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Abstract
Over the last 15 years, cardiovascular magnetic resonance (CMR) imaging
has progressively evolved to become an indispensable tool in cardiology. It
is a non-invasive technique that enables objective and functional
assessment of myocardial tissue. Recent innovations in magnetic
resonance imaging scanner technology and parallel imaging techniques
have facilitated the generation of T1 and T2 parametric mapping to explore
tissue characteristics. The emergence of strain imaging has enabled
cardiologists to evaluate cardiac function beyond conventional metrics.
Significant progress in computer processing capabilities and cloud
infrastructure has supported the growth of artificial intelligence in CMR
imaging. In this review article, we describe recent advances in T1/T2
mapping, myocardial strain, and artificial intelligence in CMR imaging.
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Introduction
Cardiovascular magnetic resonance (CMR) imaging has rap-
idly emerged as a robust diagnostic option for evaluating a 
number of pathological entities in cardiology. Furthermore, CMR 
is the gold standard for non-invasive measurement of left ven-
tricular and right ventricular volumes and ejection fraction1. 
CMR enables non-invasive cardiac visualization with augmented 
temporal and spatial resolution along with high blood-to-tis-
sue contrast2. Moreover, it allows detailed tissue characteriza-
tion which is pivotal to its ability to not only diagnose cardio-
vascular disease but also facilitate management and treatment. It 
can precisely determine myocardial and vascular injury2. Recent 
advances in software and technological hardware have propelled 
the development of new methods that can substantially augment 
cardiovascular diagnosis, prognosis, and risk stratification3. CMR 
permits visual assessment through a variety of approaches, which 
include late gadolinium enhancement (LGE), T1 mapping, and 
T2 mapping1. Strain imaging is an emerging diagnostic modal-
ity that can serve as a prognostic imaging marker to evaluate 
myocardial function beyond the ejection fraction4. Artificial 
intelligence (AI) has opened new frontiers in cardiology by 
leading to data-driven discoveries in CMR imaging5,6.

In this review article, we aim to assess advances in CMR evalua-
tion of various cardiovascular conditions over the last few years. 
This will include T1/T2 mapping, the role of AI in CMR, and 
the significance of myocardial strain in CMR.

T1 mapping
Over the last few decades, LGE has been used to detect focal 
areas of fibrosis in the myocardium. The presence of diffuse fibro-
sis has been linked to diastolic dysfunction, heart failure, and 
sudden death7. Although it is a valuable tool, it identifies only 
localized areas of tissue damage, often where there is irreversible 
replacement fibrosis7. This technique requires an area of normal 
myocardium as a reference point in order to highlight the areas 
of fibrosis and this limitation can be viewed as the Achilles’ heel 
of LGE. Therefore, there is substantial interest in approaches 
that permit identification of early fibrosis as well as more 
diffuse fibrosis. T1 mapping can characterize the myocardial tis-
sue on a pixel-to-pixel basis to generate a map of T1 values. T1 
mapping is able to identify earlier diffuse fibrosis and can detect 
subtle changes in heart muscle pathology in a non-invasive man-
ner7. In addition, T1 mapping may allow more precise quantifica-
tion of an area of infarction1. T1 mapping also enables extracellular 
volume measurement (ECV) which can also measure myocardial 
fibrosis in reference to left ventricular volume7.

Recent studies with T1 mapping
Involvement of the myocardium can occur in systemic light-
chain amyloidosis. Although LGE can identify characteristic 
amyloid patterns, these are evident in later stages of the disease. 
Karamitsos et al. explored the role of non-contrast myocardial 
T1 mapping for recognizing cardiac involvement in 53 patients 
with amyloid light-chain amyloidosis and 53 control subjects8. 
The myocardial T1 was substantially higher in the patients with 
amyloidosis (1140 ± 61 ms, P <0.0001) than in the other patients. 
A non-contrast myocardial T1 cutoff of 1020 ms showed an 

accuracy of 92% for revealing cardiac involvement in patients 
with amyloidosis. Furthermore, there were significant associa-
tions between myocardial T1 values and systolic and diastolic 
dysfunction indices.

