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Abstract: Protein citrullination is carried out by peptidylarginine deiminase type 4 (PAD4) enzyme.
As a consequence of this process, post-translationally modified proteins are formed that become
antigens for anti-citrullinated protein antibodies (ACPA). The study aimed at identifying whether the
PADI4 gene is subject to epigenetic regulation through methylation of its promoter region, whether
the degree of methylation differs in healthy individuals vs. rheumatoid arthritis (RA) patients and
changes in correlation with ACPA, anti-PAD4 and disease activity. A total of 125 RA patients and
30 healthy controls were enrolled. Quantitative real-time methylation-specific PCR was used to
analyze the methylation status. ACPA and anti-PAD4 antibodies were determined in serum by
enzyme-linked immunosorbent immunoassay. The differences were observed in the degree of PADI4
gene promoter methylation between RA patients and HC, along with an upward trend for the
methylation in RA, which was inversely proportional to the disease activity. A weak or modest
negative correlation between the degree of PADI4 gene methylation and anti-PAD4, disease activity
score (DAS28) and ACPA level has been found. The elevated methylation is associated with lower
disease activity, lower levels of ACPA and aPAD4. The methylation degree in this area is growing up
during effective treatment and might play a role in the RA pathophysiology and therefore could be a
future therapeutic target.
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1. Introduction

Rheumatoid Arthritis (RA) is a chronic, progressive, autoimmune inflammatory disease affecting
various organs and tissues, predominantly the synovial membrane, leading to joint destruction [1].
Anti-citrullinated protein antibodies (ACPA) are important markers of RA, recognized as being the
most specific. Starting from 2010, along with rheumatoid factor (RF), ACPA are used as serological
markers according to the classification criteria of the American College of Rheumatology (ACR) and the
European League Against Rheumatism (EULAR) [2]. Their sensitivity and specificity for the diagnosis
of RA are 64.9% and 97.9%, respectively [3]. They recognize post-translationally modified auto-antigens
generated by the peptidylarginine deiminases (PADs) enzymes family, mostly type 4 (PAD4), which
transform arginine to new amino acid citrulline in fibrinogen, α-enolase, vimentin, filaggrin, collagen
type I and type II and other various proteins, resulting in the production of immunogenic neoepitopes [4].
There are five isoforms of PADs. PAD4 is found in neutrophils, monocytes, eosinophils, spleen, secretory
glands and is connected to myeloid differentiation. The antibodies detected in RA can also be directed
against PAD4, but their diagnostic application has not yet been established [5–7]. Following the
ENSEMBL database the PADI4 gene is placed on chromosome 1 in location 17,308,195–17,364,004 on
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the forward strand with references to assembly GRCh38. The gene has 5 transcript variants. However
only 2 of them have an open reading frame (ORF) and can form transcripts called PADI-201 and
PADI4-202. The first consists of 663 amino acids (aa) and molecular weight 74.1 kDa, the second one
127 aa and 13.1 kDa [8].

The activity of PAD4 demands supraphysiologic calcium concentration, but the presence of
anti-PAD4 auto-antibodies (anti-PAD4) may reduce the PADs calcium requirements to the physiological
scope [9,10]. The synthesis of anti-PAD4 may facilitate the production of citrullinated proteins
and contribute to the formation of ACPA [11]. The post-translational proteins modifications like
homocitrullination or citrullination lead to the synthesis of anti-carbamylated protein antibodies
(aCarP) or ACPA, respectively. This may play a crucial role in RA pathogenesis. The data indicate
that the presence of aCarP and ACPA predates RA development by about 7 (4–10) and 6 years (3–10),
respectively. RF can be detected 2 (1–5) years before the onset of the symptoms [1,12]. In other
studies, RF was found to be present on average 6 years before disease onset [13]. The citrullination
leads to the synthesis of ACPA to a significant extent [14]. This means that citrullination is a very
important process causing immunization in RA, and activity of PAD4 enzyme can play a significant
role in the pathogenesis of the disease. The chronic presence of post-translationally modified proteins
(as a consequence of the infections of Porphyromonas gingivalis or Aggregatibacter actinomycetemcomitans
and the action of other environmental factors, e.g., cigarette smoking) leads to the production of ACPA.

