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Abstract: In this study, we proposed using the high-K polyvinyl alcohol (PVA)/low-K poly-4-
vinylphenol (PVP) bilayer structure as the gate insulator to improve the performance of a pentacene-
based organic thin-film transistor. The dielectric constant of the optimal high-K PVA/low-K PVP
bilayer was 5.6, which was higher than that of the single PVP layer. It resulted in an increase in
the gate capacitance and an increased drain current. The surface morphology of the bilayer gate
dielectric could be suitable for pentacene grain growth because the PVP layer was deposited above
the organic PVA surface, thereby replacing the inorganic surface of the ITO gate electrode. The device
performances were significantly improved by using the bilayer gate dielectric based upon the high-K
characteristics of the PVA layer and the enlargement of the pentacene grain. Notably, the field-effect
mobility was increased from 0.16 to 1.12 cm2/(Vs), 7 times higher than that of the control sample.

Keywords: organic TFT; pentacene; gate dielectric; high-K; field-effect mobility; surface morphology

1. Introduction

Pentacene-based organic thin-film transistors (OTFTs) have recently attracted much
attention because of their potential for use in flexible displays, large-area chemical sensors
for artificial skin applications, and radio-frequency power transmission devices [1–5].
Conventionally, the pentacene channel combined with poly-4-vinylphenol (PVP) as the gate
insulator has been recognized as the most adequate construction for OTFTs [6]. However,
the relatively low dielectric constant (low-K) of PVP may necessitate excessive power
consumption in order to achieve sufficient operational capability [7]. To overcome this
obstacle requires either increasing the gate dielectric capacitance with the reduced thickness
of the dielectric or fabricating OTFTs with high dielectric constants (high-K) [8,9]. However,
the thickness reduction of the organic dielectric rapidly increases the defects and pinholes
in the dielectric, leading to degradation of the device. Low polymer-based dielectric
thicknesses can induce pinholes as the substrate coverage by dielectric layers may not be
homogeneous upon their deposition [10]. Accordingly, the adoption of high-K material
appears to be a better solution [11,12]. The double-layer dielectric made of yttrium oxide
and a PVP layer may provide a better combination [13]. Due to their flexible applicability
and excellent film growth properties [14], pentacene thin-film transistors were fabricated
and characterized with PVA thin films used as a gate dielectric [15]. Similar to the PVP
dielectric, the organic PVA is a polar polymer with abundant hydroxyl –OH groups;
however, the natural hydrophilicity of this polymer may result in increased difficulty when
using a pentacene film on a PVA surface [16]. Therefore, an appropriate curing procedure
for cross-linking the –OH group should be introduced to the sequential fabrication process
to eliminate –OH groups of the PVA and enhance the grain growth of the pentacene
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film. From the perspective of curing, the use of various cross-linking agents including
dichromate [17], boric acid [18], and ammonium bicarbonate [19] have been reported in
a number of earlier research papers. Nevertheless, most of the reported cross-linking
agents possess highly toxic characteristics likely to cause significant damage to the human
body. As a result, double-stacked insulators consisting of a high-K PVA layer without
cross-linking, combined with a cross-linking low-K PVP layer, can be used. The previously
reported cross-linking agents are not only highly toxic to humans but also require an
additional process for the cross-linking step. As a result, our proposed double-stacked
insulators with high-K PVA/low-K PVP can be conducted to overcome these issues.

In this study, we used a low-K PVP layer above a high-K PVA layer as the bilayer
gate dielectric (high-K PVA/low-K PVP) to facilitate the grain growth of a pentacene film.
Consequently, the performance of devices is improved by using the hydrophobic PVP
layer and a PVA layer with high-K characteristics. In addition, the surface morphology of
the bilayer gate dielectric (high-K PVA/low-K PVP) allows more suitable growth of the
pentacene grain because the PVP layer is deposited above the organic PVA surface instead
of an inorganic ITO gate surface. Compared with other similar papers, the improved uFE
in our study is about 1.12 cm2/Vs, significantly better than that of the reported papers
previously [19–22]. The obvious performance improvement can be attributed to the high-
K PVA/low-K PVP bilayer structure based upon the high-K characteristics of PVA and
the hydrophobic surface of PVP. This led to an increased drain current and an enlarged
pentacene grain size, which in turn resulted in improved performances. Thus, it is believed
that the proposed high-K PVA/low-K PVP structure is a good candidate for performance
improvement because it can not only improve the device performances but also provide
the advantages of a simple process, low cost, and the avoidance of the cross-linking process
of PVA using toxic agents, in comparison with similar reports [17–22].

