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Abstract: The correct estimation of earth pressure is important for the design of earth retaining
structures and depends, among others, on the surface morphology of retaining structures. The
diaphragm wall created as a protection of a deep excavation located in an urbanized area was
selected as a research object. Terrestrial Laser Scanning (TLS) was used for the investigation of
the unique surface (in real-world dimension) obtained by tremieying the concrete in different soil
layers. An original and innovative procedure for concrete surface description was developed, which
includes steps from the TLS measurement to the determination of the roughness parameters. The
tested samples from anthropogenic soil, medium sand, and sandy gravel, map the real diaphragm
wall surface. The surface roughness parameters in different soil layers were compared with the
reference surface obtained by cast against steel formwork. The following parameters: Sa, Sdr, and
Vmc are indicated as being the most useful in numerical description of the concrete surface type and
in allowing the determination of the soil surface friction. The novelty of this study is the estimation
of the parameter δ (friction angle between the retaining wall surface and the soil), which is, among
others, a function of the wall surface roughness. The influence of the type of surface on earth pressure
are generally recognized in laboratory tests. Based on the estimated in situ values of δ, the more
reliable active and passive pressure coefficients Ka, Kp were calculated for the tested soil layers.
The conducted study has a practical significance for designing of retaining construction and makes
progress in determination of surface roughness required in Eurocode 7.

Keywords: geodetic measurements; terrestrial laser scanning (TLS); surface topography measure-
ment; earth pressure; 3D roughness parameters; diaphragm wall

1. Introduction

One of the common applications of geodetic methods in relation to geotechnical struc-
tures is the measurement of displacements and deformations of soil or soil-structure sys-
tems. The widespread techniques and detailed descriptions of these studies are published,
e.g., in [1–3]. Deformation analysis based on multitemporal Terrestrial Laser Scanning
(TLS) surveys has been applied for many years in commercial and academic problem
areas [4]. The close-range photogrammetry with image processing can be used to mea-
sure the ground deformation accurately [5,6]. Geodetic methods find direct application
in the design process (observational methods) [7] as well as in structure monitoring and
maintenance control [8–11]. Surveying results are frequently used to verify and calibrate
analytical and numerical calculations of geotechnical structures [12]. Further branches
of application of geodetic methods in geotechnics include surface testing to detect dam-
ages [13], determine thermal parameters [14] or surface roughness parameters [15,16]. The
latter mentioned application is the subject of this article.

Typical reinforced concrete structures are formed using climbing shuttering, or a series
of formworks that ensure controlled surface quality. In the case of reinforced concrete
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structures, the parameters of the surface roughness do not have a significant impact on
the load-bearing capacity. They may be important for protection against corrosion or for
aesthetic value. The control of surface parameters is easy to check. Concrete or reinforced
concrete structures formed in the ground, such as piles, concrete columns, diaphragm walls,
use the surrounding soil as a natural formwork. The parameters of surface roughness
depend on the technology of forming, the type of soil, and its graining. Access to the
underground surface is difficult or impossible. It is obvious that the surface roughness
parameters affect the bearing capacity of the foundation piles [17]. The load transfer
mechanism of shear forces between two layers: concrete and soil occurs thanks to the
friction phenomenon, due to the existence of compression stresses at the interface and to
the relative displacement between concrete and soil. As mentioned before, the access to
the underground surface is difficult or impossible, therefore laboratory shear tests on the
interface between coarse-grained soil and concrete conducted by, e.g., [18,19] are essential.

In the case of retaining structures, the influence of the type of surface on the effects
of loading-earth pressure and resistance-passive earth pressure are generally recognized.
In [20] the laboratory tests of the retaining wall model were carried out. Research has been
conducted for active and passive retaining wall. The roughness of the wall was set in two
types: rough and smooth. Results from image processing while the retaining wall moved
due to earth pressure show that smooth surface condition generates greater displacement
than the rough condition. In numerical analysis, when using virtual thickness factor and a
Rinter factor [21], these trends have been confirmed. The surface roughness characteristics
in the above-mentioned research are only descriptive as well as in Eurocode 2 [22] and do
not refer to the roughness parameters according to the standard [23]. Real retaining wall
(as presented below in this work) is usually more complex than the concrete-soil samples
prepared in the laboratory, due to the character of the surface of the diaphragm wall in
variable geotechnical conditions.

The correct estimate of lateral earth pressure is important for the design of earth
retaining structures. The need to compare the various earth pressure equations with
field measurements cannot be neglected. This comparison is not commonly done due to
the difficulties associated with measuring the earth pressure itself. Understanding the
behavior of soil-structure interaction and relationship between the roughness of the surface
wall and the interface factors may contribute to design retaining walls safely and more
efficiently. Basic concept of earth pressure is shown in Figure 1. The soil mass is bounded
by a frictionless vertical retaining wall. A soil element at the depth of z is subjected to a
vertical effective pressure and a horizontal effective pressure. There are no shear stresses
on the vertical and horizontal planes of the soil element. Note that the horizontal earth
pressure coefficient is valid for: vertical retaining wall, smooth wall in which the interface
between the wall and soil is frictionless, the soil is homogeneous and isotropic. If there
are only stresses in the soil caused by the self-weight of the soil (geostatic stresses), the
major stresses occur in the vertical and horizontal directions. The stresses in horizontal
plane are called stress in rest state. If the wall moves away from the soil mass and cannot
maintain large stresses in the horizontal plane, the major stresses can be considered to be
both vertical and horizontal. Stresses in horizontal plane are called active state.
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Figure 1. The active and passive sides of the wall along Rankine zones (courtesy of Sigurdur Mar
Valsson [24]).

