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ABSTRACT

Distal expression quantitative trait loci (distal
eQTLs) are genetic mutations that affect the expres-
sion of genes genomically far away. However,
the mechanisms that cause a distal eQTL to
modulate gene expression are not yet clear.
Recent high-resolution chromosome conformation
capture experiments along with a growing
database of eQTLs provide an opportunity to under-
stand the spatial mechanisms influencing distal
eQTL associations on a genome-wide scale. We
test the hypothesis that spatial proximity contrib-
utes to eQTL-gene regulation in the context of the
higher-order domain structure of chromatin as
determined from recent Hi-C chromosome con-
formation experiments. This analysis suggests that
the large-scale topology of chromatin is coupled
with eQTL associations by providing evidence that
eQTLs are in general spatially close to their target
genes, occur often around topological domain
boundaries and preferentially associate with genes
across domains. We also find that within-domain
eQTLs that overlap with regulatory elements such
as promoters and enhancers are spatially more
close than the overall set of within-domain eQTLs,
suggesting that spatial proximity derived from the
domain structure in chromatin plays an important
role in the regulation of gene expression.

INTRODUCTION

Expression quantitative trait loci (eQTL) experiments map
mutations in a genome to variation in gene expression (1).
They have led to the discovery of regulators driving the
expression of genes (2), genes associated with disease point
mutations [single nucleotide polymporphisms (SNPs)] and
molecular targets for cancer therapy (3). Determining
theraputic targets and identifying regulators for disease

genes hinges on our ability to determine the mechanisms
by which a mutation modulates the expression of a gene.
We ask here whether the higher-order 3D structure of
chromatin plays a role in determining eQTL associations
on a genome-wide scale by placing eQTLs in close spatial
proximity to their genomically distant genes. Anecdotal
evidence suggests that spatial proximity contributes to
the regulation of genes for specific eQTLs (4–7).
However, the extent of this phenomenon is unknown.
Recent genome-wide analyses suggest that the topological
structure of chromatin may be associated with eQTL as-
sociations. For example, SNPs from genome-wide associ-
ation studies were observed to be depleted in DNA
fragments of RNA polymerase-mediated chromatin inter-
action networks (8). This polymerase-specific approach
considers SNPs from genome-wide association studies,
but not eQTLs and their target genes. eQTLs have also
been analyzed with respect to how predictive a variety of
chromatin features are for the target genes associated with
eQTLs (9) as well as in the context of other chromatin
markers such as DNaseI hypersensitive sites, transcription
factor binding sites and promotor regions (10). Some of
these features such as DNaseI hypersensitivity imply the
topological structure of chromatin may be related to
eQTL associations, but the issue of whether higher-order
properties of chromatin structure are linked with eQTL-
gene associations on the whole remains open. It is now
possible to compare eQTL associations with chromatin
structure at a genome-wide scale using data from higher-
coverage Hi-C experiments (11) [a type of chromosome
conformation capture; see (12,13) for reviews], which
afford the observation of chromatin interactions at reso-
lutions as high as 20 kb.
We determine whether spatial proximity plays a role

in eQTLs regulating their target genes as illustrated in
Figure 1 by placing them in the context of genomically
contiguous spatially compact domains that have been
shown to be persistent across cell types and conserved
across species (11). These domains are highly correlated
with a number of chromatin markers associated with gene
regulation and may therefore be associated with the
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positions of eQTLs on the genome. Specifically, we test the
following hypotheses: (i) eQTL fragments interact often
with other fragments; (ii) eQTLs are genomically close
to domain boundaries; (iii) eQTLs are spatially close to
their target genes, especially within domains; (iv) eQTLs
often associate with genes across domains; and (v) within-
domain eQTLs with regulatory elements are close to their
target genes. We argue that the higher-order structure of
chromatin is coupled with eQTL associations by providing
evidence for each of these hypotheses.
For our analysis, we gathered 112 302 eQTL–gene pairs

