a

causal role in adaptation mechanisms and in processing ongoing pain and subjective sen-

sation of pain intensity.

Introduction
Pain, as defined by International Association for the Study of Pain (2011), is “an unpleasant
sensory and emotional experience associated with actual or potential tissue damage, or de-
scribed in terms of such damage”. Beyond the peripheral components of the nociceptive system
lies a network of brain areas, dubbed the pain matrix [1], that elaborates sensory and biochemi-
cal inputs and produces the perception of pain. The lateral structures of this network are
thought to have a sensory function and therefore code intensity and spatial localization of pain,
while medial areas (such as the anterior (ACC) and (MCC) middle cingulate cortex) play a cog-
nitive, attentive and emotional role [2,3]. The mechanisms that generate the experience of pain
can be inhibited (antinociception) or facilitated (pronociception) [3,4] by the descending pain
modulatory system. This system is constituted by a network of areas such as the ACC, the insu-
lae, the amygdalae, the periaqueductal gray (PAG) and the rostral ventromedial medulla [4]. In
particular, the antinociceptive component of the pain modulatory system, which counts the
cingulate cortex among its components, is responsible for opiate analgesia and also for effects
such as placebo analgesia or the inhibition of pain during a fight or flee response [5]. In partic-
ular, the ACC and the anterior part of the MCC are involved in almost all phenomena related
to the antinociception. For instance, a functional imaging study [6] showed that the ACC acti-
vates both after administration of exogenous opioids and in conditions where the subjects were
given a placebo, showing a link between placebo analgesia and the opioid system, while some
studies [6,7] have strengthened the evidence supporting the importance of the rostral ACC in
analgesia and its connection with other areas of the antinociceptive network (amygdalae and
PAG). The ACC also seems to be linked to adaptation mechanisms: it was shown [8] that the
subgenual ACC (sgACC) plays a role in the habituation to painful stimuli administered during
several days, while other authors [9] suggested that the sexual differences in the connectivity of
the sgACC with the antinociceptive system can at least in part explain the higher level of pain
adaptation shown by woman compared to men. The role of the ACC in habituation is con-
firmed by [10], as the authors found that the rostral ACC and the PAG were the only areas of
the pain matrix whose activity increased more in subjects with quicker physiological (electro-
dermal activity, EDA) habituation than in subjects with a slower EDA during a prolonged
painful stimulus. They conclude that functional activation in these areas reflects an antinoci-
ceptive process that could mediate habituation in the other areas of the pain matrix.

As it seems clear that the rostral cingulate cortex is involved in pain adaptation, it is interest-
ing to investigate whether this phenomenon can be modulated by noninvasive stimulation. It is
known that pain can be modulated by both invasive [11] and noninvasive [12] brain stimula-
tion. There are few accounts of the stimulation of the ACC using TMS, and this might be partly
explained by the fact that the ACC (as other relatively profound brain structures) is not easily
reachable using a figure of eight coil stimulation [13]. Some studies tried to stimulate the medi-
al frontal cortex (MFC), which lies immediately above the anterior part of the MCC, and the re-
sults were contradictory. One of the first studies to investigate the effect of TMS on nociception
[14] used pairs of TMS pulses (ppTMS) to disrupt the activity of areas known to be involved in
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pain processing. The authors found that while stimulation of the primary sensorimotor area
(SMI) has a pronociceptive effect, the stimulation of the MFC seems to be antinociceptive. This
is in contrast with the majority of recent studies [12], but shows a dissociation between the ef-
fect of the stimulation of the MFC and of SMI, which recent studies have found [12,15]. Stimu-
lation of the MFC has been shown to increase the perception of pain: [16] applied ppTMS over
the MFC and found that when the pulses are applied shortly (25–75 ms) after the painful
stimulation, ppTMS can enhance the sensation of pain. The authors interpreted it as an effect
of the interference between the magnetic pulses and the nociceptive input, and [15] found that
high frequency repetitive TMS (rTMS) on MI increased sensory perception and pain tolerance
thresholds. On the contrary, the pain tolerance threshold was decreased after the application of
the rTMS over the MFC, but not the sensory perception. The heterogeneity in the results could
be explained by noting that the temporal distance between the painful stimulus and TMS
pulses, as well as rTMS frequency, can affect the magnitude and the direction (excitatory or in-
hibitory) of the effect on behavior [17,18]: therefore, applying different stimulation protocols
can obtain different results.

