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Atrial fibrillation (AF) is one of the most common cardiovascular diseases, with a high disability rate and mortality rate. The early
detection and treatment of atrial fibrillation have great clinical significance. In this paper, a multiple feature fusion is proposed to
screen out AF recordings from single lead short electrocardiogram (ECG) recordings. The proposed method uses discriminant
canonical correlation analysis (DCCA) feature fusion. It fully takes intraclass correlation and interclass correlation into
consideration and solves the problem of computation and information redundancy with simple series or parallel feature fusion.
The DCCA integrates traditional features extracted by expert knowledge and deep learning features extracted by the residual
network and gated recurrent unit network to improve the low accuracy of a single feature. Based on the Cardiology Challenge
2017 dataset, the experiments are designed to verify the effectiveness of the proposed algorithm. In the experiments, the F1
index can reach 88%. The accuracy, sensitivity, and specificity are 91.7%, 90.4%, and 93.2%, respectively.

1. Introduction

Atrial fibrillation (AF) is the most common persistent cardio-
vascular disease, which can easily lead to strokes, hemiplegia,
and other diseases, seriously threatening patients’ health;
thus, timely diagnosis and treatment are necessary. However,
owing to the shortage of medical resources and the single
model of doctor diagnosis, it becomes urgent to improve
automatic detection technology. Automatic detection of car-
diac rhythm is a meaningful and important issue in different
age groups, including adults [1] and fetuses [2]. Computa-
tional techniques and deep learning methods detecting vari-
ous types of arrhythmia have been widely developed to
analyse ECG signals and are strong candidates to help clinical
advances by providing a better understanding of medical
challenges [3, 4]. With the development of medicine, people
have gained more understanding of the physiological mech-
anism of atrial fibrillation, but further research is still needed

[5]. Physiologically, the occurrence of atrial fibrillation is due
to irregular atrial contraction, which is reflected in the elec-
trocardiogram: P waves disappear, irregular fibrillation waves
(f waves) of different sizes and shapes appear [6, 7], and there
is a severe irregularity of the RR interval.

The detection of atrial fibrillation signals is mainly
divided into four parts, including data preprocessing, feature
extraction, feature selection, and classification. Among them,
feature extraction directly affects the accuracy and efficiency
of atrial fibrillation signal classification. Commonly used fea-
ture extraction in the literature usually falls into two catego-
ries, traditional feature extraction and feature extraction
based on deep learning methods. Traditional feature extrac-
tion methods are generally divided into three categories.
The first is to extract the statistical characteristics of ECG sig-
nals, that is, use the statistical data to summarize a series of
ECG data. Typical statistics include mean, maximum, mini-
mum, variance, skewness, kurtosis, count, and percentage.
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Kaya et al. [8] calculated the statistical and time characteris-
tics of a heartbeat, such as skewness, kurtosis, standard, devi-
ation, and average, and they used the best feature reduction
and classification methods, the highest classification accu-
racy, sensitivity, and specificity rates of 99.30%, 98.84%,
and 98.40%, respectively. Athif et al. [9] extracted statistical
and morphological features and then used a support vector
machine classifier to classify records into three categories:
“normal,” “AF,” and “other.” The algorithm has a sensitivity
of 77.5%, a specificity of 97.9%, and an accuracy of 96.1% in
the “Computing in Cardiology Challenge 2017” database.
The second is signal processing, which is to transform the
ECG data from the time domain to the frequency domain
or other domains through discrete Fourier transform, dis-
crete wavelet transform, and other methods. Yin et al. [10]
proposed a multidomain ECG feature extraction method.
The RR intervals were extracted as time domain feature.
The fifth-order approximate coefficients of wavelet decom-
position are used to represent the frequency domain features.
In addition, the sample entropy values of six wavelet coeffi-
cients are used as nonlinear characteristics. These three fea-
tures were fed to a classifier for automated diagnosis. The
average accuracy of the SVM classifier in the MIT-BIH
arrhythmia database was 99.70%. The third is to directly
extract the time domain or morphological features of ECG
signals, including RR interval, QRS wave width, and PR
interval. Dash et al. [11] used a statistical method to evaluate
the complexity, randomness, and variability of the RR inter-
val. Verification by the MIT-BIH atrial fibrillation database
shows the sensitivity is 94.4%, and the specificity is 95.1%.
Zabihi et al. [12] adopted time-frequency, phase space,
tuples, and other characteristics in multiple fields and used
a random forest classifier for feature selection. F1 was
82.6% on the PhysioNet Challenge 2017 atrial fibrillation
competition database. Deep learning feature extraction and
classification include convolutional neural work (CNN) [13,
14] and long and short memory networks (LSTM) [15, 16]
as well as their variants [17, 18]. Warrick and Homsi [19]
combined convolutional neural networks and long short-
term memory networks (LSTM) and used pooling, step size,
and normalization techniques to improve its accuracy. The
network predicts a classification every 18 and then selects
the final prediction for classification. The total F1 on the Phy-
sioNet Challenge 2017 dataset is 80%.