Rankine zones and the stress fields drawn on either side of the wall in Figure 1 are
called active and passive Rankine zones. A list of nomenclature for all the symbols can be
found in the Appendix A. The failure wedge on the active zone will have inclination αa =(

45− ϕ′

2

)
and failure wedge on the passive zone will have inclination αp =

(
45 + ϕ′

2

)
,

where ϕ′ is an angle of soil internal friction. The nondimensional quantity parameter
describing soil pressure coefficient of pressure K, can be defined as ratio: horizontal
pressure σ′h to vertical pressure σ′z. This ratio is called the coefficient of Rankine’s active
earth pressure and is given by

Ka =
σ′h
σ′z

= tan2
(

45− ϕ′

2

)
(1)

When the retaining wall moves into the soil towards the lower surcharge (left side),
the soil wedge opposes. The effective principal stresses σ′h will increase, and after reaching
the ultimate state, the soil failure wedge is pushed upwards. The coefficient of Rankine’s
passive earth pressure is given by:

Kp =
σ′h
σ′z

= tan2
(

45 +
ϕ′

2

)
(2)

As noted, the classical pressure Rankine theory assumes a smooth retaining wall
surface. It is not plausible that all retaining structures should either be constructed as
completely rough or completely smooth. To tackle the disadvantage of assuming a plane
failure surface by Coulomb [25] and Rankine [26], Caquot et al. [27] developed a theory for
earth pressure which was based on the logarithmic spiral theory.

In Annex C of the Eurocode 7 [28] the general equation for calculating the coefficient
of earth pressure is given as:

K =
1± sinϕsin(2mw ± ϕ)

1∓ sinϕsin(2mt ± ϕ)
exp±(2vtanϕ) (3)

where:
cos(2mt ± ϕ + β) = − sinβ

±sinϕ
(4)

cos(2mw ± ϕ± δ) =
sinδ

sinϕ
(5)
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v = mt + β−mw − θ (6)

In work [24,29] is presented a single equation for both active and passive pressure.

Kp =
1 + sinϕsin(2mw + ϕ)

1− sinϕsin(2mt + ϕ)
exp 2(mt + β−mw − θ)(tanϕ) (7)

where:

mt = 0.5(arccos
(
−sinβ

sinϕ

)
− ϕ− β) (8)

mw = 0.5(arccos
(

sinδ

sinϕ

)
− ϕ− δ) (9)

Ka =
1− sinϕsin(2mw − ϕ)

1 + sinϕsin(2mt − ϕ)
exp−2(mt + β−mw − θ)(tanϕ) (10)

where:

mt = 0.5(arccos
(
−sinβ

−sinϕ

)
+ ϕ− β) (11)

mw = 0.5(arccos
(

sinδ

sinϕ

)
+ ϕ + δ) (12)

where: ϕ = internal soil friction angle, β = is the slope angle of the ground behind the wall,
δ = is the angle of shearing resistance between ground and wall, θ = the angle of inclination
of the wall to the vertical.

The parameter δ takes into account the roughness of the wall surface, but the stan-
dard [28] does not give details on how to take this value. Obtaining a rough surface is
advantageous and leads to a reduction of active pressure on the retaining structure and
increasing the passive resistance of the soil. The value of the parameter δ friction angle
between the wall and the soil is a function of the surface roughness and the angle of internal
friction of the soil. However, the standards [22,28] do not provide detailed recommen-
dations on how to determine this parameter, they indicate a smooth, intermediate, and
rough state, without linking them to the roughness surface parameters. Meanwhile, the
roughness description is essential, especially when determining the passive earth resistance.
For example, as shown in the diagram (Figure 2), for a typical value of the angle of soil
internal friction ϕ = 30◦, the value of passive earth pressure Kp for the rough state is Kp = 6.0
and for smooth state is Kp = 3.0, which completely changes the design of the excavation
protection in the soil and internal forces in it.

It is not possible to assemble the retaining structures as perfectly rough or perfectly
smooth. The measurement of how much shear stress in the soil will be transferred to the
structure, called the roughness ratio is defined as [30]:

r =
τ

τcr
(13)

where: τ = stands for the shear stress acting on the structure, and τcr = stands for the critical
shear stress in the soil mass at failure. The roughness ratio will then take the value r = 0
when we have a completely smooth wall and the value when r = 1, the wall is completely
rough. Parameter τcr = the critical shear stress in the soil mass, can be calculated according
to the rules of soil mechanics, however, the parameter τ is a function of the internal friction
angle of the soil and the stress normal to the surface, and the roughness of the surface.
In typical mechanical systems, smooth surfaces of moving elements operate to reduce
the friction force, resistance to motion, and wear, hence the expected values of roughness
parameters that describe smooth surfaces. In the presented geotechnical problem, the
surface roughness requirements are quite different. Obtaining a rough surface is favorable
and leads to an increase in the load-bearing capacity of the retaining structure. As shown
above in the code approach [28] and research [24], the precise definition and numerical
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roughness values remain unspecified. This is the motivation to determine the roughness
parameters according to [23] for in situ concrete surfaces intuitively assumed as smooth,
intermediately rough, and rough.
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2. Materials and Methods
2.1. Terrestrial Laser Scanning