In this study, we adopted a protocol of TMS stimulation similar to the ones that have been
shown to disrupt the activity of the targeted brain area. In order to be able to stimulate deeper
brain structures (ACC and MCC) we used a double-cone coil [19]. We tested the effect of the
TMS stimulation on various points along the sagittal midline of the brain (from AFz to CPz in
EEG 10–10 system) to assess the different roles played by different parts of the cingulate cortex
in pain processing. To be able to study habituation mechanisms we adopted a continuous pain
paradigm, recording pain and distress ratings for the whole experiment. In this way, the effect
of the TMS would necessarily occur during pain processing and we were able to avoid the un-
certainty dependent on the interval between painful stimulation and the application of TMS.
We expected to see no effect on either pain or distress ratings when applying the TMS on scalp
sites correspondent to the caudal MCC and posterior cingulate cortex (in our case, when stim-
ulating Cz and CPz). On the contrary we expected that the stimulation of frontal points (corre-
sponding to Fz, FCz and AFz) would interfere with the antinociceptive and pronoceptive
mechanisms mediated by the activity of the ACC or of the anterior part of the MCC.

Materials and Methods

Subjects
Thirteen healthy subjects (7 males, 6 females), all right handed (as tested by Oldfield Handed-
ness Questionnaire), took part in the experiment (see Table 1). The experiment consisted of 6
sessions (one per week) of about 1 hour. In each session, participants were subjected to

Table 1. Characteristic of the sample group.

Mean (SD)

N, M/F 13, 7/6

Age [years] 25 (2)

Depression [HADS] 6 (2)

Distress [DT] 3 (1)

Nasion-Inion distance [cm] 36 (3)

Stimuli intensity [mA] 8.7 (2.7)

M = Males, F = Females, SD = standard deviation, HADS = Hospital Anxiety and Depression Scale,

DT = Distress Thermometer

doi:10.1371/journal.pone.0128765.t001
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continuous pain for 45 minutes by means of superficial electrical stimulation onto the domi-
nant hand. Subjective ratings of pain (expressed on a 11-point numeric rating scale, NRS,
where 0 = no pain and 10 = maximum tolerable pain) and distress (0 = no discomfort and
10 = maximum tolerable distress) were gathered at the start of the experiment and at defined
time points (1, 3, 5, 7, 9, 11, 13, 15, 20, 25, 30, 35, 40 and 45th minute). The NRS is widely em-
ployed in both clinical and research setting, is a valid and reliable tool to measure the different
dimensions of pain [20–21] and has the added benefit of being easy to administer.

No subject was distressed, depressed or anxious (Table 1), as demonstrated by the scores ob-
tained in the clinical self-reported scales Hospital Anxiety and Depression Scale (HADS, cut-
off> 9) and Distress Thermometer (DT, cut-off> 5). No subject reported minor (contusions,
tooth- ear- head- or throat-ache) or major pain or any stressful events occurring up to 4 weeks
prior or during the study period. The study was conducted in accordance with the Declaration
of Helsinki: all subjects gave written consent before participating, and the study was approved
by the local ethical committee (Comitato Bioetico d’Ateneo dell’Università di Torino).

Experimental stimuli
Two pairs of electrodes were positioned on the dominant middle finger and the index finger at
a distance of 1 cm. Monophasic, rectangular electrical pulses with duration of 0.5 ms were ap-
plied with alternating polarity via a constant current stimulator (Digitimer S7, Digitimer, Hert-
fordshire, UK) at 6 Hz, with the electrical pulses targeting a different finger every 30 sec. Before
the start of the first session we established for each subject the intensity of the current
(Table 1), aiming for a pain rating of 5 on the 11-point NRS. This value was used as reference
for all subsequent sessions, allowing only small (< 10% of the first session) adjustments to
compensate for factors which could have affected the perceived pain. The rating of 5 in the
NRS scale was described to the subjects as a stimulation that was clearly painful and in other
circumstances would have prompted them to take an analgesic, but could be endured for 45
minutes. No instruction regarding distress ratings was given to participants.

TMS stimulation
To assess the effect of TMS on the mechanisms of pain adaptation and perception we used a
TMS apparatus (MAG&More, München), equipped with a double-cone coil, to stimulate the
underlying brain cortex. We applied the stimulation after 5 minutes from the beginning of the
painful stimulation. Each participant underwent 6 experimental sessions: a baseline session
and five experimental ones. In each experimental session we stimulated one of 5 equidistant
points along the medial cortex in antero-posterior direction (10–10 IFCN system [22]: AFz, Fz,
FCz, Cz, CPz). The sessions were administered in a pseudorandom order, counterbalanced
within subjects. The TMS protocol of stimulation consisted of 5 single pulses, temporally
spaced by 30 seconds, at 50%, 70%, 90%, 100% and 100% power fraction of the maximum
TMS output, for a total of 2 minutes, in order to achieve the maximum possible depth of stimu-
lation while minimizing the distress for the experimental subject by gradually building up the
intensity. The TMS stimuli were biphasic, with the current travelling in the anterior-posterior
direction first, and the coil was placed on the scalp in a way so that the handle was kept perpen-
dicular to the skull.