DNA methylation plays a key role in the control of gene expression. The process concerns
CpG islands in the promoter regions of about 75% of genes and leads to gene silencing when
over-expressed [15]. Epigenetic mechanisms are considered a way of transmitting information from the
environment to the inside of a cell through increasing or decreasing gene expression. This process occurs
mainly before transcription (DNA methylation, histone modifications), but some of the regulatory
mechanisms may also influence the formation of the final gene product after the creation of mRNA
(a huge variety of non-coding RNAs) [16,17]. An increasing number of studies are performed to
better understand the role DNA methylation in rheumatoid arthritis, from initial studies showing the
hypo-methylation of the genome to advanced epigenome studies using modern technology, which
can identify differentially methylated genes (DMGs) and discover new candidate genes involved in
RA [16,18,19]. No studies on methylation of the PADI4 gene promoter have been conducted so far.

The expression of the PADI4 gene may be the spiritus movens of all processes leading to the
development of RA and include environmental and disease-modifying factors. As the role of
ACPA is well documented, it is important to determine whether epigenetic mechanisms, especially
DNA methylation, are involved in protein citrullination and indirectly ACPA synthesis. Therefore,
the primary aim of our study is to check whether the promoter region of the PADI4 gene is susceptible
to epigenetic regulation by methylation and whether the degree of methylation is connected to DAS28
activity in RA group and compare this to healthy individuals. If such regulation takes place, we assume
the lower degree of PADI4 methylation in RA vs. HC and the trend of decreasing methylation along
with increasing disease activity. The relationships between the concentrations of anti-PAD4, ACPA and
the disease activity and PADI4 methylation will also be evaluated.

2. Experimental Section

2.1. Patients

A total number of 155 unrelated patients, 125 with RA, 82.4% female, aged 52.2 ± 12.3 years
(mean ± SD), and 30 healthy controls (HC), 76.7% female, aged 53.2 ± 8.1 years, were enrolled.
The characteristics of the subjects are presented in Table 1. With the consent of all those taking part,
whole blood and serum samples were collected from patients and stored at −80 ◦C until analysis.
DNA was extracted from whole blood and stored at −80 ◦C until analysis. RA patients recruited to the
study included those consecutively seen at the Department of Rheumatology and Connective Tissue
Diseases, Medical University of Lublin, Poland, during March 2016 to April 2017 and can be considered
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representative of a larger RA population. RA diagnosis was made according to the 2010 ACR/EULAR
or 1987 ACR criteria for classification of RA depending on time of diagnosis. Exclusion criteria included
the presence of any infection or another severe illness during hospitalization. The healthy controls (HC)
were a group of patients with no joint complaint or diagnosed as osteoarthritis, with no inflammatory
rheumatic and musculoskeletal diseases. Written informed consent was obtained from every participant
before entering the study. The study was conducted in accordance with the Declaration of Helsinki,
and the protocol was approved by the Bioethics Board at the Medical University in Lublin, protocol
number KE-0254/7/2016. To determine the RA activity, we used the most frequently used DAS28 index.
The result >5.1 is described as high disease activity, over 3.2 and up to 5.1 is interpreted as moderate
activity, less than 3.2 but 2.6 or more as low disease activity and below 2.6 as remission [20]. DAS28
is the main measurement assessing the degree of disease activity, including remission. The essential
information concerning DAS28 and the method of scoring is described in the Supplementary File S2.

Table 1. The characteristic of the rheumatoid arthritis (RA) group, medications and healthy control (HC)
group. Anti-PAD4, antibodies against Peptydyl Arginine Deiminase type 4; ACPA, anti-citrullinated
protein antibodies; VAS PGA, Visual Analogue Scale Patient Global Assessment; VAS PhGA, Visual
Analogue Scale Physician Global Assessment.