2. Materials and Methods

The glass substrate with an indium tin oxide (ITO resistivity: 20–40 Ω·cm) layer was
prepared as a gate electrode of the bottom-gate top-contact device. The sequential PVA and
PVP dielectric layers were spin-coated on the ITO glass. For the first PVA dielectric layer, we
dissolved PVA (molecular weight = 46,000–186,000) in different weight percentages (25, 16,
and 12 wt%) and baked these in a vacuum oven at 130◦C for 1 h to reduce the –OH groups.
For the second PVP layer, PVP powder was mixed with poly (melamine-co-formaldehyde)
methylated (PMF) in the propylene-glycol-monomethyl-ether-acetate (PGMEA) solvent,
which then went through a cross-linking procedure in a vacuum oven at 180 ◦C for 1 h
to manufacture the PVP layer (PVP/PMCF/PGMEA = 2:1:20). Next, a shadow mask
patterned a 50 nm thick pentacene (Aldrich Chem. Co., Milwaukee, WI, USA, 99% purity)
layer, which was deposited onto the dielectric layer by vacuum thermal evaporation. The
evaporation rate was 0.1 A◦/s without the additional substrate heating. Finally, silver
source/drain electrodes were deposited by thermal evaporation. Figure 1a,b indicates the
cross-section structure of the fabricated OTFT with a high-K PVA/low-K PVP bilayer gate
dielectric and a PVA or PVP single gate dielectric. Control samples were also fabricated
using a single dielectric layer of PVA or PVP, respectively, and metal–insulator–metal (MIM)
capacitors, which compared capacitance measurements.
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Figure 1. Cross-section structure of the fabricated OTFT with: (a) high-K PVA/low-K PVP bilayer gate dielectric; (b) PVA 
or PVP single gate dielectric. 
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explanation of the improved device. 
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adhesion of the PVA solution was controlled by the PVA concentration, the main factor 
for the thickness of PVA under the same rotation speed. Thus, we prepared different con-
centrations of PVA solution to acquire an optimal value for the capacitance of PVA. The 
different thicknesses with the various PVA concentrations, including 25, 16, and 12 wt%, 
were estimated to be 1380 nm, 510 nm, and 300 nm, respectively, as shown in Figure 2. As 
previously mentioned, organic dielectric thickness suffers from severe performance 

Figure 1. Cross-section structure of the fabricated OTFT with: (a) high-K PVA/low-K PVP bilayer gate dielectric; (b) PVA or
PVP single gate dielectric.

All devices were measured through a semiconductor parameter analyzer (HP 4145B).
The thickness was calculated using a scanning electron microscope (SEM, JEOL JSM-6390
LV, Stoneridge Drive, CA, USA), and the capacitance value was recorded by an LCR meter
(WK4100 Series, Taipei, Taiwan). Use of the Fourier transform infrared method (FTIR, Astex
PDS-17 system, Mass., USA) and an atomic force microscope (AFM, Veeco Dimension 5000
scanning probe microscope, Lise-Meitner, Germany) provided the mechanistic explanation
of the improved device.