from a database of eQTLs (eQTL Browser, eqtl.
uchicago.edu) spanning 10 publications and six cell types
(L. Mangravite et al, submitted for publication) (10,
14–21). Of these, we selected the 89103 intrachromosomal
pairs (nearly 80% of all pairs) that have a SNP at least 50kb
from the boundary of their associated genes. These eQTL–
gene pairs were then mapped onto Hi-C interaction
networks for individual chromosomes using data from
Dixon et al. (11) at the resolution of 40kb (see ‘Chromatin
interaction networks and topological domains’ of ‘Materials
and Methods’ section). As Hi-C data have an inherent reso-
lution limit, we aggregated eQTL–gene pairs that cannot be
distinguished with respect to their Hi-C interactions by
grouping pairs that correspond to the same Hi-C fragments
into a collection of 15 661 eQTL–gene equivalence classes
(see ‘eQTL equivalence classes and properties’ of
‘Materials and Methods’ section). To perform statistical
tests, we used an optimal matching framework that
associates eQTLs and domains with randomly generated
counterparts while controlling for a variety of confound-
ing variables including genomic properties of eQTLs,

interaction patterns common in 3C experiments and topo-
logical domain lengths (see ‘Optimal matching framework’
and ‘Statistical analysis’ of ‘Materials and Methods’
sections). This conservative approach minimizes the
chance that conclusions drawn from our analysis are arti-
facts of less interesting aspects of data derived from eQTL
and Hi-C experiments. Despite taking such a controlled
approach, the significant relationship we observed between
eQTLs, their target genes and chromatin structure suggests a
clear genome-wide link between chromatin structure and the
landscape of eQTL associations.

MATERIALS AND METHODS

Chromatin interaction networks and topological domains

We constructed chromatin interaction networks for
various cell types using the genome-wide Hi-C assays
from Dixon et al. (11) (embryonic stem cells, IMR90
fibroblasts). We built networks for chromosomes 1
through 22 individually because within-chromosome
interactions can be analyzed at higher resolutions than
across-chromosome interactions (22).

For each chromosome, Hi-C data in its raw form can be
represented as a weighted graph G ¼ ðV,E, f Þ where
vertices in V are restriction fragments and the frequency
of interaction f (e) observed for an edge e 2 E is the
number of observed Hi-C read pairs that map to the
associated restriction fragments. Owing to the limited
resolution of Hi-C experiments, we constructed a graph
G 0 ¼ ðV 0,E 0, f 0Þ that binned interactions at a genomic
resolution of 40 kb. Specifically, the vertices in V0 partition

Chromosome 1

Within-domain eQTLs Across-domain eQTLs

(b)(a)

Within-domain eQTL

Across-
domain 
eQTL

GeneeQTL

Regulatory region

Spatial proximity contributing to gene regulation

Figure 1. Spatial proximity of eQTLs and their target genes in the context of the higher-order domain structure of chromatin. (a) Schematic for how
mutations in regulatory regions can affect the expression of spatially close target genes. Closer-range higher-frequency interactions could contribute
to within-domain gene regulation and longer-range cross-domain interactions could transiently bring two domains in close spatial proximity to
contribute to ultra-long range regulation. (b) Experimental evidence suggesting both inter- and intra-domain regulation of gene expression from SNP
mutations. Two sections of a heat map of chromatin interactions for chromosome 1 fibroblast interactions derived from the Hi-C experiments of
Dixon et al. (top) show that both intra-domain interactions (bottom left) and inter-domain interactions (bottom-right) are prevalent. Each axis
represents a locus on chromosome 1. Higher-frequency interactions between a pair of loci are red. Interactions between eQTLs and genes from a
recent database (eQTL browser, eqtl.uchicago.edu) are shown in blue, and domains are enclosed in black squares along the diagonal of the matrix.
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a chromosome into 40 kb fragments (intervals on the
chromosome). The frequency f 0ðfu,vgÞ of an interaction
fu,vg 2 E0 is the sum of interaction frequencies for all inter-
actions in E with read pairs mapping within the frag-
ments u and v. The total frequency of a fragment v is
then defined as tðvÞ ¼

P
u2neighborsðvÞ f

0ðfu,vgÞ. The higher-
coverage experiments in Dixon et al. afford the use of an
error-correction method by Yaffe and Tanay (23), and we
used the normalized data Dixon et al. provide at the 40 kb
resolution (combined data set, http://chromosome.sdsc.
edu/mouse/hi-c/download.html).

