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Cancer cells acquire genetic and epigenetic alterations that often lead to dysregulation of oncogenic signal transduction
pathways, which in turn alters downstream transcriptional programs. Numerous methods attempt to deduce aberrant
signaling pathways in tumors from mRNA data alone, but these pathway analysis approaches remain qualitative and
imprecise. In this study, we present a statistical method to link upstream signaling to downstream transcriptional response
by exploiting reverse phase protein array (RPPA) andmRNA expression data in The Cancer GenomeAtlas (TCGA) breast
cancer project. Formally, we use an algorithm called affinity regression to learn an interactionmatrix between upstream signal
transduction proteins and downstream transcription factors (TFs) that explains target gene expression. The trained model
can then predict the TF activity, given a tumor sample’s protein expression profile, or infer the signaling protein activity,
given a tumor sample’s gene expression profile. Breast cancers are comprised of molecularly distinct subtypes that respond
differently to pathway-targeted therapies. We trained our model on the TCGA breast cancer data set and identified
subtype-specific and common TF regulators of gene expression. We then used the trained tumormodel to predict signaling
protein activity in a panel of breast cancer cell lines for which gene expression and drug response data was available.
Correlations between inferred protein activities and drug responses in breast cancer cell lines grouped several drugs that
are clinically used in combination. Finally, inferred protein activity predicted the clinical outcome within the METABRIC
Luminal A cohort, identifying high- and low-risk patient groups within this heterogeneous subtype.

[Supplemental material is available for this article.]

Cancers arise through the accumulation of genetic and epigenetic

alterations that often target signal transduction pathways, leading

to dysregulation of downstream transcriptional effectors and wide-

spread gene expression changes. Since many targeted therapies are

small molecule inhibitors of signal transduction proteins or mono-

clonal antibodies against growth factor receptors, deciphering the

signaling pathways that are deregulated in a given tumor in order to

personalize therapy is a major goal of cancer genomics. Indeed,

large-scale cancer genomics projects have devoted much effort to

cataloging somatic alterations across large sets of tumors and

mapping them to cellular pathways (The International Cancer

Genome Consortium 2010; The Cancer Genome Atlas Network

2012; Curtis et al. 2012). At the same time, these projects have

generated massive repositories of tumor mRNA data, giving a

complex readout of the transcriptional changes downstream from

altered signaling pathways. Nevertheless, we are unable to translate

themutational landscape of a tumor into a usablemodel of affected

pathways, and we are not generally able to use mutational status to

accurately predict response to targeted therapies (Baselga 2011).

Moreover, despite 10 years of development of pathway analysis

approaches (for review, see Khatri et al. 2012), existing tools for as-

sociating altered or enriched pathways tomRNA expression profiles

give mainly qualitative and noisy results.

The advent of proteomic methods has the potential to pro-

vide a systematicmap of critical signaling pathways that are altered

in cancer. Reverse-phase proteinmicroarrays (RPPAs) are amedium-

throughput technology to analyze the expression levels of a protein

or phosphoprotein across many samples at once (Paweletz et al.

2001). Recently, The Cancer Genome Atlas (TCGA) project added

RPPA profiling for a panel of proteins and phosphoproteins as an

additional assay for hundreds of tumors across multiple tumor

types. Nevertheless, quantitative profiling of proteins in tumor

tissues using RPPA presents many technical challenges, including

antibody validation, variability in tissue handling, and intra-

tumoral heterogeneity, giving rise to noisy measurements of the

activity of signaling proteins. In this work, we hypothesize that we

can best extract meaningful information about deregulated signal

transduction pathways from RPPA data by linking upstream sig-

naling with downstream transcriptional response, measured by

mRNA data, via the transcriptional circuitry. Our model views RPPA

data as a noisy readout of the activity of signaling pathways; on-

cogenic signaling pathways converge on a set of transcription

factors (TFs), whose dysregulated activity in turn alters the mRNA

expression levels of TF target genes. Formally, we use an algorithm

we recently developed, called affinity regression (R Pelossof, I Singh,

J Yang, M Weirauch, T Hughes, and C Leslie, unpubl.), to learn an

interaction matrix between upstream signal transduction proteins

and downstream TFs that predicts target gene expression. We use TF

binding site prediction to determine the set of TFs that potentially

regulate each gene. The trained affinity regression model can then

infer the TF activity given a tumor sample’s protein expression pro-

file or infer the signalingproteinactivity given a tumor sample’s gene

expression profile.

� 2014 Osmanbeyoglu et al. This article, published in Genome Research, is
available under a Creative Commons License (Attribution 4.0 International), as
described at http://creativecommons.org/licenses/by/4.0.

Corresponding author: cleslie@cbio.mskcc.org
Article published online before print. Article, supplemental material, and pub-
lication date are at http://www.genome.org/cgi/doi/10.1101/gr.173039.114.
Freely available online through the Genome Research Open Access option.

24:1869–1880 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/14; www.genome.org Genome Research 1869
www.genome.org

mailto:cleslie@cbio.mskcc.org


We applied our approach to 397 breast cancer profiles from

TCGA for which both RPPA and mRNA data are available, using a

subset of 192 tumors for training the model. Breast cancer is a het-

erogeneous disease with diverse pathological features and survival

outcomes (Sorlie et al. 2003) and has been categorized into three

basic therapeutic groups: (1) basal-like or triple-negative breast

cancers (TNBCs, lacking expression of the estrogen receptor [ER],

progesterone receptor [PR], and HER2), characterized by a poor

prognosis and no specific targeted therapies; (2) HER2 (ERBB2)

amplified, associated with relatively poor prognosis if untreated

and with significant clinical benefit from anti-HER2-therapy; and

(3) estrogen receptor-positive (luminal), characterized by a rela-

tively good prognosis and response to targeted hormonal thera-

pies. Within the ER+ category, gene expression profiling studies

(PAM50) have identified at least two subtypes within ER-positive

breast cancers, Luminal A and Luminal B (Parker et al. 2009). Al-

though patients with Luminal A cancers have the best prognosis,

these tumors are heterogeneous, and there exist few markers that

predict recurrence and survival.We used affinity regression to infer

the deregulated signaling pathways that drive expression changes

in distinct breast cancer subtypes, to leverage the tumor model to

predict drug sensitivity using breast cancer cell linemRNA and drug

response data, and finally, to predict survival within the heteroge-

neous ER+, Luminal A subtype. These results provide a detailed case

study for how integrative computational analysis can lead to

mechanistic and clinically relevant insights into the dysregulated

signaling pathways and TFs that underlie differences in cancer

subtypes, response to therapy, and clinical outcome.