With the rapid development of deep learning, the advan-
tages of feature-level fusion have become more and more
obvious. In recent years, some researchers have used feature
fusion for ECG signal detection. Smoleń [20] first used a
sequential Recurrent Neural Network (RNN) classifier to
get the probabilities for each class and then combined the
probabilities with hand-designed features. Finally, F1 is
79% in PhysioNet Challenge 2017 (CinC 2017). Chu et al.
[21] proposed a new method for arrhythmia classification
based on multilead ECG signals; the core of the design is to
fuse two types of deep learning features with some common
traditional features and then use a support vector machine
(SVM) classifier to classify the feature vectors, and according
to the AAMI standard, the accuracy on the 12-lead INCAET
dataset is 88.565%. Ghiasi et al. [22] proposed two different

classification methods, of which the first is a feature-based
method, and the second adopts a deep neural network.
Finally, they used the decision table to combine the output
results of the two methods and divided all records into three
categories. The proposed method is evaluated using a scoring
function from the 2017 PhysioNet/CinC Challenge and
achieved an overall score of 80% and 71% on the training
dataset and hidden test dataset.

This paper presents a robust method capable of detecting
AF from single short ECG lead recording. Here are the four
main contributions of this paper: (1) novel combination of
deep learning and the traditional features; (2) proposed an
improved residual network and gated recurrent unit net-
work, which extracted deep learning features in spatial and
time series; (3) performing ECG feature fusion used discrim-
inant canonical correlation analysis; and (4) achieving supe-
rior classification results compared to the above-cited
method of the same database [23–27].

The structure of this paper is as follows: Section 2 intro-
duces the feature extraction method, Section 3 presents the
feature fusion method, Section 4 the performance metrics,
Section 5 the experimental results and analysis, and Section
6 the summary.

2. Feature Extraction

This section mainly introduces deep learning feature extrac-
tion methods and traditional feature extraction methods
based on expert knowledge.

2.1. Dataset. This article uses a large dataset released by the
PhysioNet/CinC Challenge in 2017, which contains 8528
single-lead ECG records [28]. Each ECG record in the dataset
is collected from an individual. Compared to most of the
researches based on the relatively simple dataset, such dataset
is of higher research significance. These records are collected
by AliveCor equipment. The dataset consists of single-lead
ECGs of 8528 subjects of different lengths (about 23,878
heartbeats). The categories include normal rhythm, atrial
fibrillation rhythm, other rhythms, and noise. The data dura-
tion is 9-60 s. Table 1 shows the details of the database.