We obtained topological domains for each chromosome
from Dixon et al. Domain boundaries for the Hi-C assays
described earlier in the text were identified using a hidden
Markov model (Supplementary Information in Dixon
et al.) and published in the same location as the Hi-C
data. Each domain in this sequence of topological
domains DHMM is an interval ½ai, bi�, 1 � ai < bi � n such
that no pair of distinct domains overlap, and n is the
number of fragments in G0 for a given chromosome. To
further verify our conclusions, we also perform our statis-
tical tests on a recent alternative definition of domains (24)
that have been shown to be different than those of Dixon
et al., yet still enriched for similar chromatin marks. The
domain-finding method of Dixon et al. uses a Hidden
Markov Model with a local ‘directionality index’ statistic,
whereas the method for the alternative definition explicitly
encodes the quality score of a domain in a dynamic
program. Dixon et al.’s method results in domains at a par-
ticular scale of genomic length (in this case, �1 megabase),
whereas the alternative definition identifies domains that
persist across multiple length scales.

eQTL equivalence classes and properties

eQTLs were obtained from the eQTL browser (eqtl.
uchicago.edu), which compiles genome-wide eQTL data
from 10 publications [cortex (17), fibroblast (14),
liver (18,21), lymphoblast (L. Mangravite et al, submitted
for publication) (10,14,15,19,20), monocyte (16) and T-cell
(14) cell types]. We intersected gene names in this
database with gene names or IDs in the Ensembl
database (25) and select genes that are associated with a
unique range in the Ensembl database to produce a col-
lection Q of eQTLs.

We represent an eQTL–gene pair q 2 Q as a SNP paired
with the gene with which it is associated. It is possible that
a single gene can be correlated with different SNPs, all of
which lie on the same Hi-C fragment (we call this a SNP
or eQTL fragment). These eQTL associations are indistin-
guishable in the chromatin interaction network and would
all share the same interaction frequencies. We therefore
defined equivalence classes ~q ¼ fq0 2 Q : q0 � qg where
q0 � q if the SNPs in q and q0 map to the same vertex in
the chromatin interaction network G0 and the target genes
are the same. We then constructed a new set of eQTL–
gene pairs as defined by the subsets of equivalent eQTL-
gene pairs ~Q :¼ f ~q for all q 2 Qg. Each such eQTL–gene
equivalence class ~q is then represented by a SNP
fragment, a gene name and the set of fragments associated
with the gene.

Recall that t(v) is the total frequency of edges incident
on v in G0. We define five properties for an eQTL–gene
pair ~q:

. dð ~qÞ is the SNP-gene distance: the genomic distance
between the midpoint of SNP fragment and the
midpoint position of the closest gene fragment to the
SNP.

. lð ~qÞ is the gene length, the genomic distance between
the midpoints of the first and last fragment of the
gene.

. tgð ~qÞ, the maximum total gene frequency, is the
maximum t(v) of any fragment v 2 G0 overlapping
the gene in this eQTL. This represents the extent to
which the gene associated with this eQTL interacts
with other fragments in the Hi-C graph.

. tsð ~qÞ, the total SNP frequency, is t(s) where s is the
SNP fragment in G0 associated with ~q. This is the
extent to which the SNP associated with this eQTL
interacts with other fragments in the Hi-C graph.

. pð ~qÞ is the spatial proximity: the maximum frequency
f 0ðeÞ of all interactions e 2 E0 between the SNP
fragment and fragments overlapping the gene. This is
a measure of how close the SNP and gene are based
on interactions in the Hi-C graph.

Optimal matching framework

To test for statistical significance while controlling for
confounding variables, we compared the set of eQTL–
gene pairs ~Q and the sequence of topological domains D
to their randomly generated counterparts. To control
for confounding variables associated with the genomic
properties of eQTL–gene pairs, interaction patterns preva-
lent in 3C experiments and properties associated with
topological domains, we matched the eQTLs in ~Q with
randomly defined eQTLs � ~Q and the sequence of topo-
logical domains D with a set of randomly defined domain
sequences �D while keeping the confounding variables
between the matched elements as similar as possible.
To do this, we associate each observed element i in ~Q or

D with a numerical feature vector of confounding vari-
ables xi and each element j in the sample spaces � ~Q or
�D with a feature vector of the same counfounding
variables x0j. Features for x are defined differently for
eQTLs and domains (see ‘Statistical analysis of eQTLs’
and ‘Statistical analysis of topological domains’ of
‘Materials and Methods’ section). Using a maximum
weight bipartite matching solver (26), each observed
element i is matched to k random elements j such that
for all matched pairs ði, jÞ, the sum of Euclidean distancesP
ði, jÞ jjxi � x0jjj is minimized (Figure 2a).

