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Al exposure increases proline 
levels by different pathways 
in an Al‑sensitive and an Al‑tolerant 
rye genotype
Alexandra de Sousa1,2, Hamada AbdElgawad2,4, Fernanda Fidalgo1, Jorge Teixeira1, 
Manuela Matos3, Badreldin A. Hamed4, Samy Selim5, Wael N. Hozzein6, 
Gerrit T. S. Beemster2 & Han Asard2*

Aluminium (Al) toxicity limits crop productivity, particularly at low soil pH. Proline (Pro) plays a 
role in protecting plants against various abiotic stresses. Using the relatively Al-tolerant cereal rye 
(Secale cereale L.), we evaluated Pro metabolism in roots and shoots of two genotypes differing in Al 
tolerance, var. RioDeva (sensitive) and var. Beira (tolerant). Most enzyme activities and metabolites 
of Pro biosynthesis were analysed. Al induced increases in Pro levels in each genotype, but the 
mechanisms were different and were also different between roots and shoots. The Al-tolerant 
genotype accumulated highest Pro levels and this stronger increase was ascribed to simultaneous 
activation of the ornithine (Orn)-biosynthetic pathway and decrease in Pro oxidation. The Orn 
pathway was particularly enhanced in roots. Nitrate reductase (NR) activity, N levels, and N/C ratios 
demonstrate that N-metabolism is less inhibited in the Al-tolerant line. The correlation between 
Pro changes and differences in Al-sensitivity between these two genotypes, supports a role for Pro 
in Al tolerance. Our results suggest that differential responses in Pro biosynthesis may be linked to 
N-availability. Understanding the role of Pro in differences between genotypes in stress responses, 
could be valuable in plant selection and breeding for Al resistance.

Proline (Pro) is involved in a wide range of plant physiological and developmental processes1. In addition 
to being a proteinogenic amino acid, Pro contributes to stress-mitigation, as a compatible solute for osmotic 
adjustment, as an ROS scavenger and as a molecular chaperone stabilizing proteins and membranes. Moreover, 
changes in Pro metabolism may affect the cellular redox status, prompting for metabolic adjustments2. Pro can 
also contribute to buffering cytosolic pH and can act as a source of energy, carbon, and nitrogen to support plant 
growth after stress relief1,3.

Despite the frequently demonstrated importance of Pro in plant functions, comparatively little is known on 
how exactly Pro levels are modified. Pro is not normally accumulated and stored, and therefore changes in Pro 
occur through changes in biosynthesis and re-oxidation1. The Pro pool is controlled by biosynthesis through (1) 
a glutamate (Glu)-dependent pathway, (2) an ornithine (Orn)-dependent pathway, and (3) by re-oxidation to 
1-pyrroline-5-carboxylate (P5C)4 (Fig. 1). In studies in which changes in Pro-metabolic enzymes and metabolites 
were studied in detail, pathway-specific responses were observed. For example, Pro accumulation in rice exposed 
to Cu is enhanced through the Orn pathway5. However, in tobacco plants exposed to Cu and water deficit, Pro 
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accumulation is enhanced through both the Glu and Orn pathways, as well as by reduced proline dehydroge-
nase activity (ProDH)6. The latter enzyme is generally considered to re-oxidize Pro. Additionally, increases in 
pyrroline-5-carboxylate synthase (P5CS) and ornithine aminotransferase (OAT) activities in peach exposed to 
cold stress suggests the involvement of both pathways7. Overall it appears that regulation of Pro synthesis may 
vary between species, and is based on stress-type, and duration.

As increased Pro levels may contribute considerably to plant stress tolerance, Pro is a worthwhile target 
for plant-resistance improvement through breeding, selection or genetic modification8. Therefore, a better 
understanding of how Pro levels are controlled in stress conditions is needed. Not only is rye an essential food 
source worldwide, it is also known for its relatively high Al tolerance9. Rye is therefore an interesting species to 
understand mechanisms to cope with Al toxicity. To help in this understanding, we compared responses in an 
Al-tolerant (var. Beira) and an Al-sensitive (var. RioDeva) rye genotype. Genotype-specificity is a useful tool to 
help identify molecular players in stress responses.