Results

Affinity regression learns an interaction model
for signal transduction proteins and TFs

Given a set of genes and their gene expression profiles, we use affinity

regression (R Pelossof, I Singh, J Yang, M Weirauch, T Hughes, and

C Leslie, unpubl.) to learn an interaction matrix between signal

transduction proteins and TFs that explains target gene expression

(Fig. 1). For a data set of M tumor samples profiled by microarray

across N genes, we let Y 2 RNxM be the mean-centered log gene

expression profiles for all tumor samples, where each column of

Y corresponds to a microarray experiment. Using TF binding

site prediction in gene promoters (see Methods), we define a matrix

D 2 RNxQ, where each row represents a gene and each column is a

binary vector representing the target genes of a TF. Finally, we define

amatrixP2RMxSof tumor sample (phospho) protein attributeswhere

each row represents a tumor sample and each column represents

RPPA expression levels of a signaling protein across tumor samples

(again mean-centered across RPPA samples). We set up a bilinear

regression problem to learn an interaction matrix W 2 RQxS for pairs

of TF-signaling protein features that predicts target gene expression:

DWPT + e=Y:

To reduce the dimensionality, we subjected the featurematrix

P to singular value decomposition prior to training and reduced to a

smaller system of equations where the output is the set of pairwise

similaritiesYTY between examples rather thanY itself (seeMethods).

Thenwe used ridge regression to solve for the interactionmatrix (for

details, see Supplemental Methods; R Pelossof, I Singh, J Yang,

M Weirauch, T Hughes, and C Leslie, unpubl.). Since the model

captures relationships between signaling proteins, TFs, and gene

expression, we can use the trained W to obtain different views of

a tumor data set: to infer the TF activities in each sample, we can

right-multiply the protein expression profiles through the model

by WPT; To infer protein activities in each sample, we can left-

multiply the gene expression profile andmotif-hit matrix through

the model by YTDW. We refer to these operations as ‘‘mappings’’

onto the TF space and the protein space, respectively.

Affinity regression outperforms nearest neighbor for gene
expression prediction on held-out samples

We evaluated our approach on a data set of BRCA tumors from

TCGA where both genome-wide mRNA expression data and RPPA

measurements for 164 proteins/phosphoproteins are available.We

trained our model on equal numbers of samples for each subtype

(n = 483 4). Asmotif data, we used binding site predictions for 230

TFs in the promoter regions ([�2kb, 2kb] around the transcription

start site) from MSigDB (Liberzon et al. 2011). For statistical eval-

uation, we computed the mean Spearman rank correlation

between predicted andmeasured gene expression profiles on held-

out samples using sixfold cross-validation. We compared our re-

sults with a nearest neighbor approach, where neighbors are chosen

based on similarity of protein expression profiles (input space) as

shown in Figure 2A. We obtained a 0.41 (60.02) mean Spearman

Figure 1. Modeling gene expression variation across tumor samples
connects upstream signaling with transcriptional responses. (A) The model
learns an interaction matrix between upstream signal transduction proteins
and downstreamTFs that explains target gene expression. (B) TF binding site
predictions for each gene and RPPA profiles of tumor samples are used to
predict gene expression variation relative to amean tumor expression profile.
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correlation between predicted and measured gene expression,

compared to 0.23 (60.02) for nearest neighbor. In contrast, if we

randomized motif hits for each gene and RPPA profiles for each

tumor, we obtain a Spearman correlation of 0.006 (60.077). To

further validate the performance, we also examined an indepen-

dent test set of 205 TCGA samples. We obtained a mean Spearman

correlation of 0.39 between predicted and measured gene expres-

sion, compared to 0.209 for nearest neighbor, similar to the per-

formance difference obtained through cross-validation (see Sup-

plemental Fig. S1). In addition, we evaluated our approach using a

newer BRCARPPA data set fromTheCancer ProteomeAtlas (TCPA)

(Li et al. 2013) and attained similar performance (Supplemental

Fig. S2).

Next, we examined whether our model reflects the existing

PAM50 expression-based breast cancer subtype classifications (Parker

et al. 2009). To identify active TFs for each tumor sample, wemapped

its protein expression profile PT through our learned interaction

matrix byWPT to obtain a weight vector over TFs; here, all training

examples (n = 192) were used to learn the model. Hierarchical

clustering of inferred TF activity of tumor samples (WPT) largely

recovered the distinction between the three major subtypes (basal,

luminal, HER2), as shown in Figure 2B and Supplemental Figure S3

(adjusted Rand index 0.615 for three-way clustering). In particular,

basal-like sampleswerewell separated fromother subtypes. However,

Luminal A and Luminal B, which are subgroups of the ER-positive

subtype, were not as well separated from each other (adjusted Rand

index 0.449 for four-way clustering). Clustering was also consistent

with ER, PR, and HER2 clinical status (Supplemental Fig. S3).

Similarly, to identify the activity of signaling proteins for each

tumor sample, we mapped the expression profiles through the

motif hit matrix and our learned model by YTDW. This gives a

weight vector over (phospho) proteins for each sample. Clustering

the samples by inferred protein activity (YTDW) also recovered the

distinction between subtypes, as shown in Supplemental Figure S4

(adjusted Rand index 0.58 for three-way clustering, 0.435 for four-

way clustering), in contrast to just using the RPPA values alone

(adjusted Rand index 0.289 for four-way clustering) (Supplemental

Fig. S5).