Sample space for spatial proximity

For a particular chromosome, we designed the sample
space � ~Q to be considerably larger than the set
of eQTLs ~Q so that close matches between the real and
randomly generated eQTLs are more likely. Specifically,
we created random eQTL equivalence classes and added
them to � ~Q via this procedure: Let np be a large number
that defines how many times larger the randomly
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generated set of eQTLs is in comparison with the real set
of eQTLs. While j� ~Qj � j

~Qjnp:

(1) To construct a randomized gene, we select a random
gene length l from the sequence of gene lengths
observed for this chromosome.

(2) Select a random SNP–gene distance d from the
sequence of distances observed for this chromosome.

(3) Randomly decide whether the SNP occurs upstream
or downstream of the gene based on the observed
probability of a SNP occurring upstream or down-
stream of a gene.

(4) If the SNP occurs downstream, select a random SNP
location s in the interval ½l+d,c� where c is the
chromosome length. Otherwise, set s to be a
random location in the interval ½1,c� ðl+dÞ�. Build
a random eQTL q0 from these properties and deter-
mine its equivalence class ~q0.

(5) Add ~q0 to � ~Q.

In practice, we observe that the target size j� ~Qj is
always reached within 10 million iterations. To ensure
that a maximum weight bipartite matching solver does
not match an eQTL to itself, we match to elements in
� ~Q �

~Q. We set np ¼ 100 for all our tests.

Statistical analysis of eQTLs

To determine whether a set of eQTLs has significantly
higher spatial proximity than expected by chance, each
feature vector for an equivalent eQTL–gene pair ~q
contains four features described earlier in the text:
x~q :¼ ½dð ~qÞ,lð ~qÞ,tsð ~qÞ,tgð ~qÞ�. To calculate whether eQTLs
in ~Q have greater spatial proximity after an optimal
matching (k=1) with their counterparts in � ~Q �

~Q, we
use the non-parametric Wilcoxon signed-rank test on pð ~qÞ
for matched pairs, a standard procedure in matched case–
control studies (27).

Sample space for topological domains

A sample space for topological domains allows us to
explicitly determine whether a test statistic on the

observed set of domains and eQTLs differs significantly
from random alternatives for domains. An alternative
approach could be to use the sample space for eQTLs
defined earlier to test whether a test statistic on the
observed set of domains and eQTLs differs significantly
from the same statistic on random eQTLs. However, in
the instances when we use the sample space for topological
domains, we are primarily interested in whether the
observed domain structure is significant as opposed to
the observed set of eQTLs. For a particular chromosome,
an element of the sample space for topological domains
was generated by randomly shuffling domain and non-
domain regions from DHMM on the chromosome,
preserving the domain and non-domain lengths as well
as the observed pattern of domains and non-domains in
the process (Figure 2b). The following procedure selects
from two shuffled lists of domain and non-domain lengths
so that both properties are preserved:

(1) Label all intervals on the chromosome associated
with a topological domain in DHMM as ‘domain’.
Label all intervals not overlapping with a domain
interval as ‘non-domain’.

(2) Generate a pair for each interval i: (‘domain’, li) or
(‘non-domain’, li) where li is the length of interval i.
Let O be a list of these pairs that represents the
observed ordering of domain and non-domain inter-
vals on the chromosome.

(3) Create two lists from O: one with just domains
Odomain and another with just non-domains: Onon.

(4) Randomly shuffle both Odomain and Onon.
(5) Generate new domain positions by traversing

the observed sequence O of domains and non-
domains. If a domain is encountered in O, remove
the last domain region from Odomain and append it
to a list of region lengths L. Otherwise, remove
the last non-domain region from Onon and append
it to L.

(6) For each domain in L, assign it a start position on
the chromosome based on the sum of region lengths
occurring before the domain in L.