Terrestrial Laser Scanning (TLS) is a measurement technique that uses laser light to
inquisition objects in three-dimensional space. Laser scanners can be classified according
to various criteria, e.g., distance measurement, field-of-view, scanning resolution, measure-
ment frequency, measurement range, and scanning speed [31]. In the literature, the most
common categorization of scanners is based on the distance measurement method. The
main types of scanning techniques mentioned in publications are pulse-based, phase-based,
and triangulation-based [32–34].

In pulse-based scanners, the distance measurement is based on the parameter of the
time of the laser flight from the emitter to the object and is reflected back to a sensor. The
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flight time of the laser is therefore measured for twice the distance. The distance d is
obtained from the following Equation (14):

d =
cL·t

2
(14)

where: t = flight time of laser; cL = speed of light in the medium.
The phase-based method is based on a phase difference. The emitted laser light beam

is amplitude modulated, which, reflected from the object’s surface, returns to the scanner
sensor (receiver) with a defined time delay. Based on the dependence that the transition
time of the signal is directly proportional to the phase difference of the wave, the distance
d can be calculated as follows:

d =
cL
2
· ϕd
2π
·T (15)

where: ϕd = phase difference between received and sent signal; T = period of the modu-
lated signal.

The triangulation-based technique uses principles of the triangle to determine the
location of measurement object. The measurement principle is described in detail by [35].
The laser emitter and the camera are set at a constant angle. Knowing the distance between
the laser emitter and the camera (called the baseline), the angle of the laser emitter and the
angle of the camera (which can be determined by looking at the position of the laser beam
in the field of view of the camera), a triangle shape is obtained. This configuration enables
the location of the measured object to be determined.

There are also other categorizations. According to [36], three electro-optical distance
measurement techniques are detailed: time of flight, triangulation, and interferometry. As
described in [31], in the time-of-flight method there can be differentiate:

• the direct time of flight (pulsed time of flight the equivalent of mentioned pulse-
based method),

• the indirect time of flight (amplitude-modulated continuous wave, frequency-modulated
continuous wave, and polarization modulation).

Interferometry is a distance determination method based on interfering electromag-
netic waves. The essence of measuring interferometric scanners is presented, among others,
by [35]. The laser beam is divided into two parts: half of the laser beam is reflected by
the beam splitter and the other half is transmitted. When both parts are connected to-
gether, interference pattern are created. The analysis of the interference patterns allows the
determination of the distance.

2.2. Study Site

The study site was located on a construction site of an office building in Wrocław,
Poland. The city is situated on The Silesian Lowland which is the southernmost part of the
Middle-Polish Lowlands. There is a vast plain with little diversity of relief. It spreads from
the southeast to the northwest, along the glacial valleys of the Oder River, which is filled
with alluvial sediments of Pleistocene and Holocene, mostly sand and gravel [37]. For
decades, the area of the city has undergone intensive processes of urbanization, a constant
influx of people, the development of processing industry, and the damage from military
conflicts, and reconstruction afterwards. These activities became the reason for changes in
the natural environment, especially in the subsoil. The anthropogenic changes take place
on the surface of the terrain where they have impact on the civil structures.

Diaphragm walls are mainly designed and installed at recent excavation works in
urban area because of some benefits such as the high stiffness of walls and the reducing
of construction period [38]. Figure 3 shows the considered excavation work site using
diaphragm walls supported by struts system. The diaphragm wall with thickness of 80 cm
was installed at the excavated depth ranged to 12 m. The bottom of the wall was sunk
5.5 m below the excavation depth in cohesive soils. The planned underground part of the
building will include three levels of a car park.
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Before starting the excavation, a bentonite slurry plant must be installed for mixing
and providing bentonite to the excavated panels through pipes. The guide walls that will
prevent the soil from collapsing at the top of the designed wall, and will facilitate the instal-
lation of bentonite pipes that will deliver bentonite to the excavated panel, should be done
initially. Special device clamshells, also known as grabs/buckets/cutters, are rectangular
shaped and used to excavate vertical panels (Figure 4a). Loose or medium compacted
sand and gravels can be excavated by using grab while excavation of hard soils strata can
be processed by using cutter. The digging device can be cable or hydraulically driven.
In the second phase of the technology, a vertical panel with a finite length and designed
depth is excavated under the hydrostatic support from inside the bentonite slurry. During
excavation, the bentonite must be fed to the panel simultaneously, while the excavated soil
with bentonite is sent to the bentonite slurry plant for recycling [39]. End stops are used to
control concrete placement so that secondly adjacent panels are not excavating monolithic
concrete. Prior to tremieying the concrete, and while the panel is excavated the bentonite
slurry contaminated by soil particles is simultaneously pumped out and cleaned. The
bentonite slurry within acceptable parameters (density, sand content, viscosity, and PH) is
fed to the panel. Cleaning and desanding slurry decrease its density so that tremie concrete
doesn’t mix with slurry or native soil. Slurry is circulated at regular intervals throughout
the construction period through the regeneration plant. Reinforcing cage is inserted into
finished excavated panel, while the bentonite slurry still has a stabilizing effect. The final
step assembling of diaphragm wall is tremie concreting, the technological process that
involves replacing supporting slurry with concrete. With the vertical pipes called tremies,
concreting starts from the bottom and the tremies are lifted steadily increasing as the top
level of the wall rises.