These results demonstrate that (1) our affinity regression

model explains a meaningful part of the dysregulation of gene ex-

pression in breast cancer based on the ability to predict gene ex-

pression variation across tumors on held-out tumor samples; and

(2) the model largely captures previously defined transcriptomic

subtypes.

Affinity regression identifies subtype-specific TFs
and signaling proteins associated with expression changes

Next, we assessed TF-subtype associations using a Mann-Whitney

U-test to compare inferred TF activity between pairs of transcrip-

tional subtypes or groups of subtypes (see Methods). We tested

three pairwise comparisons for each TF: (1) basal-like vs. HER2,

Luminal A, Luminal B; (2) HER2 vs. Luminal A, Luminal B; and

(3) Luminal A vs. Luminal B. Results of the TF-subtype association

analysis are shown in Table 1. (Fewer associations were found using

TF mRNA expression levels directly; see Supplemental Table S1.)

Basal-like-specific TF regulators include ETS1, a transcriptional reg-

ulator implicated in cell development, cell differentiation, cell pro-

liferation, apoptosis, and tissue remodeling (Lincoln and Bove

2005) that has previously been linked to the development of a basal-

like breast cancer phenotype (Span et al. 2002; Mylona et al. 2006;

Switzer et al. 2012); CEBPB, which has been associated with tumor

progression, poor prognosis, and ER-negative status of breast can-

cers (Milde-Langosch et al. 2003; Zahnow 2009) andwhose elevated

Figure 2. Affinity regression accurately predicts relative gene expression on held-out TCGA breast cancer samples. (A) Plot showing Spearman cor-
relations between predicted and actual gene expression changes relative to a median reference using the affinity regression model (y-axis) and nearest
neighbor (x-axis) for TCGA samples representing four breast cancer subtypes (Basal-like, HER2, LumA, LumB). (B) Unsupervised hierarchical clustering of
tumors based on inferred TF activities recovers Basal-like, HER2, and Luminal (LumA and LumB) subtypes. The clustering was performed using all TFs (see
Supplemental Fig. S3), but for readability, only the features with the largest standard deviation across samples are shown in the heatmap.
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mRNA expression is associated with metastatic breast cancer (van

de Vijver et al. 2002); NFATC4, a member of the nuclear factor of

activated T cells (NFAT) family of transcription factors that is

involved in immune cell signaling, survival, and angiogenesis

(Mancini and Toker 2009) and has been

associated with breast cancer cell invasion

in ER-negative breast cancer cell lines (Yiu

and Toker 2006); high-mobility group

(HMG) proteins, nonhistone nuclear pro-

teins known as ‘‘architectural transcrip-

tion factors’’ that are involved in the reg-

ulation of DNA-dependent processes such

as transcription, replication, recombina-

tion, and DNA repair (Bustin and Reeves

1996; Churchill et al. 1999), have been

found in abundance in various can-

cers types including breast (Peluso and

Chiappetta 2010), and include the pro-

tein HMGA1, which has been shown to

promote metastatic processes in basal-

like breast cancer cell lines (Pegoraro et al.

2013); and SOX9, which plays critical

roles in development, differentiation, and

lineage commitment and whose levels are

elevated in a wide range of human cancers

including breast (Chakravarty et al. 2011a,

b; Matheu et al. 2012).

TF associations for the other sub-

types include HMX3, an ER coactivator,

which is inferred to be a HER2-specific TF

regulator. HMX3 has been shown to in-

tegrate ESR1 and HER2 receptor tyrosine

kinase signaling to promote aromatase

expression and hormone resistance in a

preclinical model of luminal breast cancer

(Cortez et al. 2012). Some of the Luminal

A-specific TF regulators include SMAD4,

which was shown to induce apoptosis in ERa-positive breast cancer

cells (Li et al. 2005); NKX2-1 (also known as TTF-1), which regulates

genes in the thyroid, lungs, and diencephalon during embryogen-

esis and whose expression has been detected in a small proportion

of breast carcinomas (Robens et al. 2010); and FOXA1, which has

been studied within the ERa pathway in luminal breast cancers

and found to correlate with patient survival (Badve et al. 2007). One

of the TF regulators shared among both the Luminal A and Luminal

B groups is GATA3, a regulator of ERa signaling that is required

for the luminal type of breast cancer (Wilson and Giguere 2008;

Dydensborg et al. 2009).

Next, we assessed differences in inferred protein activity

across the clinically relevant transcriptional subtypes, again using

Wilcoxon rank sum tests in three pairwise comparisons (see

Methods): (1) basal-like vs. HER2, Luminal A, Luminal B; (2) HER2

vs. Luminal A, Luminal B; and (3) Luminal A vs. Luminal B. Results

are shown in Table 2 (again, fewer associations are found using

protein expression levels directly) (see Supplemental Table S2).

Briefly, basal-like tumors are associated with higher activity of

proteins that have roles in cell cycle progression and proliferation

including RB1, CHEK2, CCNE1, MSH6, CTNNB1, and CCNB1.

Other signaling proteins included KIT, a transmembrane receptor

tyrosine kinase, which was recently proposed as a poor prognostic

marker in basal-like breast cancer (Kashiwagi et al. 2013). As

expected, the HER2 subtype was associated with higher inferred

activity of ERBB2 (pY1248), also known asHER2/NEU. Conversely,

PGR (Cancello et al. 2013; Prat et al. 2013), PDK1 (Gagliardi et al.