2.2. Data Preprocessing

2.2.1. Denoising and Padding. The Butterworth band-pass fil-
ter is used to denoise the original ECG. The frequency
response of the Butterworth filter is maximally flat (i.e., has
no ripples) in the passband and rolls off towards zero in the
stopband [29]. The attenuation of the first-order filter is
6 dB per octave, and the attenuation rate of the sixth-order
Butterworth filter is 36 dB per octave. Since the frequency
range of the ECG signal is mainly concentrated in
0.5Hz~45Hz, the blocking frequency is set to 45Hz here,
and the frequency signal output above 45Hz will be attenu-
ated. Because the convolutional neural network requires the
input data to have the same size, but the length of the electri-
cal signal in the center of the dataset is 9 seconds to 61 sec-
onds, the ECG signal should be padded with zeros to adapt
to the model.
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2.2.2. Sample Balancing. Due to the uneven number of sam-
ples in the database, the number of normal rhythms and
other rhythm samples is large, namely, 5076 and 2415,
respectively, while the number of atrial fibrillation rhythms
and noise samples is small, 758 and 279, respectively, which
easily affect the performance of model training and overfit-
ting occurs. In this paper, class_weight is used to balance
the sample and it provides weights for each output class.
The weight of normal and other signals is very small, while
the weight of atrial fibrillation and noise signal is much
bigger. The class_weight method uses balance, and its
weight calculation method: n_samples/(n_classes ∗ np.bin-
count(y)), where n classes = 4, np.bincount(y) is the total
number of samples for a certain class, and n_sample is
the total number of samples, which is 8528. After calcula-
tion, the weight of normal ECG recording is 0.42, the
weight of the atrial fibrillation signal is 2.81, the other
weights are 0.88, and the weight of noise is 7.64.

2.3. Deep Learning Feature Extraction. This paper adopts
residual network and gated recurrent unit for deep learning
network feature extraction, which can not only reduce the
depth of the network and effectively prevent overfitting but
also extract the timing characteristics of the signal while
extracting their spatial characteristics. The specific network
structure is shown in Figure 1.

To deal with the degradation of neural networks, the
method of establishing identity mapping with residual struc-
ture simplifies the multilayer network into a shallower net-
work. According to the characteristics of the residual
network, a one-dimensional residual network suitable for
processing atrial fibrillation signals is designed. The residual
network consists of six residual convolution blocks. In the
first two residual blocks, the filter is 16. The residual Conv-
Block is composed of four convolution blocks and a one-
dimensional average pooling layer. Each convolution block
contains a one-dimensional convolution with a step length
of 1, a batch normalization, a linear unit with leakage correc-
tion, and a spatial random loss. The active layer is finally
followed by a one-dimensional average pooling layer, the
commonly used batch normalization (BN), LeakyRelu, and
SpatialDropout. The spatial random activation function pre-
vents overfitting, which is more conducive to promoting
independence between feature maps than dropout. The num-
ber of filters in every two residual blocks is doubled, and the
convolution step length in each convolution block is 1. The
data obtained through the residual network is input into
the gated recurrent unit network, and the number of neurons
is set to 32; finally, the output of the last hidden layer is
extracted as the deep learning feature.

2.4. Traditional Feature Extraction. In fact, the ECG signal is
used as input to extract relevant statistical features. First, the
multilead differential electrocardiogram summation absolute
value and adaptive threshold real-time detection algorithm
[30] are used to detect QRS points. Taking A0003 in the data-
set as an example, the corresponding waveform and the
marked R wave are shown in Figure 2.

After the R wave is detected, the RR interval is calculated
based on the R wave, and the RR interval is calculated as
follows:

RRI =
Rpeaks n + 1ð Þ − Rpeaks nð Þ

f s
: ð1Þ

RpeaksðnÞ is the position of the nth R peak in the sample,
and f s is the sample rate. According to the RR interval and
the traditional features of the ECG signal computed by QRS
wave, these features are outputs as a feature vector. The RR
interval and P wave are shown in Figure 3 [31].

Table 1: The PhysioNet 2017 dataset.

Type Recording Average time length (s)

Normal 5076 31.9

AF 758 31.6

Other rhythm 2415 34.1

Noisy 279 27.1

Conv (strides = 1)
Batch normalization

Leakyrelu
Spatialdropout

Convblock
Convblock
Convblock

Convblock

Average pooling

Conv
block

Residual
conv
block

GRU

Figure 1: Deep learning feature extraction uses ResNet (residual
network) and GRU (gated recurrent unit).
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Figure 2: ECG detection algorithm detects QRS.
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2.4.1. RR Interval Feature. The statistical characteristics of RR
intervals include standard deviation and variance, maximum
RR interval, minimum RR interval, average RR interval,
pNN50 (the proportion of the number of RR intervals in
the ECG sequence whose RR interval difference is greater
than 50ms in all RR intervals), RMSSD (root mean square
of the difference between the RR intervals), SDSD (standard
deviation of the difference between the RR intervals), and
the mean, variance, skewness, and kurtosis of each of the
RR intervals divided into six segments.