Each of the presented technology stages of wall formation influences the final shape,
roughness, and parameters of the wall surface roughness. The visible rough, heterogeneous
surface of the wall results from the graining of the concrete and also the graining of the
native soil layers in which wall is made. The roughness resulting from the graining will
be visible in detailed tests with a laser scanner, while the vertical and horizontal waviness
visible in the photo is a result of the technology making the wall. The vertical waviness
reflects the vertical elements of the bucket frame structure (Figure 4a), and the numerous
horizontal wavy lines (Figure 4b) are the traces of the bucket’s successive strokes during
free fall into the native soil, they are the ordinates of the bucket’s successive hollows. Slurry
cleaning and desanding removes finer fractions from the native soil in the soil-concrete
interface. The influence of the latter waviness on the earth pressure coefficients should be
considered in laser scanning data processing.
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2.3. Geotechnical Conditions

A geotechnical cross-section of the excavation site is presented in Figure 5, where
Mg is anthropogenic soil, MSa is medium sand, gr is gravel, grSa is sandy gravel, and
saCl is sandy clay. The ground is composed of anthropogenic soils and sedimentary soils.
After the excavation has been made, slurry wall surfaces in non-cohesive, saturated soil are
accessible. Geotechnical conditions are favorable, the slurry wall sinking in low permeable
cohesive soils prevents the inflow of groundwater into the excavation.
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2.4. Geodetic Measurements

For the purposes of a wider research project, a network of geodetic points was es-
tablished on the construction site and its surroundings. The network consisted of nine
reference points, five instrument stations, and 49 tie points. Measurements were made with
a Trimble S7 robotic total station (Figure A1a—Appendix B). Each point was measured
in at least two series, and in each series the measurements were made in two positions
of the telescope (face 1 and 2). The angular-linear observations were adjusted with the
least square method in the adopted local reference frame. After adjustment, the mean
square error of point position was equal 1.45 mm, and do not exceed 2.1 mm for the worst
determined point. The mean square error of height was equal 1.23 mm, and do not exceed
1.8 mm for the worst determined point. Laser scanning of the entire construction site was
performed with a Riegl VZ-400i pulse scanner (Figure A1b—Appendix B) from 25 posi-
tions. Seven scanner positions were located at the bottom of the excavation (marked as:
ScanPos11—ScanPos17), and the remaining positions were at the ground level around the
excavation (Figure A2—Appendix B). Panoramic scan with a resolution of 20 mdeg, scan
of visible tie points signaled by reflective sheet targets, and series of wide-angle photos
from the integrated camera were performed at each scanner position.

The initial processing of data from the laser scanner consisted in manually checking the
point cloud from each station, and removing unnecessarily scanned people and incorrectly
detected tie points. Then the point clouds were filtered with the use of reflectance and
deviation parameters, which allowed to remove most of the measurement noise and false
reflections. Subsequently, the initial registration of point clouds from individual scanner
positions was performed based on data from the GNSS receiver and Inertial Measurement
Unit (IMU). The final combination of point clouds was carried out by mutual alignment of
the common surfaces also considering the tie points (Multi-Station Adjustment in RiSCAN
PRO software [40] Figure 6). Afterwards, the merged point cloud from all scanner positions
was fitted to the target local coordinate system based on the known coordinates of the tie
points. The mean error of georeferencing process was equal 2.2 mm. A fragment of the
point cloud after processing is shown in (Figure A3—Appendix B).
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The northern diaphragm wall was selected for further research due to its greater
availability. The obtained point cloud was very dense, as shown in Figure 7.
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For each geotechnical layer, eight samples of 1 × 1 m dimensions were cut out from
the point cloud representing the surface of the excavated diaphragm wall in convenient
places (Figure 8). Samples marked in red come from anthropogenic soil (Mg), samples
marked in blue from medium sand (MSa), and samples marked in green from sandy gravel
(grSa) layer. The sample designation consisted of a symbol describing the geotechnical
layer and the sequence number of the sample within the layer, numbered from right to left
(Figure 8).
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Figure 8. Location of measurement samples on the diaphragm wall in individual geotechnical layers: red color samples
from Mg (anthropogenic soil), blue color samples from MSa (medium sand), green color samples from grSa (sandy gravel).