3. Results and Discussion

To conduct the proposed idea, we first needed to examine the thickness of the dielectric
layer since capacitance was strongly correlated with the thickness of the dielectric, based
on Equations (1) and (2):

C = (ε0 kA)/t (1)

CTotal = 1/[(1/CPVA) + (1/CPVP)] (2)

where C is the capacitance of the gate insulator layer, A is the electrode area, ε0 is the
vacuum dielectric constant, and t is the thickness of the dielectric layer. Generally, the
adhesion of the PVA solution was controlled by the PVA concentration, the main factor
for the thickness of PVA under the same rotation speed. Thus, we prepared different
concentrations of PVA solution to acquire an optimal value for the capacitance of PVA. The
different thicknesses with the various PVA concentrations, including 25, 16, and 12 wt%,
were estimated to be 1380 nm, 510 nm, and 300 nm, respectively, as shown in Figure 2.
As previously mentioned, organic dielectric thickness suffers from severe performance
degradation through the thickness reduction process and then induces complexity to the
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device [23]. Therefore, we fixed the thickness of the second PVP dielectric layer at about
500 nm, which was a reasonable value for OTFT fabrication.
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Figure 2. SEM images of the bilayer gate dielectric with the different PVA concentrations: (a) 25%,
(b) 16%, and (c) 12% weight percentages and a PVP layer of 500 nm.

Figure 3 shows the capacitance for different concentrations of PVA combined with PVP
of 500 nm. It demonstrates the negative correlation between film thickness and capacitance.
The frequency of capacitance measurement was 1 kHz. The dielectric constant of the high-K
PVA/low-K PVP bilayer with the PVA concentration at 12 wt% using Equations (1) and (2)
was calculated to be 5.6. The calculated dielectric constant of the high-K PVA/low-K PVP
bilayer structure was smaller than that of the single PVA layer, which was reported to be
9.2 [24] and was larger than that of the single PVP layer, which was reported to be about
3.5 [25]. Thus, the proposed high-K PVA/low-K PVP bilayer structure could obviously
increase the effective capacitance in comparison to that attained with the single PVP layer,
resulting in an increased drain current [11,12].
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Figure 3. Capacitance–voltage measurement of the bilayer gate dielectric with different PVA con-
centrations (25%, 16%, and 12% weight percentage) and the PVP layer of 500 nm. 
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Figure 3. Capacitance–voltage measurement of the bilayer gate dielectric with different PVA concen-
trations (25%, 16%, and 12% weight percentage) and the PVP layer of 500 nm.

The hydroxyl (–OH) groups are known to be preferentially bonded with those in PMF
through the curing step, which is called a cross-linking process. Therefore, the cross-linking
efficiency can be evaluated by Fourier transform infrared (FTIR) to measure the number
of –OH groups. Figure 4 shows the FTIR measurement of the bilayer gate dielectric with
various PVA concentrations combined with the PVP layer of 500 nm. The –OH peaks can
be observed at around 3200 cm−1–3500 cm−1. It is found that the number of –OH groups
can be obviously reduced for thinner dielectric films with PVA (12 wt%)/PVP, as shown
in Figure 4. The reduction of –OH groups might be due to fewer –OH groups within the
thinner dielectric films, which led to more efficient –OH elimination through the baking
process [26]. Thus, the PVA concentration of 12 wt% provided the most suitable parameters
in our study.

Figure 5 shows the transfer characteristics (IDS-VGS) of the OTFT with the PVA
(12 wt%)/PVP bilayer gate insulator, single PVA gate layer, and single PVP gate layer, all of
which were measured at a drain voltage (VDS) of −20 V. Figure 5b shows the gate leakage
current of the device with a high-K PVA/low-K PVP bilayer is significantly decreased
by about four orders of magnitude than that of the device with the single PVA structure.
Additionally, the gate current with a high-K PVA/low-K PVP bilayer is comparable to that
with a single PVP layer. Figure 5c,d shows the output curves (IDS–VDS) of the devices with
high-K PVA/low-K PVP and PVP dielectrics, respectively, as a function of drain/source
voltage (VDS) for gate/source voltages (VGS) of 0, −10, −20, and −30 V. As a result, the
output current (IDS) of the devices with a high-K PVA/low-K PVP bilayer gate insulator
is obviously larger than that of the devices with PVP dielectric layer. Thus, the proposed
scheme with a high-K PVA/low-K PVP bilayer as a gate insulator will be a good candidate,
which is not only for improving the electrical characteristics of the pentacene-based OTFTs
but also for acting as a good gate insulator with reduced gate leakage current. The field-
effect mobility and threshold voltage were calculated in the saturation region by fitting the
|IDS|1/2 curve based on Equation (3):