(a) Observed Randomly Sampled (b)

Observed domain sequence

Feature 
vector of 
controls

Xi X′j

Figure 2. Optimal matching framework and domain shuffling procedure. (a) Observed elements (eQTLs or a sequence of domains) are paired with
their two (k=2) best-matched random counterparts: black arrows are the best match, and blue dotted arrows are the second-best match. Each
observed and random element is associated with a feature vector of controlled variables, and small Euclidean distances between these vectors
correspond to better matches. (b) An illustration of a domain shuffling where domains are red and non-domains are gaps along a chromosome.
The shuffling is performed so that it preserves domain and non-domain lengths as well as the observed sequence of domains and non-domains.
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The set of nd shuffled domain sequences is then defined
as �D. We set nd=10 000 for all our tests.

Statistical analysis of topological domains

To determine whether eQTL–gene pairs cross domains
more often than expected by chance, we calculated the
probability of observing a number of domain crossings n
or higher for a sequence of domains. Specifically, we
define the ‘SNP–gene interval’ as the range between the
midpoint of the SNP fragment for an eQTL–gene pair and
the midpoint of the closest fragment of its target gene. If
the SNP–gene interval of an eQTL–gene pair overlaps, but
is not completely contained within, a domain, it is said to
‘cross’ the domain. The distance of this interval for an
eQTL ~q is dð ~qÞ.

We calculate this probability while controlling for two
random variables:

. NG: the number of genes in eQTL–gene pairs crossing
a random sequence of domains, and

. NS: the number of SNP fragments in eQTL–gene pairs
crossing a random sequence of domains.

The probability or P-value that n or more eQTL–gene
pairs cross domains is then conditioned on the number of
genes and SNPs crossing domains being within a range of
the observed number of genes and SNP fragments crossing
domains:

PrðN � nj�min � NG � �
max,�min � NS � �

maxÞ,

where N is a random variable representing the number of
eQTL–gene pairs crossing a random sequence of domains.
The parameters g and s, allow the properties of a random
sequence of domains to be similar, but not exactly equal
to, the observed sequence of domains DHMM. We first
created a set �k

D to determine the ranges for g and s
and then used this set to determine the sample space of
topological domains ��D. Specifically, we determined the
values of the parameters by comparing a sequence
of domains D to its k ¼ 1,000 best matches in the
sampled space: �k

D � �D. The feature vector used for
matching sampled domains to observed domains
xD ¼ ½ngðDÞ,nsðDÞ� contains the number of genes in
eQTL–gene pairs crossing domains and the number of
SNP-fragments in eQTL–gene pairs crossing domains.

We set the parameter range for g to ð�min,�maxÞ based
on ranges in �k

D according to:

�min ¼ min
D02�k

D

ngðD
0Þ, �max ¼ max

D02�k
D

ngðD
0Þ:

A similar procedure is performed for s using nsðD
0Þ

instead of ngðD
0Þ. The conditioned sample space ��D

for the P-value is then defined as a subset of the sample
space �D:

��D :¼ fD0 2 �D :�min � ngðD
0Þ � �max,

�min � nsðD
0Þ � �maxg:

This procedure of determining the top- k matches in the
control set and restricting the parameters to ranges

observed in this size- k set guarantees that there will be
at least k samples in ��D while otherwise letting parameter
ranges be as close to the observed domain sequence as
possible. When compared with no restrictions on the par-
ameters, we observe that this approach is typically much
more conservative in the P-values it obtains, as it is less
likely that statistical significance is obtained from con-
founding variables. We always include the observed
domain sequence in ��D to guarantee P> 0.

RESULTS

All results reported are for the IMR90 fibroblasts from the
Dixon et al. Hi-C experiment (11). We define ‘across-
domain’ eQTL–gene pairs as those that have SNP–gene
intervals that overlap but are not completely contained
within a domain as defined earlier in the text (see
‘Statistical analysis’ of ‘Materials and Methods’ section).
eQTLs that do not associate with genes across a domain
are said to be ‘non-crossing’. Non-crossing eQTLs can be
further subdivided into those that associate within-domain
and those in gapped regions between domains. We
determined that of the 6283 non-crossing eQTL pairs,
6068 (97%) occur within domains. Therefore, the results
presented for non-crossing pairs generally apply to within-
domain as well.