2.4.2. P Wave Feature. The statistical characteristics of the P
wave include the mean, variance, skewness, kurtosis, sample
entropy, and sample entropy coefficient, and the P wave is
divided into the average value, variance, and skewness of
each of the six segments.

2.4.3. Signal Procession Feature. In order to extract the fea-
tures of the ECG signal more comprehensively, we also
extract the signal features based on the medical field and
the frequency domain. These features first transform ECG
data from time domain into frequency domain; then,
frequency-related features are extracted. In the presented
paper, the periodogram power spectral density (PSD) and
energy spectral density are calculated. PSD is calculated using
Fast Fourier Transform (FFT). After the transformation,
energy within a specific range (band) is obtained. The chosen
bands are between 5 frequencies: 0.1, 6, 12, 20, and 30Hz.
Another four features compute the variation based on QRS
[1], compute the sample entropy (SampleEn) [2], compute
the coefficient of variation and density histograms (CDF)

[3], compute the thresholding on the median absolute devia-
tion (MAD) [4], and compute the heart rate variability
(variability).

3. Feature Fusion

3.1. Feature Fusion Based on Feature Concatenation. Based
on expert knowledge, this model performs time domain
and frequency domain feature extraction on the denoised
ECG signal to obtain feature vectors. It uses a convolution
residual network and gated recurrent unit to form a deep
learning network, and input data filled ECG signal deep
learning network to obtain deep feature vectors.

The two feature vectors obtained are fused into one fea-
ture vector in series and input into the classifier composed
of the fully connected layers to classify ECG signals, as shown
in Figures 4 and 5. This method is simple and but highly
applicable. Compared with single feature extraction and clas-
sification [33], this method has improved accuracy [32].
However, since the method of fusion features is simple and

RR interval

R R

T
U PP

QQ
SS

Figure 3: RR intervals and P waves [32].

Data1 Data2

Expert extracter Deep extracter

Concatenate

FC

ECG data

Denoising Padding

Figure 4: The structure of the proposed simple feature fusion.

Traditional
features

Deep learning
feature

Concatenate

Figure 5: The specific process of simple feature fusion.

ECG data

ResNet+GRU
extracterExpert extracter

Expert feature Deep feature

Feature transformation based on DCCA

Expert feature⁎ Deep feature⁎

Concatenation

FC

Figure 6: The structure of the proposed DCCA feature fusion.
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rough, there are problems of redundancy and a large amount
of calculation [34].

3.2. Feature Fusion Based on DCCA. In view of the shortcom-
ings of the above-mentioned concatenation method, this sec-
tion uses discriminant canonical correlation analysis
(DCCA) [35] for feature fusion. DCCA is an improvement
in canonical correlation analysis (CCA) [36]. The CCA fea-
ture fusion process does not consider the class structure.
The DCCA method can not only optimize the correlation
among the four types of samples but also minimize the corre-
lation among the features of different types of samples. The
proposed DCCA feature fusion method is shown in Figure 6.

In this paper, the discriminant canonical correlation
analysis (DCCA) method is used for deep learning feature
and traditional feature fusion, the preprocessed ECG signals
are extracted separately to obtain two feature vectors, and
then the DCCA method is used for feature fusion. The spe-
cific implementation is divided into four steps as follows:

(1) Find a set of projection direction wx and wy to
achieve the maximum correlation among the fea-
tures of samples of the same type and the mini-
mum correlation among the features of different
types of samples. Mathematically, DCCA is to
maximize the correlation coefficient. The formula
is as follows:

Jd wx,wy

� �
=

wT
x
~Sxywyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wT
x SxxwxwT

y Syywy

q , ð2Þ

where ~Sxy = Sw − ηSb (adjustable parameter > 0), Sw is the
intraclass correlation matrix, Sb is the interclass correlation
matrix, adjustable parameters η measure the relativity of
the intraclass correlation and the interclass correlation of
the sample characteristics, and the definitions of intraclass
correlation and interclass correlation are shown in Figure 7

(2) Calculate the intraclass correlation matrix Sw and the
interclass correlation matrix Sb, and set the processed
sample set as