IDS = (1/2µFECiW/L)(VGS − VTH)2 (3)
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where µFE is the field-effect mobility, Ci is the capacitance density of the gate insulator,
VTH is the threshold voltage, and W (width) and L (length) are the dimensions of the
semiconductor channel defined by the source and drain electrodes.
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Figure 5. (a) Transfer characteristics of the devices with different gate dielectric surfaces measured
at VDS = −20 V. (b) IGS–VGS curve of the devices with different gate dielectric surfaces measured
at VDS = −20 V. (c) Output curves of the devices with high-K PVA/low-K PVP bilayer dielectric.
(d) Output curves of the devices with PVP dielectric layer.

The maximum and minimum values of drain current measured at a drain voltage
of –20 V were designated as ION (on-current) and IOFF (off-current), respectively. It was
found that the device performance was significantly improved by the use of the high-
K PVA/low-K PVP bilayer gate dielectric. The total electrical parameters are listed in
Table 1. In comparison to the conventional device with a PVP dielectric layer, the field-
effect mobility (µFE) of the device with a high-K PVA/low-K PVP bilayer dielectric layer
was significantly increased from 0.16 to 1.12 cm2/(Vs). In addition, the threshold voltage
(VTH) and ION/IOFF ratio were also obviously improved. It is believed that the increased
gate dielectric constant is one of the main factors contributing to performance improvement.
The large gate capacitance can result in more charge per area unit in the channel region
for a given gate bias [11,12]. We presumed that the grain size of pentacene would also
contribute to improved mobility.

Table 1. Electrical parameters of the devices with various gate dielectrics.

Insulator Layer VTH (V) Mobility (cm2/ Vs) S.S. (V) ION/IOFF Ratio

PVA NA NA NA NA
PVP −9.4 0.16 3.94 4.99 × 103

PVA/PVP −8.6 1.12 1.41 1.21 × 105

It was also found that the device with a single PVA dielectric did not show the
switching characteristics of a semiconductor. Because of that, the hydrophilic surface
of PVA results in poor surface conditions, which inhibits the growth of the pentacene
grain. It has been reported [27] that the hydrophilic condition can be represented by the
measured contact angle of the surface. The contact angle of the samples with a single
PVA, single PVP, and bilayer high-K PVA/low-K PVP, respectively, were measured using
the sessile drop method, as shown in Figure 6. The single PVA sample presented a low
contact angle of 35.92◦, which represented the hydrophilic surface. Yu et al. [28] proposed



Polymers 2021, 13, 3941 9 of 14

that the hydrophilic surface inhibits the growth of pentacene causing a small grain size,
resulting in high-density grain boundary defects, leading to poor carrier transportation.
The contact angles of the single PVP and high-K PVA/low-K PVP surfaces were similar
and comparable at 69.03◦ and 66.54◦. The contact angle of the single PVP and high-K
PVA/low-K PVP surfaces showed greater hydrophobic activity than that of the single PVA
surface. Table 2 shows the contact angles of DI water and diiodomethane and the surface
energies of gate insulators. The γd and γp represent dispersion and polar components
of the surface energy (γ), respectively. It shows the surface energy values, 72.57 mJ/cm2,
52.95 mJ/cm2, and 50.90 mJ/cm2 for High-K PVA, high-K PVA/low-K PVP, and low-K
PVP, respectively. The decreased surface energy of the PVA/PVP bilayer is comparable to
that of the PVP layer due to the removal of –OH groups from the PVP by the cross-linking
process. It is noted that the surface energy of PVA is higher than that of PVA/PVP or PVP
layers due to lots of –OH groups. It is also consistent with the measured contact angles
in Figure 6 because the smaller contact angle represents the higher surface energy. The
smaller contact angle and higher surface energy of PVA show the hydrophilic surface with
OH groups, which could result in a stronger interaction between the dielectric surface and
the pentacene molecules during the deposition to inhibit the growth of the pentacene grain.
In contrast, pentacene exhibits large grains when grown on the hydrophobic insulator
surface with a high contact angle and low surface energy.
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Table 2. Contact angles and surface energies of the different gate insulators. The dispersion and
polar components of the surface energy are represented as γd and γp, respectively.