To compare the surface of the diaphragm wall with a smooth concrete surface that
could be treated as a reference surface, a measurement of a fragment of a concrete wall
made in the formwork was carried out (Figure 9). The same measuring instruments and an
analogous method of processing the point cloud were used. For further processing, two
samples of 1 × 1 m dimensions were cut from the point cloud, hereinafter referred to as
“reference surface” and numbered as RS1, RS2.
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2.5. Procedure for Determination of Surface Parameters

In the literature, the researchers were particularly interested in the parameters of pile
surface roughness. In paper [41], a series of pullout tests were conducted on a model pile
in a soil with different initial water contents and different pile surface roughness (smooth
or rough) to study their influences on pile skin friction. Smooth surface was considered as
mild steel and rough as screwed surface. The normalized surface roughness (Rn) of the
interface is based on the roughness profile proposed in work [42] in Equation (16):

Rn =
Rmax

d50
(16)

where: Rmax = maximum peak to valley height, in code [21] parameter is described as Sz;
d50 = grain size (diameter) corresponding to 50% finer. For steel surface Rmax was measured
as 0.0025 mm.

The Rmax parameter is one-dimensional and can be used for slim piles, however,
for the diaphragm wall, the 3D parameters, the graining of the concrete aggregate and
the native soil should be considered. The analysis of the surface morphology in the
context of scientific and engineering applications is more and more often carried out in
3D space [19,43–45]. Using specialized software, it is possible to generate isometric 3D
views of the tested surface and obtain roughness parameters [46]. The terms, definitions
and parameters of the surface geometry are specified in detail in the ISO 25178 series
of standards. Depending on their functionality, roughness parameters can be divided
into several groups [44,47]: height parameters, spatial parameters, hybrid parameters,
functional parameters, feature parameters, other 3D parameter. Due to the large number of
parameters, the “parameter rash” phenomenon is observable, causing problems with the
selection of appropriate 3D morphological parameters for surface description, including
the concrete surface. Attempts to classify useful parameters for assessing the morphology
of the concrete surface were made in the works, among others, in [48,49]. The selected
parameters are presented in Table 1.
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Table 1. Examples of surface parameters and their definitions according to [23,50].

Name of Parameter Definition

Height parameters

Root-mean-square height Sq =
√

1
A
s

A(Z(x, y))2dxdy
Skewness Ssk = 1

Sq3

[
1
A
s

A(Z(x, y))3dxdy
]

Kurtosis Sku = 1/Sq4/A
s

A Z(x, y)2dxdy
Maximum height Sz = sup{Z(xi, yi)}+ |in f {Z(xi, yi)}|

Arithmetic mean height Sa = 1/A
s

A|Z(x, y)|dxdy

Hybrid parameters

Developed interfacial area ratio Sdr = 1
A

[
s

A

(√[
1 +

(
∂z(x,y)

∂x

)2
+
(

∂z(x,y)
∂y

)2
]
− 1

)
dxdy

]
Functional Volume Parameters

Peak material volume Vmp = Vm(p)
Core material volume Vmc = Vm(q)−Vm(p)

Core void volume Vvc = Vv(p)−Vv(q)
Dale void volume Vvv = Vv(q)

In general, for evaluation of area A the spatial distribution of ordinates Z is analyzed
at a specific sampling density of this area (ordinate measurement using various techniques).
The maximum height Sz is a vertical distance (along Z axis) between the maximum peak
height and the maximum valley depth within A area. Parameter Sa is an arithmetic
mean of absolute values of Z (height) within evaluation area. Parameter Sq shows the
typical magnitude of Z (height), regardless of the sign of heights. The skewness Ssk
evaluates deviations in the height distribution. When distribution is symmetrical then
Ssk = 0. Values above zero indicate the predominance of rounded peaks on the sample
surface. Values below zero indicate the predominance of sharp peaks. The kurtosis Sku
evaluates sharpness in height distribution. For normal distribution Sku = 3. Values above
3 indicate sharp distribution (the surface resembles a zigzag). Values below 3 indicate even
distribution (the surface resembles a sine wave). Parameter Sdr determines the increase of
the surface area in relation to the area of its projection on the plane. Functional volume
parameters describe the contribution of core, peaks, and dales in material surface on the
basis of the material ratio curve with 10% and 80% as typical threshold [51].

A typical procedure for areal parameters determination, according to standard [23],
was described in [52] (Figure 10). The actual surface of the sample is mapped using a
specific measuring instrument, with limitations resulting from this instrument’s specificity.
The result is referred to as an extracted surface. Then, the S1 filter could be applied for
removing measurement noise. The next step is to level the sample, which is denoted
as F operator, and the resulting surface is named as SF surface. Then it is possible to
first determine the searched areal parameters. Any surface can be composed of different
geometrical structures with different scales [53]. A surface with a fine structure (roughness)
has a small scale. The waviness, as a periodic component, can be small-scale and large-scale.
The essence of subsequent filtration is to extract small-scale and large-scale fragments,
respectively, from the surface measurement data. The S2 filter is a low-pass filter and is
responsible for the elimination of short-wave surface deviation. The L filter, on the other
hand, is a high-pass filter that removes long-term surface deviation. After separating
waviness from roughness, the second set of areal parameters should be determined. This
procedure is typical primarily for surface testing in mechanical applications where friction
must be eliminated.
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Figure 10. Typical procedure for areal parameters determination (courtesy of François Blateyron, Digital Surf [52]).