Characteristics
RA HC

N = 125 N = 30

Age; mean (SD) 52.2 (12.3) 53.2 (8.1)
Females; n (%) 103 (82.4) 23 (76.7)

Disease duration [years]; n (SD) 11.69 (9.3) n/a
Rheumatoid Factor positive; n (%), 87 (69.6) none

anti-PAD4 positive; n (%) 67 (53.6) 2 (6.7)
ACPA positive; n (%) 104 (83.2) none

ESR; mean (SD) 31.5 (24.4) 14.6 (9.2)
CRP [mg/dL]; mean (SD) 13.96 (25.28) 1.37 (1.71)

VAS PGA; mean (SD) 27.1 (27.2) n/a
VAS PhGA; mean (SD) 21.7 (20.6) n/a

Treatment n/a
At least Methotrexate, n (%) 90 (72)

At least Biologics, n (%) 45 (35.2)
At least Steroids, n (%) 73 (58.4)

Single drug therapy, n (%) 45 (36)
Metotrexate, n (%) 23 (18.4)

Biologics, n (%) 5 (4)
Steroids, n (%) 17 (13.6)

Double drug therapy, n (%) 50 (40)
At least Methotrexate + Steroids, n (%) 51 (40.8)
At least Methotrexate + Biologics, n (%) 36 (28.8)

At least Steroids + Biologics, n (%) 25 (20)
Methotrexate + Steroids, n (%) 31 (24.8)
Methotrexate + Biologics, n (%) 15 (12)

Steroids + Biologics, n (%) 4 (3.2)

Triple drug therapy, n (%) 21 (16.8)

No therapy, n (%) 9 (7.2)

2.2. DNA Extraction and Methylation

DNA was extracted from 200 µL of frozen whole blood according to the manufacturer’s protocol
using the GeneMATRIX Quick Blood DNA Purification Kit (silica spin columns, Eurx, Poland).
DNA was eluted in 100 µL and stored at −80 ◦C until analysis. DNA (1 µg) was converted by
sodium bisulphite using the EZ DNA Methylation Gold Kit (Zymo Research, USA) according to
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the manufacturer’s recommendation, but elution volume was increased to 50 µL (instead of the
recommended 10 µL). Quantitative real-time methylation-specific PCR (qMSP) was used to analyze
the methylation status.

The PADI4 promoter was evaluated by the following set of primers: 5′-AGTTTAGGGGTTTTTTATA
GTTAGAGGGAC-3′ [sense] and 5′-ATCAAAATACCCAACACACACACG-3′ [antisense].
The promoter region was found in The Eukaryotic Promoter Database. Primers flank the
transcription start site (TSS) at positions from −18 to +99 (GRCh38:1:17308178:17308296) [21].
The studied region consists of 5 CpG sites surrounding TSS and in our opinion may have an
important effect on gene transcription [22]. The method of choosing CpG sites is shown in
Supplementary File S5. The primers were designed in silico by MethPrimer Software, version 1.0
and were complementary to the methylated target sequence. To normalize the input of DNA after
bisulfide conversion, the promoter region free of CpG sites in Beta-actin gene (ACTB) was amplified.
The ACTB primers were the following sequences: 5′-GGTGGTGATGGAGGAGGTTTAG-3′ [sense]
and 5′-CCCTTAAAAATTACAAAAACCACAACC-′3 [antisense]. Primers flanked similar region
presented by Menigatti M. et al. [23]. However, their sequences were manually redesigned. The qMSP
reaction contained for PADI4 150 nM each primer and for ACTB 600 nM as well as 2 µL bisulfide
treated DNA.

PCR was performed by Power SybrGreen (Life Technologies) on the COBAZ z480 Real Time PCR
System under the following thermal cycling conditions: 95 ◦C for 10 min—polymerase activation
step, followed by 40 cycles: 95 ◦C for 10 s and annealing/extension step at 63 ◦C for 1 min, followed
by the melting-curve step. The ability of primers to amplify specific sequences was evaluated by
using the fully methylated and unmethylated DNA controls (EpiTect PCR Control DNA Set, Qiagen,
Germany). QMSP efficiency, both for ACTB and PADI4 were evaluated based on the Livak and
Schmittgen method [24]. The normalized relative ratio based on the Pfaffl method was applied to
evaluate a fold-change in the methylation level [25].