X = x 1ð Þ
1 ,⋯x 1ð Þ

n1 ,⋯,x cð Þ
1 , x 1ð Þ

nc

h i
∈ Rp×n,

Y = y 1ð Þ
1 ,⋯,y 1ð Þ

n1 ,⋯,y cð Þ
1 , y 1ð Þ

nc

h i
∈ Rq×n:

ð3Þ

Then, the intraclass correlation matrix and the interclass
correlation matrix are, respectively, shown as

Sw = 〠
c

i=1
〠
ni

k=1
〠
ni

l=1
x ið Þ
k y ið ÞT

l = XDYT , ð4Þ

where D is a block diagonal matrix, which is also a positive
semidefinite matrix. The difference between the interclass
correlation matrix and the intraclass correlation matrix is just
a negative sign [37]

(3) Solve the eigenvalues and eigenvectors. The optimi-
zation problem of DCCA can be transformed into

max wT
x Swwy s:t:wT

x Sxxwx =wT
y Syywy = 1: ð5Þ

Use the Lagrangian multiplier method to solve the above
optimization problem turning the above problem into a
problem of finding characteristic roots and characteristic
vectors.

SwS
−1
yy Swð ÞTwx = λ2Sxxwx,

Swð ÞTS−1xx Swwy = λ2Syywy:
ð6Þ

The eigenvector fwx ,wygd1 corresponds to the first d gen-
eralized eigenvalues, and the λ1 ≥ λ2 ≥ λd

(4) For each pair of samples ðx, yÞ, fusion is performed
according to the tandem method. The block diagram
of feature fusion using the DCCA algorithm is shown
in Figure 8

Figure 7: A graphical representation of the relationship between sample characteristics. Among them, hexagon and circle represent each
feature, solid line represents the correlation within the class, and dashed line represents the correlation between classes.

DCCA Zf = (Z1d, Z2d)
Xp

Z2d = WxY

Z1d = WxX

Yq

Wx

Wy

Figure 8: Block diagram for realizing canonical correlation analysis.
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4. Performance Metrics

In order to optimize the atrial fibrillation detection model, a
large number of experiments are carried out using a single-
lead ECG dataset. The experiment in this article is to train
on a server equipped with Tesla V100-SXM2 GPU and
Ubuntu 16.04 operating system, and its dynamic memory
of the computer is 32480MiB.

In this paper, normal F1 score, atrial fibrillation F1 score,
other F1 score, and the average value of three categories of F1
score are four metrics for evaluating the classification perfor-
mance of the experiments. The definition of these four met-
rics can be defined as

F1a =
2 × Aa

∑A+∑a
, ð7Þ

where A is the total number of signals identified as atrial
fibrillation by the algorithm, Aa is the number of signals cor-
rectly classified as atrial fibrillation by the algorithm, and a is
the total number of atrial fibrillation signals.

F1n =
2 ×Nn

∑N+∑n
, ð8Þ

where N is the total number of normal signals recognized by
the algorithm, Nn is the number of correct signals classified
as normal by the algorithm, and n is the total number of nor-
mal signals.

F1o =
2 ×Oo

∑O+∑o
, ð9Þ

where O is the total number of signals identified by the algo-
rithm as “other,”Oo is the correct number of signals classified
by the algorithm as “other,” and o is the total number of
“other” signals.

F1p =
2 × Pp

∑P+∑p
, ð10Þ

where P is the total number of noise signals recognized by the

algorithm, Pp is the correct number of noise signals classified
by the algorithm, and p is the total number of noise signals.

Foverall =
F1n + F1a + F1oð Þ

3
: ð11Þ

Because the noise signals are too small and unbalanced,
the result of the entire dataset is unstable, and the first three
types of signals are selected as the final F1 index. Even so, the
F1 score of noise will also affect the other three types. In addi-
tion to F1, we also use true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) to calculate

Denoising R wave
identification P wave feature

RR-interval
features

Signal
procession

feature

XGBoost
classifierECG

Figure 9: Block diagram of AF by traditional feature experimental pipeline.