For the assessment of roughness of the diaphragm wall (on the basis of the laser
scanning measurement) for the needs of earth pressure estimation, the original procedure
was proposed by the authors (Figure 11).
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Figure 11. The procedure for the assessment of roughness of the diaphragm wall proposed by the authors.

The first stage is to plan the field measurements. In the case of using laser scanners
which do not require leveling, it is worth setting up a geodetic network of tie points, using
a total station, in order to accurately determine the vertical axis of the coordinate system.
Accuracy of inertial sensors of the scanner may be insufficient. When it is necessary to
geo-reference the point cloud, establishing of tie points is almost obligatory.

The second stage is TLS data processing. Some of the processing steps are typical
but must be adapted to the type of scanner and the specifics of the measured object.
During filtering, the authors eliminated points with reflectance below −16 dB, and signal
deviation above 15 in RiSCAN PRO software [40]. Some steps are described in detail in
the Section 2.4. The original proposition of the authors is to use of the octree method for
samples decimation. The combined point cloud has an irregular point distribution in the
sample area. Additionally, the measurement noise of the scanner, caused by the inaccuracy
of the distance measurement with the use of a reflector-less rangefinder, causes a certain
“thickness” of the point cloud surface representing the concrete surface. Depending on
the accuracy of the scanner, this “thickness” varies within a few millimeters. The authors
propose to perform an octree decimation with cell dimensions of 5 × 5 mm “along” the
wall, and 50 cm “perpendicular” to the wall. In each octree cell, one real measured point
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should be left, closest to the average position of all measured points which are in the
cell. The 5 mm cell side corresponds to the approximate size of the laser spot falling on
the object during the measurement. 50 cm high of the cell considers any unevenness of
the diaphragm wall. The use of octree decimation ensures regular distribution of points
“along” the wall and eliminates “thickness” of the surface maintaining the characteristic
topography of the sample surface. After decimation, the samples were trimmed to the
target size (in CloudCompare software [54]), which was a square with a side of 1 m (treated
as the primary surfaces).

The next steps were performed in Mountain Maps software [55]. At the beginning,
each sample was leveled using least square planes (LSP) through subtraction. Then the
samples were spatially filtered to minimize the measuring noise. A 5 × 5 mm median
filter was used to denoise. In the next step, all not measured (NM) points were filled
with a smooth shape calculated according to the neighbors. Then, the set of chosen areal
parameters were calculated.

To assess the roughness of concrete interacting with the ground in terms of the estima-
tion of earth pressure the greatest unevenness of the surface is of the greatest importance.
Therefore, according to the authors, the further steps shown in Figure 10 should not be
followed (S2 filter and L filter). In the case of a diaphragm wall, separating the waviness
from the roughness would lead to unnecessary splitting of the overall effect into parts.

3. Results

As was presented in Figure 8, the eight samples were processed for each geotechnical
layer. 3D models of chosen samples for anthropogenic soil and for medium sand are
presented in Figure 12, as well as for sandy gravel and for reference surface in Figure 13,
respectively. The samples from anthropogenic soil are characterized by a large number of
fine but fairly evenly distributed irregularities. The samples from medium sand and sandy
gravel are very diverse, even in the same layer. The reference wall samples are much flatter,
which is not surprising.

In order to compare the values of the roughness parameters between respective
geotechnical layers, as well as to show the variability of these parameters within a given
layer (on the basis of eight samples for each layer), the set of box plots were prepared.
Comparison of results for height and hybrid parameters is juxtaposed in Figure 14, and
for functional volume parameters in Figure 15, respectively. Figure 16 presents box plot
comparison of inclination angles of the wall surface in two directions: deviation from
verticality, and deviations from straightness (along the diaphragm wall).
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4. Discussion

The influence of the surface type of a retaining structure on the loading (active earth
pressure) and soil resistance (passive earth pressure) are generally recognized in laboratory
tests. In [20], the roughness of the retaining wall was set in two types: rough and smooth.
It does not consider more advanced variety of subsoil, which modify the concrete surface
roughness. The currently conducted research is aimed at determining displacements and
deformations as well as the detection of the occurrence of limit states. The investigations
presented in [9,56] allow for the check of global behavior of retaining structures in the
field of structural health monitoring. Otherwise, the research in this paper uses geodetic
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methods (TLS) to describe in situ surface roughness parameters and further use them to
more precise calculations of geotechnical loads earth pressure on the retaining structure.

The research object (diaphragm wall) is made of concrete with a controlled grain
distribution and therefore it can be assumed that the presented variability of the surface
parameters results from the execution of a slurry in soils with different grain sizes. Soil
graining (particle size composition) is determined by the percentage content of individual
fractions in relation to the weight of the entire tested soil sample [57]. The percentage of
each fraction is necessary to determine the type of soil. Soil graining is characterized by the
index U:

U =
d60

d10
(17)

where: d10, d60 = denote the particle diameters, which together with the smaller ones
constitute 10, 60% of the mass of the sample, respectively.

Sandy gravel is well graded with parameter value U > 15; gravel and medium sand
are uniform graded with U > 6; gravel is poorly graded with U > 4. Sandy gravel contains
coarse, sandy, and fine (silty) grain; medium sand contains sandy grain with some gravel.