2012), and PEA15 are associated with Luminal A. Interestingly, in

triple-negative breast cancer and ovarian cell lines, increasing

Table 1. Transcription factors that show significant subtype
specificity

TF
Basal-like vs.
HER2, Luminal

HER2 vs.
Luminal

LumA vs.
LumB

Subtype
specificity

SOX9 0.07 0.61 0.74 Basal-like
HMG 0.08 0.69 0.83 Basal-like
NFATC4 0.09 0.85 0.86 Basal-like
ETS1 0.07 0.54 0.86 Basal-like
CEBPB <10�3 0.85 1 Basal-like
ZBTB14 0.95 0.76 0.1 HER2
HMX3 <10�3 0.85 0.97 HER2
SMAD4 0.51 0.85 <10�3 LumA
VSX2 0.97 0.86 0 LumA
NKX2-2 0.55 0.58 0.06 LumA
TTF1 0.92 0.81 0.06 LumA
FOXA1 0.86 0.81 0.09 LumA
IRF2 0.49 0.54 0.1 LumA
GTF2I 0.08 0.65 0.71 LumA/B
GATA3 0.1 0.54 0.86 LumA/B
MEIS1 0.61 <10�3 0.94 LumA/B
FXR <10�3 0.85 0.97 LumA/B
IRF10 0.1 0.54 0.97 LumA/B
FOXF1 0.05 0.85 0.97 LumA/B
MECOM <10�3 0.95 0.97 LumA/B/HER2

FDR adjusted P < 0.1.

Table 2. Proteins/phosphoproteins that show significant subtype specificity

Protein
Basal-like vs.
HER2, Luminal

HER2 vs.
Luminal

LumA vs.
LumB

Subtype
specificity

KIT <10�3 0.45 0.27 Basal-like
CCNE1 <10�3 0.06 0.27 Basal-like
MSH2 <10�3 0.04 0.16 Basal-like
CHEK2 <10�3 0.14 0.03 Basal-like
CDH3 <10�3 0.03 0.92 Basal-like
MSH6 0.01 0.14 0.12 Basal-like
WWTR1 (pS89) 0.01 1 0.54 Basal-like
PTGS2 0.01 0.03 0.99 Basal-like
KDR 0.02 1 0.54 Basal-like
CTNNB1 0.02 1 0.27 Basal-like
CCNB1 0.02 0.28 <10�3 Basal-like
STAT5A 0.02 0.06 0.7 Basal-like
MAPK14 (pT180) 0.06 0.72 0.71 Basal-like
RB1 (pS807) 0.08 0.33 0.93 Basal-like
ERBB2 (pY1248) <10�3 <10�3 0.76 HER2
ERBB2 <10�3 <10�3 0.99 HER2
AKT1/AKT2/AKT3 (pS473) 0.03 0.09 0.7 HER2
AKT1/AKT2/AKT3 <10�3 0.33 0.52 HER2/LumA
RPS6 (pS235) 0.03 0.81 0.05 HER2/LumB
AR <10�3 0.03 0.99 HER2/LumA/B
PDK1 (pS241) 0.01 0.22 0.16 LumA
PGR 0.13 <10�3 0.09 LumA
PEA15 0.44 0.79 0.09 LumA
IGFBP2 0.09 0.49 0.29 LumB
RPS6 (pS240) 0.12 0.74 <10�3 LumB
INPP4B <10�3 0.01 0.76 LumA/B
ESR1 <10�3 0.04 0.54 LumA/B
GATA3 <10�3 <10�3 0.97 LumA/B
FN1 0.02 0.06 0.98 LumA/B
CAV1 0.02 0.05 0.52 LumA/B
CCND1 0.02 <10�3 0.99 LumA/B
BCL2 0.1 0.04 0.99 LumA/B

FDR adjusted P < 0.1.

Osmanbeyoglu et al.

1872 Genome Research
www.genome.org



PEA15 levels was shown to have an antitumor effect (Bartholomeusz

et al. 2006, 2010). Finally, the identified protein signatures for both

Luminal A and Luminal B include ESR1, BCL2 (Kim et al. 2012),

GATA3 (Kouros-Mehr et al. 2008), INPP4B (Fedele et al. 2010), FN1,

CAV1, and CCND1.

When phosphoprotein data is available for a TF, the model

may find that its inferred protein level correlates with inferred TF

activity (as for GATA3) (Supplemental Fig. S6) or that its protein

level is relatively uninformative, although its TF activity varies

across samples (e.g., FOXO3) (Supplemental Fig. S7); results for all

TFs are listed in Supplemental Table S3.

Inferred protein activity in breast cancer cell lines
can be used to predict drug response

Targeting the pathways that promote growth and invasion of

cancer cells is critical for effective treatment of breast cancer. A

potentially important application of our approach is through the

administration of targeted therapies based on the signaling status

of a givenpatient’s tumor. To address thepreclinical feasibility of such

an approach,we askedwhether our affinity regressionmodel―trained

on paired mRNA and RPPA data from breast cancer tumors―could be

used to infer protein signaling activity in breast cancer cell lines from

their mRNA expression profiles alone, and whether these inferred

protein signatureswere useful for predicting drug sensitivity.Weused

previously published gene expression data for 35 breast cancer cell

lines (Neve et al. 2006) with corresponding drug response data for 77

drugs quantified by growth inhibition (GI50) (Heiser et al. 2012). The

cell lines showed a broad range of responses to most therapeutic

compounds.We found that 45 out of 74 (61%) of the drugs produced

variable responses across the cell lines (standard deviation of log-

transformedGI50 across cell lines greater than 0.5), andwe restricted

ouranalysis to thesedrugs.Out of 45 cell lines, 28were luminal (ER+),

and 15 of those were ERBB2-amplified.