Al toxicity is an increasing agricultural problem, in particular in acidic soils, i.e. at pH below 5.5, when phy-
totoxic Al3+ predominates in solution. Soil acidity is increasing worldwide, largely due to anthropogenic inputs, 
and this currently occurs mostly in tropical and subtropical regions9,10. As much as 50% of arable land is estimated 
to be impacted negatively by Al due to acidic soil11. The effect of Al on plant growth, and root development in 
particular, has frequently been studied. From this, several mechanisms contributing to these effects have been 
identified9,10. For example, it is well-established that high soil Al levels stimulates the exudation of organic acids 
from the roots of several plant species, and the genes and proteins involved are being identified9,12. Al tolerance 
mechanisms also include phenolic and polypeptide exudation, mucilage secretion, phosphate efflux, alkaliniza-
tion of the rhizosphere and Al adsorption to the cell wall9,12. In addition, we and others, have recently shown 
that elevated levels of the antioxidants ascorbate and glutathione, and their related antioxidant enzymes, are 
important for Al-tolerance in rye13. Unlike some of these well characterized Al-tolerance mechanisms the role of 
Pro in tolerance to Al is less well unravelled. For example, a role in metal-toxicity for Pro has been documented1, 

Figure 1.   Scheme showing the Pro biosynthesis pathways metabolites (rectangles) and enzymes (circles). 
Coloured items are quantified in this study. Enzyme abbreviations: ARG​ arginase; GDH glutamate 
dehydrogenase; GK glutamate kinase; GOGAT​ glutamine oxoglutarate aminotransferase; GS glutamine 
synthetase; OAT ornithine aminotransferase; ProDH proline dehydrogenase; P5CDH pyrroline-5-carboxylate 
dehydrogenase; P5CR pyrroline-5-carboxylate reductase; and P5CS pyrroline-5-carboxylate synthase.
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however rarely have changes in Pro been traced to the contributing biochemical pathways (Fig. 1), and to changes 
in N metabolism. To contribute to this lack in understanding, we investigated in detail changes in Pro metabolism 
in rye (Secale cereale L.) exposed to Al.

Results
Pro levels are roughly similar in roots and leaves in non-stressed plants of the tolerant line (Fig. 2g,h). On the 
other hand, in the Al-sensitive line, Pro is approximately twofold higher in leaves than in roots. In leaves as well 
as in roots, Pro levels increased upon Al exposure, and this increase was statistically significant faster (at 24 h) 
in the tolerant genotype. The increase was higher with prolonged (48 h) exposure and was considerably stronger 
in the Al-tolerant line. Increases in Pro recovered to some extend to control levels 48 h after metal removal. Pro 
concentrations in plants are the result of two pathways synthesizing GSA, respectively through Glu and Orn, and 

Figure 2.   Al-induced changes in the conversion between P5C and Pro in rye seedlings. Metabolite levels 
and enzyme activities were determined in leaves and roots of Al-tolerant (Beira) and Al-sensitive (RioDeva) 
genotypes after 24 h and 48 h of exposure and 48 h of recovery. Bars: purple: genotype Beira; red: genotype 
RioDeva; light color: control (no Al); dark color: 5 mg L−1 Al. Panels: (a,b): pyrroline-5-carboxylate (P5C); 
(c,d): pyrroline-5-carboxylate reductase (P5CR); (e,f): proline dehydrogenase (ProDH); (g,h): proline (Pro). The 
results are the mean of 3 or 4 experiments (SD, see Methods). Letters indicate a significant difference at P < 0.05 
(capital letters: tolerant line; small letters: sensitive line).
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Pro oxidation. To understand the mechanism by which Al induces Pro, we analysed metabolites and enzymes 
associated with each pathway (Fig. 1).

Glu pathway for Pro synthesis.  Glu and Gln are essential substrates in this pathway. In leaves, Al stress 
reduced Gln in the tolerant genotype, but for Glu there were no significant changes (Fig. 3a,e). At the level 
of enzymes, in the leaves of the tolerant line, GS and P5CS activity increased, and P5CDH activity remained 
unchanged (Fig. 3c,g–i). In the sensitive line, on the other hand, GS and P5CDH were unaltered. P5CS increased 
in leaves at 48 h (Fig. 3i), but to a lesser extent than in the tolerant genotype (70% increase instead of 160% 
increase, at 48 h).