Low-flow low-gradient aortic stenosis (LFLG AS) has high 
operative risk for surgical intervention and poor prognosis with 
medical management. However, there is a paucity of data on the 
degree of fibrosis in these patients. Dobutamine stress echocardi-
ography is traditionally used to evaluate the left ventricular flow 
reserve (FR) to confirm the severity of AS, although there are 
conflicting data on FR mortality predictive value9. Rosa et al. 
assessed diffuse interstitial myocardial fibrosis measured by 
T1 mapping in LFLG AS patients with and without FR in 41 
LFLG AS and 24 high-gradient AS patients9. The authors showed 
that indexed ECV was higher in patients with LFLG AS with and 
without FR in comparison with high-gradient AS (35.25 ± 9.75 
versus 32.93 ± 11.00 versus 21.19 ± 6.47 mL/m2, respectively; 
P <0.001). The indexed ECV and ECV levels were compara-
ble in LFLG AS patients with and without FR (P = 0.950 and 
P = 0.701, respectively). Rosa et al. concluded that the degree of 
fibrosis is the same in patients with and without FR, suggesting 
that myocardial fibrosis may not explain the lack of FR in patients 
with LFLG AS.

Although T1 mapping allows quantification of myocardial fibro-
sis, in dilated cardiomyopathy, there is a relative scarcity of 
studies comparing ECV and T1 with concurrent histological 
examination. Nakamori et al. examined the histological correla-
tion of native T1 and ECV measurement for assessing myocardial 
fibrosis in dilated cardiomyopathy in 36 patients10. T1 and ECV 
both demonstrated significant correlation with the biopsy-proven 
collagen volume fraction (r = 0.77 and r = 0.66, respectively; 
P <0.05). In addition, ECV showed a substantial association with 
the biopsy extracellular space component (r = 0.86). Nakamori 
et al. finally stated that T1 and ECV had comparable efficacy 
in measuring histological collagen volume fraction in dilated 
cardiomyopathy.

Although a number of metrics exist in CMR for measuring myo-
cardial fibrosis, only limited data for stratification purposes are 
available11. Treibel et al. evaluated the relationship between 
clinical outcomes and various indices such as ECV, native T1, 
post-contrast T1, and the partition coefficient in 1714 consecutive 
patients without amyloidosis or hypertrophic cardiomyopathy11. 
The authors showed ECV demonstrating highest log-rank statis-
tics and best separation of Kaplan–Meier curves. Furthermore, 
ECV was strongly linked to clinical outcomes in univariate and 
multivariate analyses. Treibel et al. stated that ECV measure-
ment of myocardial fibrosis was closely associated with outcomes 
in relation to other CMR metrics.

Limitations of T1 mapping
Although T1 mapping has clearly shown its potential for quan-
titative tissue characterization, there are still issues that need to 
be overcome for widespread acceptance3,7. There is no consen-
sus in the CMR community’s methodology and approach7. Some 
form of standardization along with histological validation is 
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required for universal implementation. The absence of refer-
ence values for normal and abnormal myocardium for vendor-
specific sequences hinders its approval12. T1 mapping does not 
have any inbuilt features for heart rate modification12. Further-
more, standardization of the acquisition phase is needed as it can 
affect T1 and ECV values because of the oscillating myocardial 
blood volume12.

T2 mapping
T2 mapping is a CMR approach used to generate a parametric 
image or map from a series of input images and calculations13. 
As a result, the created map mirrors calculated T2 relaxation 
time at each pixel. This can be performed in any cardiac slice 
and position13. T2 mapping holds considerable promise for more 
precise inflammation/edema imaging compared with traditional 
T2-weighted imaging. Additionally, T2* mapping can be used 
for quantification of myocardial siderosis in disease states that 
can lead to myocardial iron overload.

Acute inflammatory cardiomyopathy is a cardiovascular condi-
tion that requires biopsy to detect disease activity. Some stud-
ies have suggested that T2 mapping may become an integral 
tool to facilitate evaluation of inflammation within the myocar-
dium non-invasively13. There is growing evidence that suggests 
that T2 mapping may be more indicative for acute inflammation 
than T1 mapping14. T2 mapping is also sensitive to identification 
of water in a more chronic setting such as scarring or ischemia14. 
Interestingly, in the MyoRacer trial, T2 mapping was the only 
CMR parameter with acceptable diagnostic accuracy (73%) 
for recognizing biopsy-proven myocarditis for patients with 
chronic symptoms longer than 14 days15.