2.3. Detection of ACPA and Anti-PAD4

ACPA IgG (DiaMetra, Italy) and anti-PAD4 antibodies (IgM, IgG, IgA) (CAYMAN Chemical,
Ann Arbor, MI, USA) were determined in serum by enzyme-linked immunosorbent immunoassay
(ELISA) and an absorbance reader (Tecan infinite M200 Pro reader and Magellan software, version 7.1).
All procedures were prepared according to the manufacturer’s recommendation. The reference range
for ACPA had a cut-off of 30 U/mL. The anti-PAD4 reference interval was estimated based on results in
the control group as Mean ± 2SD, and a cut-off was 615.24 U/mL. Antibody titers above this range
were evaluated as positive.

2.4. Statistical Analyses

Depending on the distribution, as assessed by the Shapiro–Wilk W test, quantitative values
were presented as median (interquartile range), mean ± SD, or numbers with percentages.
The relationship between two continuous variables was analyzed by the Spearman’s correlation
coefficient. The Whitney–Mann U test was used to evaluate differences in methylation level between
the two groups (controls vs. RA patients). Kruskal–Wallis ANOVA and multiple comparison analysis
post-hoc testing were used to evaluate the differences between control subjects and patients who were
divided into groups based on DAS28 scoring. A p-value < 0.05 was considered statistically significant.
Analysis was performed with STATISTICA Version 13 (StatSoft Inc., Tulsa, OK, USA).

3. Results

We found lower PAD4 gene methylation status and higher anti-PAD4 serum level in RA vs. HC.
The RA patients were divided according DAS28 scores and results are shown in Table 2.



J. Clin. Med. 2020, 9, 2049 5 of 13

Table 2. The PADI4 promoter methylation degree (methylated sequences) and anti-PAD concentration
level in RA group divided according to DAS28, RA patients generally and in healthy control.

RA Severe
DAS28 > 5.1

(n = 34; 27.2%)

RA Moderate
DAS28 >

3.2–5.1
(n = 46; 36.8%)

RA Low
DAS28 >

2.6–3.2
(n = 19; 15.2%)

RA
Remission

DAS28 ≤ 2.6
(n = 26; 20.8%)

RA Overall
n = 125

Healthy
Control
n = 30

PADI4
Metylation

[fold change]
(methylated
sequences) *

1.19
[0.59–1.9]

1.06
[0.54–2.96]

1.66
[1.01–3.22]

2.53
[1.47–4.45]

1.46
[0.68–3.07]

5.17
[2.77–8.74]

anti-PAD4
[U/mL] *

731.03
[477.98–1288.1]

716.11
[400.85–1250.8]

589.57
[306.08–2380.2]

455.54
[271.26–1104.9]

681.39
[339.36–1288.1]

293.25
[234.39–389.12]

* Data are given by median [interquartile range].

We have found that there are significant differences in the anti-PAD4 level between the RA
severe and HC group, RA moderate and HC and RA low activity and HC. Moreover, significant
differences were discovered in PADI4 promoter gene methylation between RA severe and RA remission,
RA moderate and RA remission and RA moderate and HC. The results are graphically presented in
Figures 1 and 2. Numerous correlations of modest or weak strength were also observed between
anti-PAD4, PADI4 gene methylation, ACPA and DAS28. The anti-PAD4 level is associated with DAS28
score. A weak negative correlation between the degree of PAD4 gene promoter methylation and
anti-PAD4 aPAD4 concentration, ACPA and the RA disease activity expressed by DAS28 has been found.
The correlation is shown in Figure 3. The complete raw results are presented in Supplementary File S1.
We have also conducted a multivariate modeling. No factor affecting PADI4 methylation more strongly
than DAS28 was found—see Supplementary File S6.
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Figure 1. PADI4 promoter gene methylation level in RA groups according to DAS28 activity, HC and
all RA patients. Results presented as median and interquartile range. (a) p = 0.00002; (b) p = 0.00004;
(c) p = 0.023; (d) p = 0.00001, Remission vs. HC p = 0.07.