Under Al treatment, the Gln and Glu levels were reduced in roots of the Al-tolerant genotype and no changes 
were observed in the sensitive line (Fig. 3b,f). In roots, GS activity increased in both genotypes after 48 h, reach-
ing higher values in the sensitive line (Fig. 3d). P5CS was induced in the roots of both genotypes (Fig. 3j), and 
P5CDH remained unchanged in both lines (Fig. 3h), as in leaves.

Al-induced changes in enzyme activities, in leaves and roots, generally, fully or partially recovered after 
removal of Al (Fig. 3). Together these results indicate differences in induction of the Glu pathway for Pro syn-
thesis in the organs and genotypes studied.

Orn pathway for Pro synthesis.  For the Orn pathway, in the leaves, Al treatment had no significant 
effects on the substrates Arg and Orn in either genotype (Fig. 4a,e). Also in the leaves, ARG activity increased at 
48 h of exposure in the Al-tolerant line, and OAT decreased in both lines (Fig. 4c,g).

In roots, Arg and Orn remained unchanged in both genotypes, under Al exposure (Fig. 4b,f). Activities of 
the enzymes ARG and OAT in roots increased in the tolerant line at 48 h after exposure but did not change 
in the sensitive line (Fig. 4d,h). Results of the Orn pathway also suggest changes specifically in the organs and 
genotypes investigated.

Conversion of P5C to Pro.  The common end-product of the Glu and Orn pathways, P5C, is converted 
to Pro, by P5CR. Another enzyme determining the Pro and P5C concentrations is ProDH, which generally re-
oxidizes Pro. It is noteworthy that Pro levels, also in the absence of Al, were about twofold higher in the leaves 
of the sensitive line.

In leaves, the Al treatment reduced P5C levels (significant in the tolerant line at 24 h only) and induced Pro 
levels, in both genotypes (significant in the sensitive line at 48 h) (Fig. 2a). In roots under Al exposure, P5C 
levels decreased in the tolerant genotype (significant at 48 h), but not in the sensitive line. Pro levels increased 
significantly at 24 and 48 h in the tolerant line, and at 48 h in the sensitive line (Fig. 2g). The Pro increase was 
about twofold in the tolerant line, but only a 20% increase in the sensitive line was observed. Increases were 
only significant in the sensitive line after prolonged exposure (48 h) (Fig. 2b,h). P5CR activity increased in the 
Al-tolerant genotype, while ProDH activity decreased (Fig. 4c,e). No changes in enzyme activities of P5CR and 
ProDH were observed in leaves of the Al-sensitive genotype. P5CR activity in the roots increased only at 48 h 
after exposure (Fig. 2d).

ProDH activity decreased in the Al-tolerant genotype but remained unchanged in the sensitive line (Fig. 2f). 
Generally, both metabolite levels and enzyme activities, fully recovered, in leaves and roots of both genotypes, 
after Al removal.

Nitrogen (N) assimilation.  Amino acid levels in plants are tightly correlated with N metabolism. There-
fore in the frame of understanding the Al-induced Pro changes, we investigated metabolites (N, α-KG, Gln, 
Glu) and key enzymes in N fixation (GDH, GOGAT, GS, NR). Nitrogen levels (Fig. 5a) decreased in leaves of 
the Al-sensitive line. Also total protein content decreased (supplementary table 1a, b), Gln and Glu changed as 
described above, and α-KG remained unchanged in leaves and roots (Fig. 5c,d). GOGAT activity did not signifi-
cantly change upon Al treatment (Fig. 5g,h), but GDH activity showed some increase in leaves in the tolerant 
line (Fig. 5e) (description of results on GS activity in a section above). NR activity decreased significantly in each 
organ in the Al-sensitive line (Fig. 5i,j).

Discussion
In recent years, Pro has been demonstrated to be much more versatile than being simply a proteinogenic amino 
acid. In plants, Pro levels increase in response to a variety of stresses and elevated Pro probably provides multiple-
types of protection. Additionally, metal exposure is indicated to alter Pro levels, suggesting the involvement of 
Pro in the defence against metal induced damage1. High Pro levels have been suggested as a primary source of Al 
tolerance in maize, tea and buckwheat14–16. In addition, in date palm, mung bean and spring wheat, exogenous 
application of Pro demonstrated its protective effect against metal toxicity17–19.