ECG
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LeakyRelu

Dropout (0.1)

Conv1D (strides = 1)

BN
LeakyRelu

Dropout (0.1)

Conv1D (strides = 1)

BN
LeakyRelu

Dropout (0.1)

Conv1D (strides = 1)

BN
LeakyRelu

Dropout (0.1)

Conv1D (strides = 1)

Average pooling

X6

GRU (32)

Dense (4)

Figure 10: Block diagram of AF by deep learning feature
experimental pipeline.
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accuracy (Acc), specificity (Spe), and sensitivity (Sen). The
calculation formula is as follows:

Acc =
TP + TN

TP + TN + FP + FN
,

Spe =
TN

TN + FP
,

Sen =
TP

TP + FN
:

ð12Þ

5. Results

Four experiments are used to verify the feasibility and effi-
ciency of the proposed feature fusion model. The first three
experiments are comparative experiments.

5.1. Experiments Based on Single Feature

5.1.1. Experiments Based on Traditional Feature. In this
experiment, after the ECG signal is denoised, its statistical

features and frequency domain features are extracted
manually based on expert knowledge, and finally, the XGBoost
(Extreme Gradient Boosting) classifier is used for classifica-
tion. The experimental block diagram based on traditional fea-
ture extraction and classification is shown in Figure 9.

The XGBoost parameters are tuned using random grid
search cross-validation, and the optimal parameters are
selected. The minimum leaf node weight is set to 20, the max-
imum depth of the tree is set to 11, the subsample is set to 0.8,
the colsample_bytree is set to 0.9, the learning rate is 0.2, and
the maximum depth of the tree is 11.

The minimum loss function is reduced to 1, the softmax
objective function is used for classification, and the final F1 is
75%.

5.1.2. Experiments Based on Deep Learning Feature. In this
experiment, the ECG signal is detected based on the model
of residual network and gated recurrent unit. The experimen-
tal block diagram of using deep learning feature extraction to
classify atrial fibrillation is shown in Figure 10.
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Figure 11: The accuracy diagram of series feature fusion.
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Figure 12: The loss diagram of series feature fusion.
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Figure 13: The accuracy diagram of DCCA feature fusion.
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Figure 14: The loss diagram of DCCA feature fusion.
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Firstly, padding the original ECG data. Since the central
electrical data of the database varies from 9 s to 61 s and the
convolutional network requires equal length input, the ECG
data is padded the same length. This paper uses the maxi-
mum length of the ECG signal. The sampling rate is
300Hz, and the calculated maximum length is 18286. Each
ECG data is inputted into the residual network. The residual
network includes six residual convolution blocks, and each of
them consists of a convolution block, a residual block, and a
one-dimensional average pooling layer. Each convolutional
block includes four parts: a one-dimensional convolution
layer with a step size of 1, a batch normalization layer, a linear
unit with leakage correction, and a spatial random inactiva-
tion layer. After the residual network, data is inputted to
the gated recurrent unit for training. The number of neurons
in the gated recurrent unit is 32. Finally, it is output through
the fully connected layer. F1 ended up at 83%.

5.2. Experiments Based on Feature Concatenation Fusion. In
this experiment, the features are simply spliced and fused
and input to the fully connected layer for classification.

The feature vectors based on expert knowledge and the
feature vectors extracted by the residual network and gated
recurrent unit are spliced in series to obtain the fused features
and input to the fully connected layer for classification. The
specific process is as follows: firstly, add a flatten layer to
make the traditional feature vector one-dimensional; then,
use the deep learning model for training, the output of the
last hidden layer of the recurrent unit as the deep learning
feature vectors; finally, use the concatenation method to inte-
grate the two feature vectors into one, and add a fully
connected layer for classification. The value of F1 is 85%,
and the accuracy and loss diagrams are shown in Figures 11
and 12.

5.3. Experiments Based on DCCA Feature Fusion. In this
experiment, the feature vectors extracted by the traditional
feature extraction method based on expert knowledge and
the deep learning feature vectors extracted using the gated

recurrent unit and residual network are fused with discrimi-
nant canonical correlation analysis and then input to the fully
connected layer for feature classification. The final accuracy
on the verification set is 91.7, and F1 is 88%. The accuracy
and loss diagrams are shown in Figures 13 and 14. From
Table 2, it can be seen that the DCCA-based fusion method
is better than the concatenation fusion method. Compared
with simple concatenation fusion, the DCCA method con-
siders the correlation among samples and the category
information of the sample, which contains less redundant
information than the series fusion method.