The additional graphical presentations of our results are showed in Supplementary File S7.
No differences in the degree of methylation and anti-PAD4 serum level were found between the
groups of patients divided according to the treatment used, including the drugs mechanism of action.
(Data available as Supplementary File S3). The characteristics of the study group in subgroups
depending on the DAS28 index were collected in Supplementary File S4. No differences other than
DAS28 components (ESR, CRP, VAS PGA, VAS PhGA) were found.
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Figure 3. Spearman’s rank correlation between studied parameters. Presented variables are statistically
significant with the p-value < 0.05. Diagrams from A to F shown correlations between two variables
and the following correlation coefficients (rs): (A) correlation between DAS28 and anti-PAD4 with
rs = 0.19; (B) correlation between DAS28 and ACPA with rs = 0.22; (C) correlation between DAS28
and PADI4 methylation with rs = −0.34; (D) correlation between PADI4 methylation and ACPA with
rs = −0.26; (E) correlation between PADI4 methylation and anti-PAD4 with rs = −0.25; (F) correlation
between ACPA and anti-PAD4 with rs = 0.52.
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4. Discussion

Gene expression is subject to overlapping mechanisms of epigenetic regulation, such as methylation
of gene promoters, and modifications of histone proteins (methylation, acetylation, phosphorylation,
ubiquitination, etc.) Approximately 75% of the genes encoding proteins are regulated through the
mechanism of methylation of their promoter regions which are rich in CpG islands [26]. Genetic studies
do not explain sufficiently the pathogenesis of RA. Viatte et al. suggest that interaction between genetic
and environmental factors are a very promising and poorly understood new area of research [27].
The literature contains no reports concerning the influence of PADI4 promoter region methylation on
the development and course of RA. The results of our research indirectly prove that such an impact
exists. The study did not evaluate the concentration or enzymatic activity of PAD4 but the effects of its
presence—anti-PAD4 and ACPA. Our results hopefully open this area up for further studies.

The results and trends observed in our study seem to remain in line with the general rule of
influence of methylation on gene expression. The reduced PADI4 methylation in RA patients results
in increased expression of PAD enzyme (expression and activity not measured) and, consequently,
increased protein citrullination and finally the excessive ACPA production. The results of our study
suggest for the first time that the expression of the PADI4 gene is regulated by the methylation of
its promoter region and has an impact on the course of RA. A lower degree of methylation of the
PADI4 gene promoter is associated with the higher activity of RA. The effective treatment leads to
a significant increase in methylation of this region, with the highest levels in patients in remission.
However, the degree of methylation in effectively treated patients did not reach the level reported in
HC. The study results may support the assumption that the higher methylation of CpG islands in the
PADI4 promoter region implies a decrease in the synthesis of the PAD4 enzyme and consequently
a reduction in the citrullination of various proteins. We also have found the lower concentration of
anti-PAD4 and ACPA, along with a decrease in disease activity.

The subject of our study was not to assess the impact of individual drugs on the level of methylation
of the PADI4 gen, but it is a very interesting issue that requires research. The literature is rich regarding
the impact of various drugs for DNA methylation. Differentially methylated positions in DNA have
recently been detected in MTX and etanercept treated patients between responders and non-responders.
Further research is required to explain their role in RA [28,29].

No single nucleotide polymorphism (SNP) of the PADI4 gene has been shown to be an important
risk factor for RA in the European population [19]. All recognized genetic risk alleles can explain up to
16% of overall disease probability [20]. This indicates the huge importance of environmental factors
and their impact on gene expression through epigenetic mechanisms, such as methylation of gene
promoters [30]. It has been demonstrated that cigarette smoking, which is one of the environmental
factors, stimulates PADI4 gene expression [21]. The latest research of Meng et al. confirms that gene
and smoking-specific interaction may exist, especially in ACPA positive RA patients [31]. The second
environmental factor that is suspected to affect the development of RA is the chronic Porphyromonas
gingivalis infection. It is indicated as the responsible mechanism for the disturbance of citrullination
caused by PAD bacterial activity and change in the expression of endogenous PAD [32]. The suggested
pathophysiological pathway of RA was shown in Figure 3.