We first used the TCGA-trained affinity regression model to

infer protein activity profiles for individual cell lines (YTDW), ap-

plied unsupervised hierarchical clustering to these profiles, and

confirmed that this clustering discriminated between basal-like

and luminal subtypes for the breast cancer cell lines (Supplemental

Fig. S8). In contrast, mapping the cell lines through randomized

versions of the interactionmatrixW did not correctly recover basal-

like vs. luminal subtypes (mean adjusted Rand index 0.14 over 100

random permutations), indicating that the model—and not only

the initial mRNA expression profiles of the breast cancer cell

lines—was crucial for segregating cell lines by subtype. We further

investigated whether the inferred protein activity of breast cancer

cell lines—based on the TCGA model alone—correlated with

newly available cell line RPPA data from TCPA (Li et al. 2013). For

phosphoproteins whose Spearman correlations betweenmeasured

and inferred activities were above 0.35 on TCGA tumors, we found

similarly strong correlations between measured and predicted pro-

tein levels on the independent cell line data (Supplemental Fig. S9).

To explore possible associations between inferred protein ac-

tivity and drug response, we first computed Spearman rank corre-

lations between (inferred) protein activity and drug GI50 for each

(phospho) protein-drug pair over cell lines. Figure 3A (see also

Supplemental Fig. S10) shows the two-way clustering of drugs and

proteins by these pairwise Spearman rank correlations; drugs are

clustered into groups according to the protein activities that corre-

late with their response. Several drugs with similar mechanisms of

action or affecting a common signaling pathway clustered together.

For example, the DNA cross-linking agents carboplatin and cis-

platin; the mTOR/PI3K/AKT inhibitors rapamycin, temsirolimus,

HSP90, TGX-221, and GSK2119563; as well as the DHFR inhibitors

methotrexate and pemetrexed clustered together. Next, to confirm

the findings of clustering analysis in a more rigorous way, we also

asked, for each pair of drugs, whether ridge regression models

trained to predict one drug’s response would generalize to predict

the other drug’s response. Results of this transfer learning exercise

found similar relationships between drug sensitivities (Supple-

mental Fig. S11; see Supplemental Methods).

Interestingly, several drugs commonly used in combination for

the treatment of breast cancer were often found to cluster together

in our analysis. For example, the inferred drug activity of several

sets of therapeutics were positively correlated: (1) carboplatin and

docetaxel (Chang et al. 2010); (2) tamoxifen (an antineoplastic non-

steroidal selective estrogen receptor modulator) with temsirolimus/

rapamycin (mTOR inhibitors) (Baselga et al. 2012) or lapatinib

(ERBB2/EGFR inhibitor) (Doss et al. 2012); and (3) HSP90 inhibi-

tors with kinase inhibitors including rapamycin (Francis et al.

2006) and temsirolimus (Okui et al. 2013) (MTOR inhibitors),

GSK2119563 (PIK3CA inhibitor), and TGX-221 (PIK3CB). Consis-

tent with the correlation analysis, the combination of tamoxifen

with HSP90 inhibitors was found to give better tumor growth in-

hibition than individual agents in breast cancer cell lines (Giordano

et al. 2013). Moreover, lapatinib in combination with rapamycin

was shown to be more effective for inhibiting growth of HER2-

overexpressing breast cancers resistant to trastuzumab and lapatinib

(Gayle et al. 2012). Our results align with several clinical trials dem-

onstrating that inhibiting multiple targets that regulate cancer

growth is more effective than monotherapy.

Additionally, sensitivity to carboplatin/cisplatinwas associated

with the inferred protein activities of CHEK1 and CDK1, which are

common markers of triple-negative breast cancer (Fig. 3A; Sup-

plemental Fig. S10B; Heiser et al. 2012). Drugs in this group are

associated with proteins that have roles in apoptosis, cell cycle

progression, and regulation of cell cycle and immune responses (Fig.

3A; Supplemental Fig. S10B). Conversely, cells with protein activity

for luminal- andHER2-associated proteins, such as ESR1 andERBB2,

tend to be resistant to the former group of drugs (carboplatin, cis-

platin, docetaxel, erlotinib) but are sensitive to agents targeting

PI3K/RTK/ER signaling, autophagy, and differentiation (Fig. 3A;

Supplemental Fig. S10C). Moreover, the correlation analysis re-

covered known drug/target combinations. For example, erlotinib

clusters in the former group and has been shown to be effective in

a triple-negative xenograft model (Ueno and Zhang 2011). Mean-

while, lapatinib, which clusters in the latter group, is effective for

patients with HER2-positive breast cancer and has been shown to

synergize with anti-ER therapy (Korkaya et al. 2012; Ithimakin et al.

2013) in a subset of ERBB2-amplified tumors that express ESR1.

Indeed, examining the protein activity signatures that correlate

with erlotinib and lapatinib, we found that the lapatinib signature

includes ERBB2 and EGFR, whereas erlotinib just includes EGFR.

We caution that not all sets of drugs that share similar mech-

anisms of action (see Supplemental Table S4 for drug targets) or that

are used in combination therapieswere recovered in this clustering

analysis. In particular, relationships between drugs may be missed

(1) when the measured drug response does not vary widely across

cell lines, or (2) when drugs with similar modes of activity in fact

displayed a poorly correlated drug response across cell lines (see

Supplemental Figs. S12–S14).

Finally, we trained an elastic net regression model for each

drug separately using inferred protein activities as input features

and log-transformed GI50 values as output values to learn pre-

Linking signaling pathways to transcription

Genome Research 1873
www.genome.org



dictive signatures of drug response. As a baseline comparison

method, we also used mRNA expression profiles as input features

(see Methods). Use of inferred protein activities as features incurs

some loss in prediction accuracy compared to mRNA features

(mean fivefold cross-validation MSE error of 0.19 [60.18] versus

0.18 [60.14]) (see Methods), perhaps due in part to the difference

between tumor and cell line data. However, the drug response

signatures associated with inferred protein activities were more

likely to include the drug target: For four out of 14 targeted drugs

(28%), the mRNA drug signature contained the drug target at least

Figure 3. TGCA affinity regression model infers signaling activity in breast cancer cell lines and predicts drug sensitivity. (A) Heatmap revealing
correlations between inferred protein activities of cell lines (rows) and drug responses (columns). We identified two clusters of drugs from unsupervised
analysis: a group consisting mostly of cytotoxic drugs including carboplatin, cisplatin, and docetaxel, but also erlotinib (EGFR); and a group of targeted
therapies including tamoxifen (ESR1), 17-AAG (HSP90), temsirolimus (mTOR), rapamycin (mTOR), lapatinib (EGFR, ERBB2), and GSK2119563 (PIK3CA).
(B) Elastic net drug response models built from inferred protein activity reveal drug targets (shown in parentheses after drug name) more often than
models built using gene expression.
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10 times in 100 iterations of training (see Methods), while for 11