Data analysis
Data were analyzed using IBM SPSS Statistics Version 21.0 (IBM Corp, Armonk, NY) and
Matlab 7.10 (Matworks, Natwick, MA). To assess the habituation effect in the baseline condi-
tion we performed a regression (B = angular coefficient) using the subjective NRS ratings
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(pain/distress) as dependent variable and time as independent variable, pooling the data from
all subjects. To verify whether TMS stimulation affected the habituation, we first performed a
preliminary 2 (time: first and last timepoint) x 6 (location: baseline, AFz, Fz, FCz, Cz, CPz) re-
peated measure ANOVA. The interaction time by location, if significant, was further explored
by means of regression analysis for each location individually.

To assess the immediate effect of TMS on pain and distress, we computed for each session a
paired sample Wilcoxon test, comparing the scores gathered before (t = 3 min) and just after
(t = 7 min) stimulation. When the test was significant, we calculated the parameter r as a mea-
sure of the effect size, using the formula r = |Z/

p
N| and using the thresholds of 0.1, 0.3 and 0.5

for a small, medium and large effect size respectively.
Due to the number of comparisons present in this article, we controlled the familywise error

rate by applying Finner’s step-down correction [23]. The cutoff for the corrected p value has
been set at 0.05.

ALEmeta-analysis
The ALE (Activation Likelihood Estimation) analysis is a quantitative meta-analytic method
that can be used to estimate consistent activation across different imaging studies [24]. ALE
maps of co-activations are derived based on patterns of foci of interest where multiple studies
have reported statistically significant peak activation. Furthermore, it comprises a method to
calculate the above chance clustering between experiments (i.e., random effects analysis) rather
than between foci (fixed effects analysis).

To obtain a list of neuroimaging papers that investigated pain rating as a variable, we sent a
query to the BrainMap database using Sleuth 2.2 [25]. The exact query was:

½Subjects�½Diagnosis ¼ Normals�AND½Conditions�½External Variable ¼ Pain Rating� ð1Þ
The results of the query were 28 papers (fMRI, PET), 440 subjects, 130 experiments, 1397

foci. We then selected a subset of papers that explicitly calculate a correlation between brain ac-
tivation and pain ratings. The new subset was composed of 10 papers (fMRI, PET), 195 sub-
jects, 55 experiments, 402 foci. Regions of convergence were calculated using GingerALE 2.3
[24] in the MNI space, correcting for multiple comparisons using the false discovery rate meth-
od with no assumption (FDR pN) and the threshold of 0.05 and minimum cluster volume of
1000 mm3. A full list of references is in the supplementary materials.

Results

Baseline adaptation
In the baseline session both perceived pain (B = -0.018, t = -6.36, pcorr < 0.001) and levels of
distress (B = -0.015, t = -9.59, pcorr < 0.001) decreased linearly with time (Fig 1). Time also ex-
plained a significant proportion of variance in both pain (r2corr = 0.753, F = 40.52 pcorr < 0.001)
and distress scores (r2corr = 0.885, F = 92.09, pcorr < 0.001).

Effect of TMS stimulation on pain ratings
In repeated measure ANOVA, neither the factor time (F = 3.52, pcorr = 0.11) nor the factor loca-
tion (F = 0.16, pcorr = 0.94) were found to be significant, but the interaction time by location
was significant (F = 3.59, pcorr = 0.011).

The regression analysis found that application of TMS on the FCz site inhibited the adapta-
tion mechanism (Fig 1), as perceived pain did not decrease with time (B = -0.003, t = -0.87,
pcorr = 0.44). On the contrary, application of TMS on the other sites did not inhibit adaptation
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(AFz B = -0.014, t = -3.07, pcorr = 0.017; Fz B = -0.017, t = -4.44, pcorr = 0.004; Cz B = -0.009, t =
-2.58, pcorr = 0.036; CPz B = -0.021, t = -7.09, pcorr < 0.001).