eQTLs interact often

We found that eQTL SNP fragments v have higher total
Hi-C interaction frequencies t(v), on average, than the
background set of all Hi-C fragments (Figure 3a,
P < 10�5, Wilcoxon rank sum test) and that fragments
containing domain boundaries also have higher total Hi-
C interaction frequencies when compared with the back-
ground set of Hi-C fragments (P < 10�5, Wilcoxon rank
sum test). Additionally, we found that fragments contain-
ing both eQTLs and domain boundaries exhibited higher
average total interaction frequencies than when consider-
ing the set of all eQTL fragments (P < 0:01, Wilcoxon
rank sum test). Together, these three results suggest that
fragments containing eQTLs and domain boundaries tend
to interact often with other regions of the chromosome.
Fragments with eQTLs may therefore be spatially close to
other fragments in the genome, and we test specifically
whether eQTLs are spatially close to their target genes
in a subsequent section.

eQTLs are genomically close to domain boundaries

We next asked whether eQTL fragments are genomically
close to domain boundaries. Even though eQTLs can
occur as far as 3.94Mb away from a domain start point,
we observed that 6757 of 10 899, nearly 62%, of the eQTL
fragments lie within just 250 kb of a domain boundary
(P< 0.001 for randomly shuffled domains; Figure 3b,
vertical green lines). Figure 3b also indicates that the
spatial proximity pð ~qÞ of an eQTL–gene pair is larger
near the boundaries. We also found that the preferential
occurrence of eQTLs around domain boundaries is not
limited to domains of small or large length. Figure 3c–e
illustrates that the distribution of distances to the closest
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domain boundary are skewed toward 0 for three different
domain lengths (P < 10�7, Bonferroni-corrected chi-
squared test for all lengths).

eQTLs are spatially close to their target genes

We determined whether eQTL fragments from eQTL–
gene pairs are spatially proximate to their associated
gene fragments using the definition of spatial proximity
discussed earlier in the text. As eQTLs can affect genes
of different length across different distances, and frag-
ments involved in eQTL–gene pairs can vary significantly
in their total frequencies, we paired each eQTL–gene
association with its best-matched randomly defined coun-
terpart, where a good match is defined as a small
Euclidean distance between two feature vectors: one
associated with the eQTL and the other with the
random counterpart (see ‘Optimal matching framework’
of ‘Materials and Methods’ section). The feature vector
contained the properties of the equivalent eQTL: SNP–
gene distance, gene length, total SNP fragment
frequency and maximum total gene fragment frequency
(see ‘eQTL equivalence classes and properties’ of
‘Materials and Methods’ section). By comparing each
eQTL with its best-matched random counterpart in this
way, we conservatively controlled for confounding vari-
ables, which, if ignored, could result in less meaningful,

and perhaps artifactual interpretations of eQTL–gene
spatial proximity.

We found that eQTL–gene pairs with spatial proximity
� 20 (‘high proximity’) occurred more often in the set of
observed eQTLs than in the set of randomly defined,
optimally matched counterparts (Figure 4a). Pairs with
spatial proximity < 20 occured more frequently in the
set of random eQTLs. In general, the set of matched
pairs differed significantly (P < 10�15, Wilcoxon signed
rank test for matched pairs) from one another with
respect to spatial proximity. Figures 4b–e verify that indi-
vidual dimensions of the feature vectors are matched well
across all eQTLs with Pearson correlation coefficients of
r=0.99, 0.99, 0.96, 0.95 for SNP–gene distance, gene
length, total SNP fragment frequency and maximum
total gene frequency respectively. The correlations are
very high, but not 1, as the best match is based on the
Euclidean distance between feature vectors, which does
not require that matches are simultaneously perfect in
every dimension. In practice, we find that eQTLs match
well with their random counterparts in many dimensions
simultaneously.

We also determined that high-proximity non-crossing
eQTL–gene pairs occur more often in the set of
observed eQTLs. The opposite was true for across-
domain pairs (Figure 4a, bottom) for which high proxim-
ity pairs occurred at a lower frequency than the matched
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Figure 3. Occurrence and spatial proximities of eQTL fragments and associated genes near domain boundaries. (a) Distribution of the total number
of interactions (total frequency) for all Hi-C fragments (red) versus eQTL fragments (blue). The vertical red and blue lines represent the means of
each distribution, and the distribution outlines were obtained from kernel density estimates of each distribution. (b) The 2D histogram representing
the relationship between eQTL spatial proximity and the genomic offset to the closest domain boundary. Vertical green lines represent �250 and
250 kb offsets from the boundary. (c, d, e) Histograms of the genomic distance between a SNP fragment and its closest domain boundary for
SNP fragments occurring within s=2 bp of a domain boundary. s is the size of the domain. Domain sizes plotted are s	 80 kb, where s=500 kb,
1Mb and 2Mb.
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pairs. The overall spatial proximity of eQTLs is therefore
largely due to non-crossing eQTL associations. Together,
these analyses suggest that interactions between eQTLs
and their distant, within-domain genes, are generally
enriched for higher-frequency Hi-C interactions even
after controlling for a variety of confounding factors.