Strain imaging
Evaluating cardiac function has always been complex or cum-
bersome in cardiology and this applies particularly to ejec-
tion fraction4. Although ejection fraction is the conventionally 
used metric to assess cardiac function, there are a number of 
limitations to be acknowledged4. This can be attributed to the 
suboptimal reproducibility, volumetric nature, and inability to 
show regional left ventricular function16. Strain imaging is an 
emerging modality which provides direct information on myocar-
dial deformation. Furthermore, myocardial strain is a marker of 
left ventricular health and mechanics beyond left ventricular 
ejection fraction, and it measures the transition from a relaxed 
to a contractile state17. This type of imaging may be helpful to 
detect preclinical left ventricular dysfunction prior to decreases 
in the left ventricular ejection fraction.

Cardiovascular magnetic resonance tagging
CMR tagging is an approach that allows visualization of trans-
mural myocardial involvement without using physical markers18. 
There are a number of available tagging sequences, including 
spatial modulation of magnetization (SPAMM), delay alternating 
with nutations for tailored excitation (DANTE), complementary 
SPAMM (CSPAMM), harmonic phase (HARP), displacement 
encoding with stimulated echoes (DENSE), and strain encod-
ing (SENC)18. Each of these methods has different versions for 
improved resolution, signal-to-noise ratio (SNR), scan time, 
anatomic coverage, image quality, and three-dimensional (3D) 

capabilities18. Unlike feature tracking (FT) strain, they require a 
separate dedicated sequence and post processing.

CMR tagging is a commonly accepted reference standard for strain 
quantification4. The process labels different areas of the myo-
cardium with unique radiofrequency saturation planes to create 
dark lines19. Subsequently, a tagging formation is created which 
forms a grid of markers known as tags. As a result, tracking these 
tags facilitates visualization of myocardial deformation or strain. 
Tagging is inherently affected by the magnetic properties of 
the tissue.

There are also a number of limitations of CMR tagging4. For 
instance, images with tags may have low temporal resolution. 
Strain may be underestimated if the tag does not correspond 
to the initiation of cardiac contraction. Strain values may be 
less precise if measured at the endocardial border or thin-walled 
areas of the left ventricle. Lastly, special software is necessary 
for strain and it is a laborious process.

Feature tracking
FT in CMR is a post processing technique that can be applied 
to standardly acquired cine steady-state free precession (SSFP) 
images. This method does not require a dedicated sepa-
rately acquired sequence or intricate post processing20. There 
are differences between FT and CMR tagging (Table 1). It 
detects anatomic characteristics in the myocardial borders in the 
CMR image and identifies areas of interest within these regions. 
These areas are tracked in the cardiac cycle by looking for simi-
lar areas in the subsequent images. There are benefits and dis-
advantages to FT4. The strain in FT can be used with a number 
of different software programs. FT strain tracks movement of 
in-plane points within the myocardium as opposed to some of the 
other dedicated CMR strain acquisitions, which track changes 
of the myocardium within each voxel or pixel.

Recent studies using strain in cardiovascular 
magnetic resonance
Gatti et al. explored the role of FT strain in CMR for detecting 
subclinical systolic and diastolic dysfunction in 30 acute myocar-
ditis patients with preserved ejection fraction21. In addition, 24 
normal patients served as controls. The inter-observer variabil-
ity in the 2D and 3D FT CMR had a P value greater than 0.42, 
intra-class correlation greater than 0.80, and n2 greater than 0.98. 
Interestingly, the inter-observer variability in global, radial, 
circumferential, and longitudinal strain showed no statisti-
cal difference between systolic and diastolic strain rate (P = not 
significant).

Romano et al. investigated the relationship of FT global longi-
tudinal strain (GLS) during vasolidator stress CMR with major 
adverse cardiac events (MACEs) in 535 patients with a follow-
up of 1.5 years22. Previous studies have indicated that blunted 
myocardial strain may be linked to an adverse prognosis during 
dobutamine stress echocardiography. Patients with stress GLS 
equal to or greater than the median had greatly decreased event-
free survival compared with stress GLS of less than the mean 
(log rank P <0.0001) on Kaplan–Meier analysis. Further-
more, the stress GLS was substantially linked with MACE after 
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adjustment for clinical and imaging variables (hazard ratio = 
1.267, P <0.0001). Romano et al. concluded that FT GLS was 
an independent predictor of MACE during vasodilator stress 
CMR in patients with coronary artery disease.