As shown in the geotechnical profile (Figure 5), there are soils that consist of various
grains as well as non-cohesive and fine-grained (cohesive) soils. The dimensionless rough-
ness can be also estimated from the Equation (16). Grain size distribution be used here to
explain the difference in roughness parameters obtained by diaphragm wall surface. The
parameter value Sz is biggest for sandy gravel, while according to grain size distributions
for sandy gravel and medium sand, the diameter D50 is comparable for both layers, hence
the dimensionless roughness Rn is greater for sandy gravel. In the case of the Sz parameter,
its values are determined by the extreme values from the height distribution of the sample
(the tails of height distribution). When analyzing larger areas (samples about 1 m2), the
Sa and Sq parameters are much more reliable than the Sz parameter, because Sa represent
the arithmetic mean of the absolute sample’s height within the evaluation area, and Sq
represents the root mean square of sample’s height within the evaluation area, respectively.
Additionally, these parameters are not significantly influenced by scratches, contamina-
tion, and measurement noise [51]. Considering Figure 14b,c, the overall distribution of
parameter values is similar to grain size distribution of soil. As expected, the values of
the Sa and Sq parameters for the reference surface are very small and are at the level of the
scanner measurement errors as well as the inaccuracy of the formwork flatness. Parameter
Ssk is used for deviation evaluation in the height distribution. For the reference surface the
height distribution is almost symmetric against the mean line. For anthropogenic soil the
height distribution is slightly deviated to the upper side, but for medium sand and sandy
gravel the height distribution is slightly deviated to the lower side. Approximately, all
geotechnical layers and reference surface have normal height distribution (Sku ≈ 3). Only
medium sand has a slight tendency to sharp height distribution.

The Sdr parameter of a completely level surface is 0. This is the case of reference
concrete surface. When a surface has any slope, its Sdr value becomes larger. The parameter
value Sdr is higher for sandy gravel then for medium sand. Then there is a “notched joint”
connection between concrete and soil. A similar relationship exists for the Vmp parameter,
which indicates greater roughness for sandy gravel. The estimation δ angle, as a function
of the soil friction angle ϕ only, as it is shown in the Figure 2, is therefore not inaccurate. In
particular, for soil layers with the same friction angle value, the same roughness is assumed,
and the grain size effect is neglected. The variability of the sample inclination angles in
both directions (Figure 16a,b) results from the random distribution of the samples on the
surface of the diaphragm wall and the traces of the cutter work. The sample size (1 square
meter) is much smaller than the width of the cutter, which excavates a 3 m wide panel
during the work cycle (Figures 7 and 8).

Anthropogenic soils that occur in urban areas as layers of large thickness, for which
the angle of internal friction is usually not determined in laboratory tests, and they are
treated as non-bearing or weak soil. The research conducted in [58] an adjacent location
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indicates that construction debris and dumps in urbanized areas, which were built-up in
the past, can be treated as non-cohesive soils. In order to indicate the influence of the earth
pressure, the values Ka, Kp were estimated in Table 2 for smooth surfaces and in Table 3
for rough surfaces according to [28] for horizontal retained surface (β = 0). Internal soil
friction angle ϕ of soil layers are adopted on the basis of geotechnical investigation.

Table 2. Earth pressure coefficient Ka, Kp, for smooth surface according to [28].

Surface ϕ δ Ka δ = 0.00 Kp δ = 0.00

[◦] [◦] [–] [–]

concrete/Mg 29 0 0.36 3.0
concrete/MSa 33 0 0.33 3.2
concrete/grSa 38 0 0.24 3.5

Table 3. Earth pressure coefficient Ka, Kp, for rough surface according to [28].

Surface ϕ δ ϕ / δ Ka δ/ϕ = 0.66 Kp δ/ϕ = 0.66

[◦] [◦] [–] [–] [–]

concrete/Mg 29 19.1 0.66 0.30 4.3
concrete/MSa 33 21.7 0.66 0.26 5.6
concrete/grSa 38 25.0 0.66 0.20 8.1

The values of passive pressure, which are a function of the coefficients Kp, are sensitive
to the change of numerical parameters, therefore, considering the surface roughness of the
retaining here significant.

The fib Model Code 2010 [59,60] present an improvement related with the explicit
contribution of each load transfer mechanism cohesion, friction and dovel action in the
design expression and with the characterization of the surface roughness. This code adopts
a roughness parameter the average roughness (Ra) to describe the surface roughness of
the concrete substrate. Depending on the treatment method and the calculated average
roughness parameter (Ra) the roughness is classified according to four categories: (1) very
smooth, surface obtained by cast against steel formwork, Ra is not measurable; (2) smooth
untreated surface, obtained by cast against wooden formwork, Ra < 1.5 mm; (3) rough,
surface obtained by sand blasting or similar treatment Ra ≥ 1.5 mm; (4) very rough
surface obtained by high pressure water blasting or similar treatment or intended surfaces
Ra ≥ 3.0 mm. These standards do not consider the surface of concrete formed by cast
against soil layer. In the conducted 3D tests, the parameter Sa is the equivalent of mentioned
in the code Ra parameter. Based on the received parameter Sa, Sz, Sdr, Vmp, Vvc values, the
diaphragm wall surfaces may be described as rough/very rough and reference surface
as smooth/very smooth. The task is to determine the value of the angle considering the
roughness value of the concrete surface. If the coefficient of friction is adopted from the
standard [22], then µ = 0.8 for rough surface. Maximum shear stress in the soil at the
contact surface is defined as:

τcr = γ·z·K·tgϕ (18)

where: K = is coefficient of effective horizontal earth pressure; γ = the total weight density
of retained ground; z = distance down the face of the wall.