Our research indicates a modest or weak correlation between the low methylation of the PADI4
promoter region (responsible for high gene expression) and the high activity of the disease. As for RA
pathogenesis, it can be concluded that the increased expression of PAD4 through various mechanisms
(infection, smoking) results in protein citrullination. Consequently, pre-RA is induced, and then under
favorable circumstances, symptomatic RA is developed.

A negative moderate or weak correlation between the methylation of the PADI4 gene promoter
and anti-PAD4, ACPA and DAS28, which was found in our study, may indicate constant modulating
effect of citrullination during the course and treatment of RA.

Regardless of the drug used, effective therapy yields a statistically significant increase in
methylation of the PADI4 gene promoter. Because patients from the RA group were treated with



J. Clin. Med. 2020, 9, 2049 8 of 13

various drugs, we can conclude that medicines, regardless of their main mechanism of action, may
have an influence on PADI4 methylation or that the efficacy of treatment may even depend on the final
hyper-methylation of this DNA region. The evaluation of DNA methylation seems to be an important
source of information useful for the diagnosis, evaluation and treatment of RA. Plant et al. found
5 specific regions that, if hyper-methylated, indicate etanercept non-responder patients [28].

The sensitivity and specificity of anti-PAD4 in the European population of RA patients were
estimated at 42% and 92%, respectively. A relationship was also found between the presence of these
antibodies and the intensity of radiological changes [9,33]. The prevalence of anti-PAD4 in RA was
estimated at 35–45% [34,35]. Our study population of 125 RA patients showed 53.6% of anti-PAD4
positivity for the whole RA group and 7.14% in HC group. The test used in our cohort simultaneously
detected IgM, IgA and IgG isotypes of anti-PAD4 antibodies. This may explain the more frequent
occurrence of these antibodies in our study. We have observed the decreasing concentration of these
antibodies with the lowering disease activity and the smallest concentration in HC (below the cut-off

point). The significance of anti-PAD4 in RA is still discussed. Laura Martinez-Prat et al. have analyzed
anti-PAD4 in a large cohort of 1473 RA patients and found its discriminative value between RA and
HC especially in early RA [36]. Guderud et al. recently showed different results and conclusions that
anti-PAD4 is a bystander autoantibody [37]. Taking into account the small number of publication,
the usefulness of these antibodies under certain conditions may still be a matter for further evaluation
and discussion especially as a prognostic or predictive marker [38].

Our observations regarding the methylation of the PADI4 promoter prompt us to propose paying
more attention to the period when the changes leading to the development of RA start, i.e., before
the appearance of inflammatory symptoms. The term pre-RA is now used retrospectively in people
who have developed RA; it refers to various stages before the development of any symptoms until the
period of unclassified arthritis [39]. Redefinition of pre-RA should be considered in such a way as to
stop using the term retrospectively and to use it to make a current diagnosis in specific individuals.
This may apply to people who, based on the presence of measurable genetic, serological, epigenetic and
other factors are at high risk of developing RA in the future. This creates a need to narrow the current
definition of pre-RA only to individuals who have not yet shown any symptoms of inflammation.
In the future, this diagnosis may be the basis for the treatment of such patients in the conviction that
the symptoms will occur over time. The treatment of such patients will not include anti-inflammatory
agents but will be based on affecting epigenetic pathways, for example, by increasing methylation
of the PADI4 promoter in the targeted manner and reducing the synthesis of citrullinated proteins.
This may interrupt the pathophysiological pathway and lead to a reduction in ACPA and RF levels
and prevent the development of inflammation or prolong the pre-RA phase.