Leng et al. examined the significance of right atrial (RA) dys-
function on pulmonary arterial hypertension (PAH) by using RA 
longitudinal strain in 80 PAH patients and 80 normal patients 
with CMR23. Compensated and decompensated states have 
been known to affect survival in patients with PAH. RA strain 
correlated with elevated RA pressure (r = −0.57; P <0.0001), 
right ventricular volume (r = −0.37; P = 0.002), biomarkers 
(r = −0.53; P <0.0001), and lower exercise capacity (r = 0.41; 
P <0.00001). In addition, RA passive strain was seen as the best 
predictor of composite adverse events (C statistic = 0.75, hazard 
ratio = 0.84; P = 0.019). Leng et al. concluded that RA strains 
were associated with right ventricular decompensation and 
elevated risk of adverse events.

Limitations of strain in cardiovascular magnetic 
resonance
Strain is largely used in the research setting, and a number of 
issues need to be resolved for successful integration into clinical 
practice4. For any diagnostic or clinical test to be implemented, 
a normal range of values needs to be established4. Values for 
method and software cutoff need to be established. There is no 
validation against a universal reference standard. Each method 
and software must undergo rigorous testing before adoption 
into clinical practice. In general, data suggest that GLS should 
be used for assessing global ejection fraction rather than seg-
mental strain, and validation and inter-vendor agreement are of 
less concern with GLS in comparison with other types of strain 
values4.

Furthermore, values from speckle tracking echocardiography 
may not always correlate with values from CMR strain. Other 
clinical factors such as blood pressure, heart rate, age, and gen-
der may also affect strain values24. Strain at baseline and follow-up 

needs to be measured by the same software and analysis for 
reproducible values.

Artificial intelligence
Machine learning (ML), a subset of AI, has allowed the field of 
cardiology to escape the confines of conventional inquiry and 
embark on a new realm of multi-dimensional information occurring 
in real time leading to data discovery–driven research25,26. First 
and foremost, coronary artery disease is the most common 
cause of death in the developed world27. ML is not a distant con-
cept on the horizon but an inevitable necessity in the evolution-
ary line of cardiovascular imaging and clinical care, especially 
in CMR. AI is exponentially expanding every sector of human 
information, from self-driving cars to speech recognition 
software28. The massive influx of large data emanating from wear-
able devices, medical apps, electronic health system, and imag-
ing systems will supersede the capabilities of existing statistical 
software25. Nevertheless, ML can unravel information present 
within this vast data matrix to dramatically enhance disease 
prognostications and survival predictions29.

Types of machine learning
ML is an umbrella term used to encompass a variety of  
algorithms30,31. Two of the most frequently used ML algorithms 
are supervised learning and unsupervised learning (Table 2). 
Supervised learning uses a dataset labeled with classes or 
outcomes30,31. Unsupervised learning can be considered agnostic;  
it works with datasets without any labels or classification to 
unravel hidden relationships30,31. Semi-supervised learning, a 
hybrid of the earlier-mentioned approach, uses both labeled and 
unlabeled outcomes within a dataset to discover relationships30,31. 
Reinforcement learning is similar to human psychology, using 
reward criteria within a dataset30,31. Reinforcement learning 
currently has a limited role in CMR and cardiology.

Deep learning is gaining massive momentum as it has unlim-
ited potential26,29. The deep learning framework has an archi-
tecture similar to that of the human brain; it uses multiple layers 

Table 1. Differences between cardiovascular magnetic resonance tagging and feature tracking 
strain.

Cardiovascular magnetic 
resonance tagging

Feature tracking strain

Temporal resolution Low Low

Spatial resolution Low Low

Commercial software Many Few

Post processing time Long Small

Validation studies Many Few

Image acquisition time Long No additional image acquisition time

Image analysis Can be difficult, requires special 
software

Not difficult

Reproducibility High Good

Types of strains generally 
performed

Strain can be performed in all 
directions (2D and 3D)

Longitudinal strain, circumferential strain, 
and radial strain can be performed
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like neuronal networks. Furthermore, deep learning is expanding 
because of explosive growth in cloud infrastructures and 
computing capabilities in current technology.