out of 14 targeted drugs (79%), the protein activity drug signatures

contained the drug target at least 10% of the time (Fig. 3B). To test

for possible selection bias, we then retrained the mRNA models

using only the genes in the RPPA list. Again detection of the drug

target was less frequent (eight out of 14 drugs, target with positive

regression coefficient in at least 10% of models) compared to the

inferred protein signatures, suggesting that drug response signatures

trained on inferred protein activities may be more interpretable in

terms of the mechanism of action of the drug.

Inferred protein activity of Luminal A cohort
predicts survival

Estrogen receptor-positive (ER+) metastatic disease accounts for

the majority of breast cancer-related deaths. Luminal A is the most

heterogeneous ER+ breast cancer subtype, both molecularly and

clinically (Ciriello et al. 2013). Although patients with Luminal A

breast cancers have the best survival, the risk of mortality in this

subtype persists over decades after the initial diagnosis (Haque

et al. 2012). Indeed, LuminalAbreast cancers are the only subtype to

display a steady drop in survival over a 10-yr period (Haque et al.

2012). Due to clinical significance, we sought to determine whether

inferred protein activities based on ourmodel could predict survival

in patients with Luminal A breast cancers.

We used the METABRIC cohort (Curtis et al. 2012), which

consists of a discovery set and validation set (n = 465 and 254

Luminal A tumors, respectively) with mRNA expression profiles

and long-term clinical follow-up. First, we used the TCGA-trained

affinity regressionmodel to infer protein activity profiles of Luminal

A samples in the METABRIC cohort (YTDW). Using the inferred

protein activity, we first identified proteins with univariate Cox P <

0.001 on the discovery set. Table 3 (Luminal A) and Supplemental

Table S5 (Luminal) summarize the univariate survival analysis of

significant covariates using predicted protein activities and gene

expression profiles. Univariate survival analysis for PGR (Prat et al.

2013) and STAT5A (Peck et al. 2012) associated high protein ac-

tivity with better overall survival, whereas high ERBB2 and phos-

phorylated ERBB2 (pY1248) (R Ellsworth, AValente, and C Shriver,

unpubl.) showed a worse prognosis. The association was tested by

predicting the risk for each patient in the validation set using the

univariate models and performing Kaplan-Meier survival analysis

(see Methods). As seen in Figure 4A, univariate models built from

inferred protein activity can predict survival in the validation co-

hort but not models built from the gene expression levels of those

proteins. Finally, we built multivariate stepwise Cox regression

models using the predicted protein activity and the gene expres-

sion profiles of the RPPA proteins on the discovery set (see

Methods). Again, in the validation cohort, the model trained with

inferred protein activities can predict survival but not the model

trained on gene expression profiles corresponding to RPPA-pro-

filed proteins (Fig. 4B). We further confirmed that our multivariate

andmost of our univariate survival results generalized to Luminal A

patients in two other cohorts, TRANSBIG (Supplemental Fig. S15)

and NKI (Supplemental Fig. S16).

Discussion
Deregulation of signaling pathways in cancer results in widespread

changes to transcriptional programs. A number of algorithms have

been developed to study the dysregulation of gene expression in

cancer (Segal et al. 2004; Margolin et al. 2006; Akavia et al. 2010)

and to identify post-translational modulators of transcription factor

activity from mRNA profiles (Wang et al. 2009). Other methods

have tried to infer the activity of signal pathways by integrating

mRNA profiles with protein interactions from existing databases,

using various graph-theoretic formalisms such as network flow or

prize-collecting Steiner trees (Yosef et al. 2009; Vaske et al. 2010;

Lan et al. 2011; Tuncbag et al. 2013), and recently the latter ap-

proachhas been applied to a glioblastoma cell line using bothmass

spectrometry and expression measurements (Huang et al. 2013).

Here we have developed a principled machine learning method to

link upstream signaling to downstream transcriptional responses

by exploiting the availability of large-scale parallel data from RPPA

andmRNA expression arrays from the TCGA breast cancer project.

By using a supervised learning approach to weight signaling pro-

tein-TF interactions in order to explain themRNAexpression levels

of TF target genes, the model implicitly captures the changes in

signaling protein activity that are transduced into transcriptional

changes. By mapping mRNA expression profiles for new samples

through the TF hit matrix and trained interaction model (YTDW),

we can infer protein activity profiles from mRNA data. Analysis of

the TCGA breast tumor data set showed that (phospho) proteins

and TFs that were differentially active in breast cancer subtypes

recovered key pathways and downstream effectors that are deregu-

lated in these subtypes.