Contact Angle (◦)

Insulator Layer DI Water Diiodomethane γd

(mJ/m2)
γp

(mJ/m2)
γ

(mJ/m2)

PVA 29.29 22.71 46.93 25.64 72.57
PVA/PVP 66.54 26.50 45.60 7.35 52.95

PVP 69.03 29.80 44.30 6.60 50.90

Figure 7 shows that the PVA layer has the smallest grain size and is also consistent
with the smallest contact angle. The average grain sizes of pentacene were 1.58 and 2.16 µm
for the PVP dielectric layer and the high-K PVA/low-K PVP bilayer, respectively. Since
the PVP layer of the high-K PVA/low-K PVP bilayer was deposited onto the organic PVA
layer instead of the inorganic ITO surface as shown in Figure 1a,b, it was presumed that the
surface morphology of the high-K PVA/low-K PVP bilayer gate dielectric was more suitable
than that of the PVP single layer. Thus, the more suitable surface morphology of the high-K
PVA/low-K PVP bilayer could significantly increase the pentacene grain size, which also
caused the obviously improved µFE of the device with a high-K PVA/low-K PVP bilayer.
It is well known that there are numerous traps in the grain boundary of the polycrystalline
pentacene film. The film with the larger grain size has a reduced amount of grain boundary,
resulting in a reduced number of traps in the film. In regard to the correlation between
mobility and grain size, many reports have described the mechanism [29,30]. Matsubara
et al. found that carrier mobility corresponds to crystalline domain size [29,30], which is
consistent with our study.

In summary, as shown in Figure 5, the device performances were significantly im-
proved by the proposed high-K PVA/low-K PVP bilayer structure based upon the high-K
characteristics of PVA and the hydrophobic surface of PVP. This led to an increased drain
current and an enlarged pentacene grain size, which in turn resulted in improved perfor-
mances. Figure 3 shows the optimal values of the gate capacitance to acquire the dielectric
constant of 5.6 for the high-K PVA/low-K PVP bilayer structure. As shown in Figure 6,
the larger contact angle of the high-K PVA/low-K PVP bilayer structure showed greater
hydrophobic activity than that of the single PVA surface, which resulted in the enlarged
grain sizes shown in Figure 7. We presume that the increased gate capacitance will cause an
increased drain current, and the enlarged grain size will result in improved field-effect mo-
bility. The result clearly points out that using a high-K PVA/low-K PVP bilayer enhances
pentacene growth, this provides the formation of material with large grains that could
potentially lead to the low presence of defects and significantly improve performances by
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the point of view of mobility. Nevertheless, the presence of OH ions can be reduced by
tuning the proper weight percentage of PVA with respect to PVP, as shown in Figure 4.
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4. Conclusions

Herein, we demonstrated the use of the high-K PVA/low-K PVP bilayer structure as a
gate insulator of an OTFT to achieve improvements in device performance. The dielectric
constant of the bilayer gate dielectric is about 5.6, which was constructed by a PVA (12 wt%)
of 300 nm combined with a PVP of 500 nm. The grain size of pentacene was enlarged
from 0.24 to 2.16 nm for growth on the surface of the single PVA and the bilayer high-K
PVA (12 wt%)/low-K PVP, respectively. Device performances were significantly improved
by use of the high-K PVA (12 wt%)/low-K PVP bilayer gate insulator, especially in the
improved mobility, which is 7 times higher than that of a conventional device. We presume
that the increased dielectric constant can cause increased drain current as a result of
increased gate capacitance. Increased mobility is attributed to the enlarged pentacene grain
size because the high-K PVA/low-K PVP bilayer layer has a more hydrophobic surface
compared to the single PVP layer. It is believed that the high-K PVA/low-K PVP bilayer
structure used as the gate insulator of the OTFT will lead to improved device performance.
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