As can be seen from Table 2 and Figure 12, that com-
pared to using single feature, the method of feature fusion
for AF signal detection can obtain better classification accu-
racy. Compared with single feature extraction, the F1 score
is increased by 2% when using simple feature fusion, and
compared with the simple feature fusion method, the F1
score is increased by 3% when using DCCA feature fusion.

5.4. Experimental Comparative Analysis. In order to verify
the effectiveness of the proposed method, comparisons are
also performed with previous studies. Table 3 lists some of
the published ECG signal detection research results based
on the same dataset, which includes traditional feature
extraction, machine learning based on expert knowledge,
and deep learning-based methods. It can be seen from
Table 3 that the use of a single method requires complex pre-
processing, and the final F1 value is 79.4%, which is not ideal
[24]. The signal detection model using the expert knowledge
feature extraction algorithm has better interpretability. On
the other hand, deep neural networks are used to autono-
mously learn features from ECG records. The conventional
method is very easy to learn. Xiong et al. [25] proposed a
16-layer deep convolutional neural network for the auto-
matic classification of ECG signal, the final F1 is 82.0%, and
the accuracy is 80.2%. The feature fusion method based on
discriminative canonical correlation analysis proposed in this
paper can fuse the advantages of the two and achieve a more
ideal result. The F1 value is 88%. The accuracy, sensitivity,

Table 2: The result of the different model.

Model F1n F1a F1o Foverall Acc Spe Sen

Expert features 87% 73% 65% 75% 79% 82% 72%

Resnet+GRU 91% 81% 77% 83% 86% 85% 84%

Simple fusion 92% 83% 80% 85% 88% 89% 86%

Proposed 93% 88% 84% 88% 92% 93% 90%

Table 3: Comparison of previous studies of ECG based on the PhysioNet/CinC challenge 2017 public dataset.

Method F1n F1a F1o Foverall Acc Spe Sen

Convolutional recurrent neural network [23] 92.4% 81.4% 80.9% 84.9% 87.5% 94.6% 82.9%

Decision tree ensemble [24] 88.9% 79.1% 70.2% 79.4% —— —— ——

16-layer 1D residual convolutional network [25] 90.0% 82.0% 75.0% 82.0% 80.2% —— ——

2D convolutional network with LSTM layer [26] 88.8% 76.4% 72.6% 79.2% 82.3% —— ——

1DCNN containing residual blocks and recurrent layers [27] 91.9% 85.8% 81.6% 86.4% —— —— ——

Proposed in this paper 93.1% 88.3% 84.0% 88.3% 91.7% 93.2% 90.4%%

8 Computational and Mathematical Methods in Medicine



and specificity are 91.7%, 90.4%, and 93.2%, respectively,
conducive to more accurate ECG signal detection. It is fore-
seeable that with the further accumulation of datasets, the
feature fusion model can achieve more powerful classifica-
tion capabilities.

6. Conclusion

This paper proposes a classification method for atrial fibrilla-
tion signals based on the feature fusion of discriminant
canonical correlation analysis. This method can not only
extract the deep learning features of ECG signals but also fuse
the traditional features of ECG signal samples. With DCCA,
the maximum and minimum correlations among classes of
different sample types are considered, and the recognition
results are better than that of series feature fusion as well as
the use of deep learning or traditional features alone. This
method has been verified on the public short single-lead
ECG dataset of the 2017 PhysioNet/CinC Challenge, with a
verification accuracy of 91.7%, a sensitivity of 90.4%, and a
specificity of 93.2%. The database used in this article itself
has the problem of large differences among various catego-
ries, which shows that the fusion method in this article
improves the overall accuracy while taking into account
other measurement standards, and steadily improves the
classification performance of ECG signals. However, this
paper only considers the comprehensive and complementary
representation of ECG features through feature-level fusion
and does not consider the fusion of decision-making layers,
such as neural network algorithms, hidden Markov models,
and combinations of multiple classifiers. In future researches,
the classification model and feature fusion method will be
further improved. On the basis of DCCA feature fusion tech-
nology, core-based DCCA will be introduced. At the same
time, more cutting-edge classifiers will be selected for classi-
fication and recognition, which will be more effective to
improve recognition results.
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