Despite the importance of Pro in stress tolerance, the detailed biosynthetic changes leading to altered Pro 
levels are rarely characterized. Nevertheless, exploring Pro as a target for stress tolerance improvement could 
benefit from such knowledge. We, therefore, analysed Pro biosynthesis in the roots and leaves of Al-sensitive 
(RioDeva) and Al-tolerant (Beira) rye seedlings, after short-term Al-exposure. The effects of similar Al treatments 
on growth and oxidative stress parameters in these genotypes have previously been published13.

The results show that Al-treatment increased Pro concentrations, in the roots and leaves of each genotype, 
although to different extents (see below). In the Al-tolerant rye line, increases were about threefold, whereas 
increases of only about 20% were observed in the Al-sensitive line. Pro levels, and the Pro increases induced 
by Al are similar as in previous works e.g.17. Pro levels returned considerably after stress removal and often to 
near-normal levels. These findings are consistent with responses to metal toxicity in other species and support 



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:16401  | https://doi.org/10.1038/s41598-020-73358-9

www.nature.com/scientificreports/

Figure 3.   Al-induced changes in the Glu pathway for Pro biosynthesis in rye seedlings. Metabolite levels 
and enzyme activities were determined in leaves and roots of Al-tolerant (Beira) and Al-sensitive (RioDeva) 
genotypes after 24 h and 48 h of exposure and 48 h of recovery. Bars: purple: genotype Beira; red: genotype 
RioDeva; light color: control (no Al); dark color: 5 mg L−1 Al. Panels: (a,b): glutamine (Gln); (c,d): glutamine 
synthetase (GS); (e,f): glutamate (Glu); (g,h): pyrroline-5-carboxylate dehydrogenase (P5CDH); (i,j): pyrroline-
5-carboxylate synthase (P5CS). γGH: γ-glutamyl hydroxamate. The results are the mean of 3 or 4 experiments 
(SD, see Methods). Letters indicate a significant difference at P < 0.05 (capital letters: tolerant line; small letters: 
sensitive line).
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the role of Pro in Al tolerance. It should be kept in mind that Al exposure also affects the plant water status, as 
reflected in reduced stomatal conductance20. Water deficiency is known to induce Pro levels, in particular in 
roots1. Therefore, the Pro increases we observed could in part originate from such water status effect.

To understand the molecular basis of the Pro increases, we compared changes in Pro metabolism pathways 
between genotypes (sensitive vs. tolerant) and between organs (leaves vs. roots).

Differences in Al responses between an Al‑sensitive and Al‑tolerant rye genotype.  Genotype-
specific responses to abiotic stress are observed in numerous species and stress-types, including different sen-
sitivities to metals. In our comparison of responses to Al in a sensitive and tolerant rye line, a first difference in 
the response we observed, is that although the Glu pathway for Pro synthesis was significantly enhanced in both 