The most important dependencies of the RA pathogenesis model are gathered in Figure 4. In this
model, we postulate that the hypo-methylation of the PADI4 gene described in our study leads
to its excessive expression and increased PAD4 enzyme activity (requires confirmation in further
research) and, as a consequence, enhances protein citrullination and breaks immune tolerance leading
to synthesis of ACPA. The presented hypothesis may explain the role of hypo-methylation of the PADI4
gene. However, many questions remain. For example, how environmental factors lead to a decrease in
genes methylation.
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Figure 4. Pathways to RA development. The individuals with genetic predisposition (MHC—shared
epitope, SNP of PTPN22) exposed to environmental factors (smoking, airway inflammation,
periodontitis) have developed a shift in PADI4 gene methylation degree. The airway inflammation
and smoking are connected with higher PAD activity [40]. NET-osis is a PAD4-dependent mechanism
used during the host immunological response against exogenous bacteria like PG and ACC [41–43].
Additionally PG is a bacteria with its own PAD4 activity [44]. The dysregulation of PAD4 gene expression
via methylation depends on the environmental impact on the mouth and lungs leading to elevated
expression of PAD4 enzyme and increased conversion of arginine to citrulline in various proteins,
leading to a loss of tolerance to citrullinated proteins and APCA synthesis. The ICs of citrullinated
proteins and ACPA IgG become an antigen to RF production. After a period of ACPA and/or RF positivity
called pre-RA and unknown “second hit”, the development of arthritis/synovitis is influenced in
patients. Abbreviations: PG, Porphyromonas gingivalis; AGG, Aggregatibacter actinomycetemcomitans; ME,
methylation; ICs, immunological complexes; ACPA, anti-citrullinated protein antibodies; PTM, proteins
post-translationally modified proteins; PAD4, peptidyl arginine deiminases type 4; RF, Rgeumatoid
Factor; Pre RA, pre-Rheumatoid Arthritis; PTPN22, Protein tyrosine phosphatase, non-receptor type 22,
NET-osis Neutrophil extracellular traps activation and release.

We realize that the number of 125 patients, especially after dividing according to DAS28
activity score, resulted in difficulties in achieving statistical significance in various comparisons.
It is worth indicating the differences in PADI4 methylation between RA moderate and remission
groups (p-value = 0.054) and RA low and HC (p-value = 0.07). For anti-PAD4 RA remission and HC,
we have found a difference with p = 0.07. The weak point of our study is that DNA was extracted from
the whole blood and not the specific cell line. We did not have the possibility to measure the PADI4
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gene expression, because only frozen whole blood samples were available, and the lack of mRNA
expression indicates that our research needs to be supplemented by future studies. Blood samples
for testing were obtained in the same way. Patients with infections or severe comorbidities were
excluded from the study. However, it should be emphasized that the current study design hinders
the elimination of the effect of cellular heterogeneity between studied patients and groups. PADI4
promoter methylation status might be in unknown degree affected by the diversity of the PADI4 gene
expressing cells. In current literature, there are no studies on methylation of the PADI4 gene. This is
the first research concerning PADI4 promoter methylation in RA and further investigation is required.
The results in specific cell types might be even more distinct and may bring interesting conclusions;
similarly, a study concerning histone proteins alterations or interactions between PADI4 gene and
targeted micro-RNAs is needed to better understand the role of PADI4 gene in RA pathogenesis.
It is interesting that in the epigenome studies in the analyzed literature we did not find information
indicating the detection of the DMGs in the PADI4 gene region on chromosome 1.

5. Conclusions

In summary, we have presented a novel finding indicating that the PADI4 gene undergoes
epigenetic regulation through methylation of its promoter region. An increase in methylation in
this area is associated with lower levels of anti-PAD4 and ACPA and with lower disease activity.
The highest methylation status was found in RA remission subgroup and does not depend on the way
of treatment. We believe that the expression of PAD4 enzyme might be a key site in RA etiopathogenesis
and course. The evaluation of PADI4 gene promoter methylation can provide a significant value in the
early diagnosis of RA, and the DNA region discussed can become a target for RA therapy and even
pre-RA treatment in the future. What should be emphasized is that the hypomethylation of the PADI4
promoter in our study was evaluated in the whole blood cell population, and DNA methylation may
differ significantly depending on the assessed cells sub-population and also depending on differences
in proportions of synovial fluid or blood cells.
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