Pain ratings decreased temporarily immediately after the TMS stimulation, and the drop
was significant for all sites: AFz (Z(12) = -2.727, pcorr = 0.012, r = 0.75), Fz (Z(12) = -2.829, pcorr
= 0.006, r = 0.78), FCz (Z(12) = -2.552, pcorr = 0.017, r = 0.71), Cz (Z(12) = -2.684, pcorr = 0.011,
r = 0.74) and CPz (Z(12) = -2.609, pcorr = 0.017, r = 0.72, see Fig 2). The average decrease in rat-
ings was of 0.55 points (SD = 0.09), more than it would be expected from the slope of the adap-
tation effect (0.073) in the baseline session (t(12) = 18.4, p< 0.001).

Effect of TMS stimulation on distress ratings
In repeated measure ANOVA, the factor time was found to be significant (F = 7.39, pcorr =
0.030) but neither the factor location (F = 1.15, pcorr = 0.31) or interaction time by location
(F = 0.69, pcorr = 0.75) were significant.

Distress ratings did not change immediately after the TMS stimulation on any site: AFz (Z
(12) = -1.86, pcorr = 0.11), Fz (Z(12) = -0.14, pcorr = 0.98), FCz (Z(12) = -1.07, pcorr = 0.39), Cz
(Z(12) = -0.84, pcorr = 0.52), CPz (Z(12) = -1,16, pcorr = 0.39).

ALEmeta-analysis
The ALE meta-analysis identified 3 clusters, comprising the right insula (BA 13), right rolandic
operculum and ACC (BA 24 and 32, see Fig 3, S1 Fig and S1 Table). The biggest and most sig-
nificant cluster was localized on the ACC (MNI peak coordinates: x = 4 mm, y = 6 mm, z = 46
mm, Fig 3).

Discussion
In this paper, we attempted to better clarify the role of the cingulate cortex in adaptation to
pain. In order to do so, we stimulated the medial cortex using an interference-like TMS para-
digm during continuous painful stimulation. We adopted a novel pain paradigm in which we
sought to avoid peripheral habituation effect by alternating the position of the painful stimula-
tion on the hand without avoiding also central habituation [26], as central habituation was the
primary mechanism investigated in this work. In order to avoid possible confounds caused by
long-term habituation all subjects were tested only once a week, and the absence of long-term

Fig 1. Slope of regression lines for pain and distress ratings, for all stimulation sites and baseline. Asterisks mark significant regressions and error
bars represent standard errors.

doi:10.1371/journal.pone.0128765.g001
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habituation was confirmed by the fact that the average starting pain rating was very close to 5
at the beginning of each session.

To be able to stimulate deep brain structures involved in pain processing, such as the cingu-
late cortex, we used a double-cone TMS coil. This kind of coil has been proven to be able to
stimulate deep structures, such as the foot motor cortex and the ACC [13,19] and therefore ca-
pable to stimulate the MCC and contiguous brain areas. Furthermore, evidence both from
mathematical models and neuroimaging studies [19, 27–28] shows that the MCC can indeed
be reached by TMS pulses delivered by a double-cone coil, especially at high intensities like the
ones used in this study. It must however be kept in mind that the areas overlying the cingulate
cortex were probably stimulated by the magnetic field, as shown by the study of Hayward and
colleagues [19], which used H2

15O PET to assess the effect of double-coil TMS stimulation on
the ACC and found that while medial frontal TMS using the double-cone coil can modulate
the metabolism of the cingulate, contiguous areas were also affected.

During the experiment we gathered both distress and pain ratings at 13 timepoints, using a
0–10 NRS scale. The habituation effect was evident in the baseline condition for both measures,
as predicted by previous studies [8,29,30], but it was inhibited, only for pain ratings, after the
application of TMS over the FCz site. While the application of the TMS over the other scalp
sites (AFz, Fz, Cz, CPz) had no effect on habituation, a significant short-term decrease of pain
rating (but not of distress) was found for all five stimulation sites.

To interpret these results it is worth remembering that the rostral cingulate cortex has classi-
cally been divided functionally into two areas: the ACC, more involved with affective and emo-
tional tasks [31] and the MCC, involved with cognitive and attentive tasks. A more fine
subdivision [32] divides in two areas both the ACC (into sgACC and perigenual ACC, pgACC)

Fig 2. Time series of pain ratings for different experimental sessions: baseline, FCz and other
stimulation sites (AFz, Fz, Cz, Cpz).

doi:10.1371/journal.pone.0128765.g002
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and the MCC (anterior and posterior MCC). Theoretically, applying the TMS over the AFz site
corresponded to stimulating the pgACC, applying it over the Fz and FCz sites corresponded to
stimulating the anterior MCC (aMCC), while TMS over Cz and CPz corresponded to stimulat-
ing the posterior MCC, but it must be kept in mind that in the present study the localization of
the center of the stimulated area could be determined with less accuracy than in the theoretical
case, as we adopted a reference frame of coordinates to administer the TMS pulses instead
of neuronavigation.