Figure 4.   Al-induced changes in the Orn pathway for Pro biosynthesis in rye seedlings. Metabolite levels 
and enzyme activities were determined in leaves and roots of Al-tolerant (Beira) and Al-sensitive (RioDeva) 
genotypes after 24 h and 48 h of exposure and 48 h of recovery. Bars: purple: genotype Beira; red: genotype 
RioDeva; light color: control (no Al); dark color: 5 mg L−1 Al. Panels: (a,b): arginine (Arg); (c,d): arginase 
(ARG); (e,f): ornithine (Orn); (g,h): ornithine aminotransferase (OAT). The results are the mean of 3 or 4 
experiments (SD, see Methods). Letters indicate a significant difference at P < 0.05 (capital letters: tolerant line; 
small letters: sensitive line).
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Figure 5.   Al-induced changes in N-metabolism in rye seedlings. Metabolite levels and enzyme activities were 
determined in leaves and roots of Al-tolerant (Beira) and Al-sensitive (RioDeva) genotypes after 24 h and 48 h 
of exposure and 48 h of recovery. Bars: purple: genotype Beira; red: genotype RioDeva; light color: control 
(no Al); dark color: 5 mg L−1 Al. Panels: (a,b): nitrogen (N); (c,d): α-ketoglutarate (α-KG); (e,f): glutamate 
dehydrogenase (GDH); (g,h): glutamine oxoglutarate aminotransferase (GOGAT); (i,j): nitrate reductase (NR). 
The results are the mean of 3 or 4 experiments (SD, see Methods). Letters indicate a significant difference at 
P < 0.05 (capital letters: tolerant line; small letters: sensitive line).
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genotypes upon Al exposure, the enhancement was considerably more pronounced in the the Al-tolerant line. 
This is for example reflected in more increased P5CS and GS activity. The latter enzyme is considered a regulator 
of this pathway4. Second, ARG activity increased in the tolerant line only, suggesting an extra contribution of 
Pro through the Orn pathway upon Al stress in this line. Thirdly, ProDH activity decreased in roots and leaves 
of the Al-tolerant genotype, while no significant changes were observed in the sensitive line. ProDH generally 
re-oxidizes Pro to P5C, the lower activity may contribute to Pro accumulation (Fig. 1). Inhibition of ProDH also 
contributes to Pro increases, also in other species and stress conditions21,22. ProDH activity returned to near-
control levels during recovery, probably contributing to the Pro decrease after stressor removal, except for roots 
of the Al-tolerant genotype. Interestingly, Pro levels in the absence of Al (control), are higher in the leaves of the 
Al-sensitive line. Whether this higher Pro makes the Al-sensitive line relatively more tolerant to other stressors 
has not yet been investigated. It should be noted that upon Al exposure, in absolute numbers, Pro levels in the 
sensitive line are actually similar to that in the tolerant line, as the result of the higher starting values. This how-
ever does not necessarily mean that similar protection levels from Al should be expected as this depends also on 
the extend of the stress experienced by the organism.

Altogether, our results clearly show there are differences in the response to Al between the sensitive and 
tolerant rye line at the level of Pro responses. Pro increases in each line, but the mechanism and extent off this 
induction are different. In each line the Glu pathway activity is increased, but this is more pronounced in the 
tolerant line. Also, in the tolerant line but not the sensitive line, the Orn pathway for Pro synthesis is activated, 
and Pro inactivation is down-regulated. These processes are also likely to contribute to the stronger Pro increase 
in the tolerant line. Additionally, in other studies, Pro has been shown to contribute to genotype-specific toler-
ance. For example, genotype differences in response to drought, salinity, heat, and cold have been associated with 
differences in Pro levels23–25. Moreover, differential accumulation of Pro is responsible for the genotype-specific 
differences in tolerance to Cu, Ni, and Cr, in soybean, Thlaspi spp. and rice, respectively. Therefore, our findings 
are consistent with these results. This suggests that responses in Pro metabolism may be a more common factor 
contributing to differences between genotypes, in multiple species and across multiple stresses.

Differences in Al responses in leaves and roots.  Stress responses likely vary between organs, so we 
investigated whether Al-induced Pro increases in leaves and roots, in each genotype, originated from the same 
or different pathways. First, in non-stressed plants, Pro levels were comparable in leaves and roots of the tolerant 
line, but higher in leaves than in roots in the sensitive line. The observation that Pro levels are similar in roots 
of the Al-tolerant and -sensitive line, is noteworthy as the roots are the primary sensing location for Al toxicity. 
This suggests that at least the basic levels of Pro in the rye root are not an important factor in the Al-sensitivity 
differences.

In response to Al, we observed that in roots and leaves and in each line, Pro accumulation occurs primarily 
from the upregulation of the Glu pathway. However, in roots, but not in leaves, of the tolerant line, OAT activity 
is increased, possibly contributing to Orn-dependent Pro synthesis. These results are consistent with studies in 
which elevated Pro synthesis under stress is ascribed to up-regulation of the Glu pathway, through the increase 
of P5CS5,26. However, in some instances, also the Orn pathway has been shown to contribute considerably to 
Pro biosynthesis, partially depending on the severity of stress22,27. Activation of the Orn pathway may also be 
correlated to N-levels (see below). Activation of both Glu and Orn pathways results in higher Pro levels in the 
roots of the tolerant genotype. As the roots are the primary target of Al toxicity, activation of both pathways 
might be essential for this organ to cope with Al stress. Differences in Pro accumulation in roots and shoots, in 
response to metals, have previously been reported. For example, Pro levels were higher in roots in various spe-
cies exposed to Cu, Pb, Cd or Hg28–32. However, in other species, higher Pro levels in shoots have been reported 
than in roots (see review by Sharma and Dietz33).