Recent studies in artificial intelligence for 
cardiovascular magnetic resonance
A number of centers have explored the potential of ML in CMR 
recently. Winther et al. used a deep learning algorithm for auto-
matic segmentation of the right and left ventricular endocar-
dium and epicardium to measure cardiac mass and function32. 
Image segmentation can be time-consuming and particularly 
challenging in CMR. This was applied to a number of datasets, 
which included the Hannover Medical School data science bowl 
cardiac challenge and the Medical Image Computing and Com-
puter Assisted Intervention (MICCAI) 2009 left ventricular 
segmentation challenge. Interestingly, the deep learning approach 
accomplished outcomes comparable to or greater than those 
of human experts. These findings must be taken with a degree 
of caution because of the small sample sizes.

Tan et al. explored the role of a convolutional network, a deep 
learning approach, for automatic segmentation of the left ventri-
cle in all short-axis slices33. This ML approach was applied to a 
number of publicly available datasets, which included the left 
ventricular segmentation challenge dataset containing 200 CMR 
imaging sets with diverse cardiac pathology. Surprisingly, the 
authors obtained a Jaccard index of 0.77 in the left ventricu-
lar segmentation challenge dataset. In addition, they obtained a 
continuous ranked probability score of 0.0124 with the Kaggle 
second annual data science bowl. As a result, Tan et al. showed 
the potential of the ML algorithm in automatic left ventricular 
segmentation in CMR.

Bai et al. used a fully convolutional network for automated anal-
ysis of CMR images from a large imaging database consisting 
of 93,500 images in 5000 patients for calculating left and right 
ventricular mass and volumes34. On a short-axis image test of 
600 patients, the Dice metric measured 0.94 for left ventricular 
cavity, 0.88 for left ventricular myocardium, and 0.90 for right 
ventricular cavity. Furthermore, the average Dice metric meas-
ured 0.93 for the left atrial cavity in the two-chamber view, 

0.95 for left atrial cavity in the four-chamber view, and 0.96 in 
RA cavity in the two-chamber view. Bai et al. showed that ML 
automated methods produce values comparable to those of 
human experts.

Limitations of machine learning
ML will become an inevitable necessity as the number of medi-
cal apps, wearable devices, and miniaturized devices continue 
to grow and prosper25. For successful integration into the clini-
cal environment, a number of issues need to be addressed5. ML 
algorithms require extensive exposure to large datasets to gain 
accuracy, and obtaining such datasets can be difficult26,29. Data 
sharing among institutions can be difficult and laborious because 
of multiple institutional review boards, and datasets ideally 
should be publicly available.

A universal standard is required for data standardization26,29. 
Although digital imaging and communications in medicine 
(DICOM) and picture archiving and communication system (PACS) 
are valuable for imaging data, there are differences in these 
programs between centers. There are a number of different 
classifications, protocols, and acquisition protocols among vari-
ous institutions, and imaging and clinical data exist on sepa-
rate user interfaces. As data become larger and more complex, 
manual data entry will become difficult. If newer software 
can successfully integrate clinical and imaging information, it 
can facilitate the expansion and utilization of ML in various 
academic centers.

Conclusions
Although echocardiography is used primarily as the first-line 
imaging test for a majority of cardiovascular pathology, the field 
of CMR imaging has been steadily growing in recent years. 
CMR provides valuable information on myocardial tissue and 
function. Recent developments in T1/T2 mapping, strain imag-
ing, and AI show considerable promise in CMR as they can 
greatly improve diagnosis and patient welfare. Nevertheless, 
these options still require further validation before full integra-
tion into clinical care. As technology continues to grow and 
improve, the future of CMR imaging will be very bright in the 
years to come.

Table 2. Types of machine learning.

Machine learning 
algorithms

Description Types

Supervised learning30,31 Dataset contains labels and 
outcomes

This includes logistic regression, Bayesian network, random 
forests, elastic net regression, and least absolute shrinkage and 
selection operator (LASSO) regression.

Unsupervised learning30,31 The algorithm deciphers relationships 
in datasets without labels.

This includes K-means clustering, hierarchical clustering, and 
principal component analysis.

Semi-supervised learning30,31 Dataset contains labeled and 
unlabeled classes and outcomes.

It is a mixture of supervised and unsupervised learning, used in 
speech and image recognition.

Re-enforcement learning30,31 Similar to psychology, uses reward 
function

Based on human psychology. Used in analytics, imaging, and 
disease screening
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