eQTLs often associate with genes across domains

We also investigated the extent to which eQTL–gene pairs
interact across domain boundaries versus those that do not
cross domain boundaries. For all eQTL–gene pairs, we

found that 9378 interact across domains, whereas 6283
are non-crossing. Although across-domain eQTL–gene
pairs tend to be lower-proximity and interact over longer
distances than those that do not, pairs of relatively large
proximity still interact across domains with 1074 such pairs
with spatial proximities between 10 and 30 (Figure 5a).
To test the significance of the number of eQTLs crossing
domain boundaries, we generated random sequences of
domains controlling for a variety of properties associated
with the observed sequence of domains: domain and
non-domain lengths, the sequence of domains and
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Figure 4. Spatial proximity of eQTL–gene pairs when compared with their optimally matched randomly defined counterparts. (a) Spatial proximity
bins (x-axis) for which we observe more equivalent eQTLs (cyan) or more randomly selected eQTL–gene pairs (magenta). The bottom two plots are
the same as the top except restricted to observed eQTLs that are exclusively across-domain or non-crossing. (b–e) Correlation plots for real eQTL
control features on the x-axis and their random counterparts on the y-axis. Features controlled for are (b) SNP–gene genomic distance, (c) gene
length, (d) maximum total gene 3C interaction frequency and (e) total SNP 3C interaction frequency.
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non-domains, the number of SNP fragments crossing
domains and number of genes crossing domains (see
‘Sample space for topological domains’ and ‘Statistical
analysis’ of ‘Materials and Methods’ section). We
compared the number of eQTL–gene pairs crossing real
domains to the corresponding number of eQTL–gene
pairs crossing random domains and found that eQTL
associations across domain boundaries occur more often
than expected by chance (Benjamini–Hochberg-corrected
P < 0:05 for 17/22 chromosomes, Figure 5b). We also
observed that SNP fragments interacting with more than
one gene typically do so either entirely across domains
or entirely within a domain—only 398 of 3233, 12%, of
all multi-gene SNP fragments involve both crossing and
non-crossing associations (Figure 5c).

Within-domain eQTLs with regulatory elements are close
to their genes

We tested the hypothesis that distal within-domain eQTL
interactions involving regulatory elements as compiled by
Wang et al. (9) are spatially more proximate than the set
of all eQTLs interacting within domain. Of the 364 eQTLs
associated with these regulatory elements, 130 associate
with genes at least 50 kb away from the SNP, forming
97 equivalence classes. Of these, 74 are non-crossing
(i.e. mostly within domains) and are associated with a
considerably larger proximities than the remaining set of
non-crossing eQTLs (Figure 6; P < 0:001, Wilcoxon rank
sum test).

DISCUSSION

Our analysis maps eQTL–gene associations onto the 3D
domain structure of chromatin using the 3C graph and
provides compelling evidence that spatial proximity is a
relevant mechanistic component for how a mutation
affects the expression of its correlated gene, especially
via regulatory regions within domains. We identified a
number of confounding variables that could lead to arti-
factual conclusions when relating eQTLs to the spatial

structure of chromatin and controlled for them using an
optimal matching resampling-based framework. This
approach is conservative not only because it directly
controls for confounding variables but also because it
does not rely on an analytical definition of a null model
that, under such a controlled setting, would be difficult to
justify and could easily result in statistical significance
where a resampling scheme would not (28).