Al effects in leaves necessarily result directly from Al taken up and transported to leaf cells, or indirectly 
from systemic stress-signal effects that are translocated from the roots. There is some controversy as to which 
effect predominates, as in some studies leaf Al levels were effectively increased upon Al exposure34,35, whereas 
no increases were found in the leaves in other studies36. Our own determinations show increased Al levels in the 
leaves, supporting the possibility of direct interaction of Al with leaf cell metabolism (supplementary table 1A).

Relation of Al‑induced Pro changes to N metabolism.  Amino acid metabolism is closely connected 
to N metabolism. Nitrogen content and NR activity decreased under Al stress in leaves and roots of the sensi-
tive genotype but much less in the tolerant line. This raises the question of whether and how N assimilation is 
related to the differences in Pro changes between the two phenotypes. It is tempting to speculate that reduced 
N assimilation in the sensitive line, limits the ability to further elevate Pro levels, therefore reducing tolerance. 
Very few studies have simultaneously determined changes in Pro synthesis and N assimilation. In those studies, 
elevated N levels resulted in elevated Pro37,38. Moreover, the N-related elevated Pro appears to originate from the 
Orn pathway37, supporting our speculation, as this pathway likely provides the extra Pro increase in the tolerant 
line. In addition, we recently demonstrated that Pro increases in grasses and legumes under drought stress occur 
predominantly through the Glu pathway in grasses, and the Orn pathway in legumes4. This difference may well 
be related to the better N-status in legumes. If this view on N-status and Orn pathway-activation is correct, one 
could imagine that the higher Al tolerance in one rye genotype may indeed be related to a more stable N-assim-
ilation and N content. This would argue for a causal role of N-levels/fixation in controlling Pro biosynthesis 
pathways. However, alternatively, less-effective Pro supply and reduced N-assimilation in the sensitive line may 
also be parallel consequences of a common upstream genotypic difference in the Al response. Obviously more 
testing of these interpretations is necessary.
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Conclusion
In summary, we propose that a stronger stress-induced increase in Pro accumulation enhances tolerance against 
Al in one of two tested rye genotypes. Moreover, this genotype difference is related to activation of the Orn-
biosynthetic pathway, and a decrease in Pro-inactivation activity. We also observed differences in the response in 
leaves and roots, as the Orn pathway appears to be involved only in roots. Together this indicates that Pro levels 
are controlled by multiple factors. The correlation between Pro changes and differences in Al-sensitivity between 
genotypes, supports a role for Pro in Al tolerance. However, the demonstration of Pro contributing to the differ-
ences in Al tolerance between the genotypes, does not by itself explain by which molecular mechanism(s) this 
occurs. Our results also provide support to the idea that differential responses in Pro-biosynthesis pathways are 
linked to N assimilation. The observations that differential effects on Pro-biosynthesis also occurs also in other 
species, as well as the fact that Pro has previously been indicated as a genotype-specific factor in plant responses, 
makes us believe that the mechanisms elucidated in the Al-exposure of rye seedlings are a more common stress-
protection mechanism than previously considered.

Methods
Experimental setup.  Two rye (Secale cereale L.) genotypes differing in Al tolerance (Al-tolerant: var. Beira 
and Al-sensitive: var. RioDeva) were selected12. Rye seeds were sterilized by 10  min treatment with sodium 
hypochlorite (5% w/v), and hydroponically grown in a modified Hoagland solution as described13, in a growth 
cabinet at 25 °C, 16/8 L/D photoperiod, PAR at 60 µmol m−2 s−1. The nutrient solution was continuously aerated 
and the pH was maintained at 4.0, by daily checking and adjusting with dilute HCl or NaOH). Leaves and roots 
were harvested from 2 day-old seedlings, immediately before Al treatment. Samples were weighed, immediately 
frozen in liquid nitrogen, ground to a powder, and stored at − 80 °C. Aluminum was supplied as AlCl3⋅6H2O 
to obtain 5 mg L−1 (185 μM) of Al. Al-exposed leaves and roots were harvested after 24 and 48 h exposure. At 
48 h, the Hoagland solution was replaced with Al-free medium and leaves and roots were harvested after 48 h 
(recovery). Each experimental treatment was performed 4 times. In each experiment all enzyme activities were 
determined (4 repetitions) and in 3 experiments also metabolites were determined (3 repetitions). Measure-
ments were always performed with 3 replicates.