Table 3. Univariate survival analysis for Luminal A cohort

Predicted protein activity Gene expression profiles

Covariate Coef(bi) HR[exp(bi)] P-value Covariate Coef(bi) HR[exp(bi)] P-value

PGR �62.1 1.1 3 10�27 3.4 3 10�6 PGR �0.4 0.6 3.2 3 10�4

STAT5A �104.3 4.9 3 10�46 6.4 3 10�6 CTNNA1 1.3 3.6 4.3 3 10�4

ERBB2 (pY1248) 143.2 1.5 3 1062 3.7 3 10�5 CCNB1 0.8 2.3 1.5 3 10�3

ERBB2 81.2 1.8 3 1035 3.1 3 10�4 IRS1 �0.5 0.6 3.7 3 10�3

COX2 �72.4 3.8 3 10�32 9.2 3 10�4 BCL2 �0.7 0.5 1.1 3 10�2

KIT �46.2 8.8 3 10�21 1.5 3 10�3 KIT �0.4 0.7 9.4 3 10�3

EGFR 159.6 2.0 3 1069 1.9 3 10�3 STAT5A �0.6 0.5 7.1 3 10�3

TP53 112.8 9.8 3 1048 2.2 3 10�3 RPS6 �0.9 0.4 6.6 3 10�3

SMAD4 �392.1 5.1 3 10�171 3.9 3 10�3 NOTCH3 0.6 1.9 1.1 3 10�2

YWHAE �409.5 1.5 3 10�178 4.7 3 10�3 VASP 1.8 6.0 9.5 3 10�3

RPS6 124.9 1.7 3 1054 6.7 3 10�3 BAK1 1.2 3.2 1.2 3 10�2

NFKB1 (p65_pS536) 93.0 2.4 3 1040 9.4 3 10�3 AKT1 0.9 2.4 1.3 3 10�2

BAX �107.9 1.3 3 10�47 9.0 3 10�3 PRKAA1 0.6 1.8 1.5 3 10�2

EIF4E �137.7 1.6 3 10�60 9.6 3 10�3 ATM �1.4 0.2 2.8 3 10�2
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We further used the TCGA-trained model to infer protein ac-

tivities from gene expression profiles for breast cancer cell lines for

whichdrug response datawas also available. Clustering these inferred

protein activity profiles broadly identified two subtypes (basal-like

and luminal). Moreover, correlations between inferred protein ac-

tivities and drug responses in breast cancer cell lines grouped several

sets of drugs that are clinically used in combination. This result is

consistent with evidence from clinical trials suggesting that therapies

that target the same pathway in complementaryways are likely to be

effective in combination (Gayle et al. 2012; Boutsikou et al. 2013).

Recently, there have been large-scale efforts to model response

to anti-cancer therapies in cell lines with the eventual goal of pre-

dicting the clinical efficacy and toxicity of the interrogated drugs.

For example, Barretina et al. (2012) used ;500 fully characterized

cell lines from theCancerCell Line Encyclopedia (CCLE) alongwith

drug response data from 24 compounds to trainmodels that predict

drug sensitivity from cancer cell genotype and mRNA expression

levels, representing a step toward the application of predictive

models to personalizedmedicine (Barretina et al. 2012). In an even

more ambitious study, the Genomics of Drug Sensitivity in Cancer

Figure 4. Inferred protein activity predicts survival in patients with Luminal A breast cancers (METABRIC). Using inferred protein activity, a prognostic
signature for overall survival was trained on the METABRIC discovery set. Kaplan-Meier survival curves reveal higher- versus lower-risk patients on the
validation set using inferred protein activity (top panels) but not the corresponding gene expression (bottom panels) using (A) univariate Cox models for
PR, STAT5A, and HER2 and (B) multivariate Cox models.
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(GDSC) project (Yang et al. 2013) screened 140 drugs screened

against a total of 1200 cancer cell lines and reported both statistical

associations between genomic alterations and drug sensitivity as

well as regression models. Ultimately, however, regression models

of drug response trained on cell line data are unlikely to be used

directly as ‘‘black box’’ prediction models in a clinical setting. In

our analysis, training drug response models on inferred protein

activity profiles led tomore interpretable predictionmodels. Using

affinity regression analysis in breast cancer cell line systems with

drug response data provides a new strategy for identifying novel

drug-signaling pathway associations that can be experimentally

validated and potentially translated to clinical trials. Moreover, de-

spite the general problem of inconsistency between large-scale drug

response data sets (Haibe-Kains et al. 2013), we found that some of

our drug prediction results did indeed generalize (Supplemental

Table S6), providing proof-of-principle results in support of ourmore

mechanistically interpretable drug response prediction models.

Although patients with Luminal A breast cancers have the

best survival, the risk of mortality in this subtype persists at least

over 10 yr after initial diagnosis. Thus, prognostic tests that de-

termine the risk of recurrence are of clinical benefit. Using the

Luminal A validation cohort (METABRIC), TRANSBIG and NKI, we

found that survival analysis based on inferred protein activities gave

superior performance tomRNA expression. Therefore, our approach

has prognostic potential and may eventually enable clinicians to

choose effective therapies for their patients.

The method we describe has several limitations. Many impor-

tant TFs bind intronic and intergenic regulatory regions as well as

promoters, and the regulatory information at enhancers must ulti-

mately be incorporated into computational models of gene regula-

tion as the field progresses. However, there are significant challenges

to incorporating these approaches in the current setting, including

the lack of breast tumor DNase-seq data (or other open chromatin/

active histonemark data) to reveal the locations of regulatory regions.

Moreover, we have a fixedmotif representation, where the activity of

TFs is inferred by correlation with target expression changes in a lin-

ear model; more complex combinatorics of TF binding are not cur-

rently modeled. Our method can be used to interpret the effect of

mutational/copy number changes in terms of altered TF and signal-

ing protein activities; for example, analysis of tumors that are wild

type vs. deleted/mutated for RB1 (Supplemental Fig. S17) or TP53

(Supplemental Fig. S18) produces a candidate list of deregulated TFs/

signaling proteins. In future work, we could model the impact of

somatic alterations more directly, perhaps by retaining the RPPA

representation but including mutation/copy number status as addi-

tional covariates.

Methods

Data and preprocessing
We downloaded TCGA breast cancer (BRCA) level 3 normalized
mRNA expression data derived from the Agilent expression platform
and the normalized RPPA protein expression data for 164 proteins
and phosphoproteins (Supplemental Material 1, 2) from the Synapse
website (https://www.synapse.org/; Derry et al. 2012). Both gene
expression and protein expression data were available for 397 BRCA
tumors (excluding normal-like). These samples were classified into
four main groups using the 50-gene PAM50 model (Parker et al.
2009); 84 basal-like, 48 HER2, 168 LumA, and 97 LumB. We trained
ourmodel on equalnumbers of samples for each subtype (n= 43 48).