Shear stress in the soil at rough contact concrete surface is given by:

τ = µ ·γ·z ·K· tgϕ (19)

Then angle δ is calculated from the relationship:

tgδ =
τ

σh
=

µ·γ·z·K·tgϕ

γ·z·K = µ·tgϕ (20)
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δ = arctg(µ·tgϕ) (21)

The values of angle δ for subsequent layers and calculated on this basis earth pressure
coefficients K with horizontal retained surface (β = 0) are listed in Table 4.

Table 4. Pressure coefficient values Ka, Kp for tested surfaces according to Equations (7) and (10).

Surface
Surface Parameter (Average)

Surface Type δ Ka KpSa Sz Sdr Vmp Vvc
[mm] [mm] [%] [mL/m2] [mL/m2] [◦] [-] [-]

reference concrete 1.5 9.0 0.1 60 2198 smooth/very smooth 0 - -
concrete/Mg 5.8 46.4 5.2 284 8587 very rough 23 0.29 4.5
concrete/MSa 3.5 35.0 1.6 426 5277 rough/very rough 27 0.22 6.0
concrete/grSa 7.7 52.0 2.6 436 12193 very rough 32 0.19 8.9

The value of the angle δ on the basis of the above performed calculations gives an
advantageous change the pressure coefficients in the range of 5–10%, in particular passive
earth pressure.

5. Conclusions

The article presents the application of laser scanning for concrete surface morphology
assessment. Two types of concrete surfaces differing in the manufacture method were
examined: very smooth concrete surface obtained by cast against steel formwork, as well
as rough/very rough surface obtained by tremieying the concrete in different soil layers.
Acquiring these data is difficult due to the formation of diaphragm wall in the ground and
their subsequent work as an underground structure.

The roughness characteristics in the Eurocode 2 [22] are only descriptive and do not
refer to the roughness parameters according to the standard [23]. The tested samples
describe/map the real diaphragm wall surface and allow to describe numerically the type
of concrete surfaces. The authors proposed an innovative and comprehensive procedure
for acquiring data on the roughness of the surface of a concrete diaphragm wall on a
construction site (in real-world dimensions). The proposed procedure includes steps from
planning the measurement with a laser scanner at the construction site to determining
the roughness parameters of the concrete surface and can be applied to other concrete
geotechnical structures.

The application of proposed procedure allows for:

• determination of the values of significant parameters of surface roughness;
• separation of geotechnical layers with various roughness;
• estimation of the parameter δ (friction angle between the retaining wall surface and

the soil), which is a function of the wall surface roughness and the angle of internal
friction of the soil;

• more reliable calculation of earth pressure in separate geotechnical layers;
• obtainment of roughness parameters with practical significance for earth active and

passive pressure calculation.

This study can be enhanced in further research by increasing the number of surface
samples and including cohesive soils to predict earth pressure values more reliable based
on the geodetic measurement techniques.
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Appendix A

Explanation of the symbols used in the order of their appearance in the text:
Ka = coefficient of active earth pressure [-]
Kp = coefficient of passive earth pressure [-]
K = coefficient of earth pressure at rest [-]
mt = auxiliary sum of other parameters [◦]
mw = auxiliary sum of other parameters [◦]
αa = inclination of failure wedge on the active zone [◦]
αp = inclination of failure wedge on the active zone [◦]
β = slope angle of the ground behind the wall (upward positive) [◦]
σ′h = effective horizontal stress [Pa]
σ′z = effective vertical stress [Pa]
δ = friction angle between the retaining wall surface and the soil [◦]
r = roughness ratio [-]
τ = the shear stress acting on the structure [Pa]
τcr = critical shear stress in the soil mass at failure [Pa]
ϕ′ = effective friction angle [◦]
ϕ = friction angle [◦]
z = vertical distance [m]
Rinter = interface strength reduction factor [-]
v = auxiliary sum of other parameters [◦]
γ = unit weight [kN/m3]
θ = angle of inclination of the wall to vertical [◦]
µ = coefficient of friction [-]
d = distance measured by the laser scanner [m]
cL = speed of light [m/s]
t = time of passage of the electromagnetic wave from the transmitter to the receiver [s]
ϕd = phase difference between received and sent signal [rad]
T = period of the modulated signal in laser scanners [s]
U = soil graining index [-]
d10 = the particle diameters, which together with the smaller ones constitute 10% of

the mass of the sample [mm]
d50 = the particle diameters, which together with the smaller ones constitute 50% of

the mass of the sample [mm]
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d60 = the particle diameters, which together with the smaller ones constitute 60% of
the mass of the sample [mm]

Rn = normalized surface roughness [-]
Rmax = maximum peak to valley height, equivalent of Rz (for profile method) or Sz

(for areal method) in code [23] [mm]
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