Metabolite determination.  Leaves or roots (100 mg) were homogenized (MagNALyser, Roche, Vilvoorde, 
Belgium; 1 min, 7000 rpm) in 1 mL of 80% (v/v) aqueous ethanol and spiked with norvaline as an internal con-
trol, and centrifuged at 20,000 g for 20 min. Sample preparation, metabolite (amino acids and α-ketoglutarate, 
α-KG) extraction and quantification were performed as described previously4,39. In brief, the extract supernatant 
was vacuum dried and resuspended in chloroform. This suspension was mixed with a water re-extraction of 
the plant residue and after separation the aqueous phase was collected for amino acid quantification by UPLC 
(UPLC-tqd, Milford, MA, USA). Metabolite concentrations are expressed on a fresh weight (FW) basis. We 
found that expressing on FW or dry weight made no qualitative difference in the results. This is consistent with 
the lack of differential effects of Al on the water status of the rye seedlings (supplementary table 1A). Results are 
expressed as the mean ± SD (standard deviation) in all figures and supplementary table 1A, B.

Enzyme activity determination.  Enzyme activities were determined according to published procedures, 
without changes. For semi-high throughput processing of samples, a microplate reader was used (Synergy Mx; 
Biotek Instruments Inc., Winooski, VT, USA), and assay volumes were reduced. Assay conditions (protein con-
centration, time) were adjusted to obtain linear rates. The measuring principle for each enzyme was as follows: 
(1) glutamine synthetase (GS, EC 6.3.1.2), monitoring of γ‐glutamyl hydroxamate (γGH) (A500); (2) pyrroline-
5-carboxylate reductase (P5CR, EC 1.5.1.2), monitoring P5C-dependent NADH oxidation (A340)4; (3) pyrroline-
5-carboxylate synthase (P5CS, EC 2.7.2.11/1.2.1.41), accumulation of γ‐glutamyl hydroxamate (A535)4; (4) pro-
line dehydrogenase (ProDH, EC 1.5.99.8), Pro-dependent reduction of 2,6-dichloroindophenol (DCIP, A600)4; 
(5) arginase (ARG, EC 3.5.3.1), measuring urea production using diacetyl monoxime (A465)4; (6) ornithine 
aminotransferase (OAT, EC 2.6.1.13), reduction of NADH (A340)4; (7) pyrroline-5-carboxylate dehydrogenase 
(P5CDH, EC 1.2.1.88) by oxidation of NADH (A340); (8) glutamine oxoglutarate aminotransferase (GOGAT, 
EC 2.6.1.53) determining glutamine-dependent NADH oxidation (A340)40; (9) glutamate dehydrogenase (GDH, 
EC1.4.1.2), determining 2-oxoglutarate-dependent NADH oxidation (A340)40; and (10) nitrate reductase (NR, 
EC 1.7.1.1), measuring nitrite-dependent NADH oxidation (A340)41. Protein concentrations were determined 
according to Lowry et al.42, using bovine serum albumin (BSA) as the standard. Results are expressed as the 
mean ± SD (standard deviation) in the figures and supplementary table 1A, B.

Statistical analysis.  Results were expressed as mean ± SD (standard deviation)  and analyzed by three-
way ANOVA (SPSS Statistica 23, SPSS Inc., Chicago, IL, USA), with genotype (G), treatment (T) and organs 
(O) as fixed variables (ANOVA results in supplementary table  2) as previously described in our previous 
publications13,43. In cases of significant interactions between factors, one-way ANOVA was performed for each 
factor, and Tukey’s multiple range tests were used to determine significant differences among means. A signifi-
cance level of P < 0.05 was used for rejection of the null hypothesis.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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