The immediate effect of TMS on pain ratings regardless of the stimulation site could be ei-
ther be explained with a generic involvement of the cingulate cortex in the attentional process-
ing or with the distraction caused by the TMS pulses. In particular, orienting the attention
away from the painful stimuli has been shown to have analgesic effects [33, 34]. As the analge-
sic effect was present regardless of the stimulation site, in this study we cannot specifically sup-
port one of these two hypotheses.

In this study we did not see an effect of TMS on distress ratings. This was not expected, but
can be explained by the fact that our experimental setup allowed partial stimulation of the
pgACC and did not allow at all the stimulation of the sgACC, which has been more strongly
linked to emotional and affective tasks [35].

An explanation of the MCC causal role can be found in the model of Shackman [36], which
replaces the idea of functional segregation in the cingulate cortex with the integration of pain
processing, negative affect and cognitive control in the aMCC, which could be appropriately

Fig 3. Consistent cingulate ALE cluster, p < 0.05, FDR corrected for multiple comparisons. Ke = cluster extension > 1000 mm3. The location of 10–10
EEGmedial points AFz, Fz, FCz, Cz and CPz are shown along with their projections. The ALE cluster was under the FCz point, in the MCC. Clusters were
overlaid onto a sagittal slice of an MNI atlas (x = 4 mm) using the software Mango, version 3.2.1 (http://ric.uthscsa.edu/mango).

doi:10.1371/journal.pone.0128765.g003
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described as a neural hub. In this framework, the MCC would then serve a general high role in
pain processing. The idea that specific pain processing functions are not segregated in the dif-
ferent parts of the cingulate cortex is further supported by the somehow contradictory effects
reported in literature by stimulating anterior and posterior areas. In fact, contiguous areas can
have apparently very different roles, as, for instance, noted by [37], whose meta-analysis of the
placebo effect found that the ACC metabolism was positively correlated to the placebo analge-
sia while the middle and posterior cingulate cortex metabolism was negatively correlated.

Our results were in agreement with the model of Shackman and colleagues as the suppres-
sion of habituation of pain was found when applying the TMS on the FCz site. This site corre-
sponded to stimulating the MCC and the area of activation defined by our ALE analysis both
lies within the hub evidenced by the conjunction analysis of Shackman and colleagues and pre-
cisely corresponds to the FCz stimulation site (Fig 3).

The ALE meta-analysis included in this work also shows with greater spatial accuracy that
applying double-cone coil TMS over the FCz site allows stimulation of an area that is implicat-
ed in the subjective rating of pain, bringing evidence gathered from neuroimaging studies. We
can therefore argue that the effect we observed in our paper was likely to be due to the stimula-
tion of MCC rather than of contiguous areas affected by the induced electric fields.

In fact, using the TMS as methodology we were able to directly support the causal role of
the aMCC in the central habituation to pain. This has been observed in correlational studies,
such as the ones investigating pain habituation mechanisms in migraine patients [38,39].
These studies found an alteration of laser evoked potentials (LEPs, whose origin, in the case of
N2 and P2, has been suggested to be in the MCC [40,41]) along with a decreased habituation to
pain, while another study [42] confirmed the LEPs neural localization to be inside the MCC
(called ACC in the paper). In conclusion, the present work confirms the role of the cingulate
cortex in habituation, demonstrates the causality of this region in the process and better speci-
fies the hotspot of the area involved.

Supporting Information
S1 Fig. Areas correlated to subjective pain ratings. Consistent ALE clusters, p< 0.05, FDR
corrected for multiple comparisons. Ke = cluster extension> 1000 mm3. Left to right sagittal
slices. Brain ALE clusters were overlaid onto an MNI atlas using the software Mango, version
3.2.1 (http://ric.uthscsa.edu/mango).
(JPG)

S1 Table. Coordinates of areas correlated to subjective pain ratings. Coordinates of peaks of
Consistent ALE clusters, p< 0.05, FDR corrected for multiple comparisons. Ke = cluster
extension> 1000 mm3. (BA) = Brodmann Area. L = Left. R = Right. x, y, z expressed in mm.
Coordinates were reported in MNI space. Brain regions were classified using Talairach Dae-
mon Tool (http://www.talairach.org/daemon.html).
(DOC)
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