We found that non-crossing eQTL associations account
for almost all of the enrichment in spatial proximity we
observe when compared with their best-matched random
counterparts (Figure 4a). This suggests that these pairs are
likely to be spatially close and that those interacting across
domains may do so via more transient interactions
between tightly coupled chromatin domains. In line with
this picture, our observation that most eQTLs interact
exclusively across or not across domains may be closely
linked to the tightly packed nature of chromatin domains.
If an eQTL interacts in a more tightly packed region of
chromatin, it is more likely to be inaccessible to regions
farther away in the genome than an eQTL in a more ac-
cessible region near the domain boundary. This is consist-
ent with the observation that domain boundaries exhibit
an increased accessibility as measured by DNaseI sensitiv-
ity (11). The fact that domain boundaries are, by design,
enriched for Hi-C interactions (11) partially explains our
observation that eQTL fragments have generally higher
frequency, as eQTLs tend to fall near domains, but it is
not clear why eQTLs occur so often around domain
boundaries. Finally, the prevalence of across-domain
eQTLs suggests that the variation in gene expression
observed in eQTLs may be driven largely by mutations
in open regions of chromatin near domain boundaries.

We also verified that our analysis is robust to different
Hi-C interaction matrices, domain sequences and subsets
of eQTLs. When using Hi-C data for the embryonic stem
cell type instead of the IMR90 fibroblast, we still observed
largely similar patterns. However, the spatial proximity
distributions as shown in Figure 3a were less separated,
yet still significantly different from one another. The set of
eQTLs we test is an aggregation from many recent experi-
ments, but we also found that running the analysis on
individual experiments, especially those with more
eQTLs (>50 000) (L. Mangravite et al, submitted for pub-
lication) (16), resulted in similar conclusions as the overall
set of eQTLs. The study by Schadt et al. (18) with �5000
eQTL associations resulted in similar conclusions when
compared with the set of all eQTLs. Although other
smaller studies also resulted in similar enrichments, they
occasionally did not reproduce the domain-size-specific
boundary plots in Figure 3c–e. In those studies, fewer
chromosomes were enriched for eQTLs associating
across domains as shown in Figure 5b. We observed
that an alternative set of domains resulting from a
recently developed procedure (24) resulted in similar con-
clusions, and that the statistic for the number of eQTLs
crossing domains was far more significant than when
using the domains identified by Dixon et al. Together,
these analyses suggest that the properties we observe are
not artifacts of a particular set of eQTLs, Hi-C interaction
matrix or sequence of domains.

Figure 6. Distribution of non-crossing eQTLs with regulatory elements
(cyan) versus the set of all non-crossing eQTLs (magenta).
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The spatial proximity of eQTLs within and across
domains may also underpin the correlations of eQTLs
with other features of chromatin as determined from
recent analyses (9,29). Supporting this, a recent analysis
by Wang et al. (9) found that Hi-C data can be used to
predict regulatory elements and their target promoters.
We showed that eQTLs near regulatory regions identified
by Wang et al. are enriched for spatial proximity to their
targets: i.e. they are closer to their within-domain targets
than the set of all eQTLs that occur within domain.
eQTLs could also be near regulatory regions that have
not yet been identified, and this test therefore establishes
that the enrichment for spatial proximity is specific to the
regulatory regions (and transcription factors used to
identify these regions) defined by Wang et al. SNPs
from eQTL associations have also been shown to be
highly correlated with SNPs from recently identified
DNaseI sensitivity QTLs (30), which are mutations
correlated with variation in chromatin accessibility.
DNaseI sensitivity QTLs may therefore be associated
with chromatin domains in a similar way as we have
shown eQTLs to be.

Our observations correlating topological domains with
eQTL positions suggest a new hypothesis: disrupting the
observed domain structure near an eQTL could result in
a significant change in expression of its target gene. For
example, if an eQTL associated with an enhancer and
its target gene occur within a topological domain
(e.g. an eQTL from the set of within-domain eQTLs
associated with regulatory elements analyzed earlier),
an experimental technique that could separate them
so they are no longer spatially close would allow this
hypothesis to be tested. A recent publication suggests
a technique to split or merge topological domains
(31), which could conceivably be applied to test this
hypothesis.

The geometry of chromatin structure has provided
numerous insights into the regulation of gene expression,
nuclear organization and cancer (13,32–35). Our results
provide strong evidence that chromatin structure is
coupled with the placement of eQTLs on the genome.
The techniques used in our analysis can be directly
applied to other types of genomic data where pairs of
interacting elements are involved (e.g. enhancer-
promoter pairs) and can easily be extended to control
for additional confounding variables. As more tissue-
specific higher-resolution chromatin interaction networks
are constructed, our framework may help to more specif-
ically understand how chromatin structure differentially
influences pairwise associations across cell types.
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