We further filtered genes whose expression standard de-
viation was less than 0.65 on a log2 scale, resulting in a final set of

4025 genes. Gene expression and protein expression vectors were
both mean-centered. Thus, each log-transformed mRNA level was
normalized by: bym

i = ym
i � yi, where ym

i is the expression for gene i
in the mth sample, and y denotes the mean across all the samples.
Protein expression levels from the RPPA data were normalized
similarly: bpm

i = pm
i � pi, where pm

i is the expression for protein i in
the mth sample, and bp denotes the mean across all the samples.

In order to construct themotif hitmatrix, we downloaded the
transcription factor (TF) binding site predictions for all target genes
(TRANSFACv7.4) fromMSigDB (Liberzon et al. 2011).We removed
motifs that have similar sets of targets (Supplemental Material 3).
Thismatrix defines a candidate set of associations between TFs and
target genes.

We also downloaded RPPA protein expression data of breast
cancer cell lines from TCPA (http://bioinformatics.mdanderson.
org/main/TCPA:Overview). We used processed exon array profiling
of breast cancer cell lines from Heiser et al. (2012) in ArrayExpress
(http://www.ebi.ac.uk/arrayexpress/) under accession number
E-MTAB-181.Compound and cell line screening data (preprocessed)
were obtained from the published Supplemental Data (Heiser et al.
2012). For CCLE, gene expression and drug information were
downloaded from the CCLE website (http://www.broadinstitute.
org/ccle). Expression values were log-transformed and mean-
centered as described above.

We downloaded the METABRIC (Curtis et al. 2012) from the
Synapse website (Derry et al. 2012), TRANSBIG (Desmedt et al. 2007)
(from NCBI’s Gene Expression Omnibus [GEO; http://www.ncbi.
nlm.nih.gov/geo/] under accession number GSE7390), NKI (van de
Vijver et al. 2002) (http://bioinformatics.nki.nl/index.php) gene
expression data and survival data. The complete list of data sets used
in this study is shown in Supplemental Table S7.

Inferred transcription factor activity/protein activity
and subtype associations

Associations between inferred TF activity and subtype were assessed
using the Mann-Whitney U-test on inferred activity values over
paired groups of samples: (1) basal-like vs. HER2, LumA, LumB; (2)
HER2 vs. LumA, LumB; (3) HER2 vs. basal-like; and (4) LumA vs.
LumB. To evaluate the significance of each comparison, we used a
permutation approach under which 1000 random W (TF-protein
interaction) matrices were generated for each TF to compute an
empirical null distribution for the test statistic. For each pairwise
comparison, we computed the FDR-corrected P-value for each
TF-subtype association by using the Benjamini-Hochberg procedure
on the empirical P-values for all tested TFs and identified those that
satisfied an FDR threshold of 10%.We first assigned a set of subtypes
to TFs based on these P-values; then we excluded subtypes whose
mean activity had an inconsistent sign compared to the group.

Similarly to the TF-subtype association analysis, we identified
subtype-specific signaling proteins by estimating empirical P-values
relative to randomized versions of theWmatrix and reported those
passing a 10% FDR threshold.

Inferred protein activity and drug sensitivity

To analyze how inferred protein activity (YTDW) is related to in-
dividual drug response in breast cancer cell lines, we calculated
Spearman rank correlations between drug response and inferred
activities of individual (phospho) proteins. Protein activity-drug
correlations can be either positive or negative. A positive correla-
tion indicates that cell lines that have higher protein activity tend
tomore be responsive to the tested drug, and a negative correlation
indicates that cell lines with high protein activity are more likely
resistant to the drug. Further, hierarchical clusteringwas applied to
the protein activity-drug correlation matrix. We also analyzed
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whether proteins that clustered together interacted with each other
using the STRING database (von Mering et al. 2003). For visualiza-
tion, STRINGnetworks were imported to Cytoscape (Shannon et al.
2003).

Elastic net regression was used to identify associations be-
tween inferred protein activity and drug response across breast
cancer cell lines. Specifically, inferred protein activities were used
as input features to predict log-transformed GI50 values of each
drug. Elastic net models were trained with the R package glmnet
(Friedman et al. 2010), and fivefold cross-validation was used to
optimize the elastic-netmixing parameter a. Potential a valueswere
restricted from 0.001 to 0.2 in order to control the number of final
features retained in each run. Under the optimized a, 80% of cell
lines across the whole data set were randomly selected to identify
biomarkers. The procedure was repeated 100 times for each drug.
The final signature of protein activitymarkers for a drug consisted of
all features that appear at least 10 times in any of the 100 runs and
whose weights had consistent signs in different signatures. An
identical training procedure was used to obtain elastic net drug
sensitivity prediction models and signatures from mRNA ex-
pression data, where we restricted to the same 4025 genes that we
used to train the affinity regression model but also added the
drug targets.

Survival analysis

Cox regression univariate and multivariate analysis was performed
using the survival R package (Therneau 1997). Deaths related to
other causes were removed from the analysis. Stepwise multivariate
model selectionbasedon theAkaike information criterion (AIC)was
used to determine the combination of covariates for the multivari-
ate survival models trained on the discovery set. Since inferred
protein activities are highly correlated, for multivariate analysis, the
procedure was repeated 100 times. For the validation set, using (1)
the predicted protein activity profiles and (2) the gene expression
profiles corresponding to RPPA proteins, each patient’s risk was
calculated, and patients were ranked in descending order. We des-
ignated the top 40% of the patients as the high-risk group and the
bottom 40% as the low-risk group. The log-rank test was used to
compare two Kaplan-Meier survival curves with the null hypothesis
that there is no survival difference between the populations.

Data access
Sample source code and sample data sets are available for down-
load from the SupplementalMaterial and at http://cbio.mskcc.org/
leslielab/affinitybrca/brca-code.zip.
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