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During pregnancy, the mother develops insulin resistance to shunt nutrients to the
growing fetus. As a result, the maternal islets of Langerhans undergo several changes
to increase insulin secretion in order to maintain glucose homeostasis and prevent the
development of gestational diabetes. These changes include an increase in b-cell
proliferation and b-cell mass, upregulation of insulin synthesis and insulin content,
enhanced cell-to-cell communication, and a lowering of the glucose threshold for
insulin secretion, all of which resulting in an increase in glucose-stimulated insulin
secretion. Emerging data suggests that a change in intracellular calcium dynamics
occurs in the b-cell during pregnancy as part of the adaptive process. Influx of calcium
into b-cells is crucial in the regulation of glucose-stimulated insulin secretion. Calcium
fluxes into and out of the cytosol, endoplasmic reticulum, and mitochondria are also
important in controlling b-cell function and survival. Here, we review calcium dynamics in
islets in response to pregnancy-induced changes in hormones and signaling molecules,
and how these changes may enhance insulin secretion to stave off gestational diabetes.
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INTRODUCTION

It has long been known that during pregnancy, the maternal insulin demand increases due to the
physiologic increase in insulin resistance (1). To accommodate this increased demand, pancreatic
islets adapt through several mechanisms including increasing insulin synthesis and lowering the
threshold for glucose-stimulated insulin secretion (GSIS) (2, 3), which has been demonstrated in
both rodents and humans (4–10). Change in calcium dynamics within pancreatic islets, and
specifically in various subcellular compartments of the pancreatic b-cell, can affect b-cell function
such as insulin secretion and b-cell survival (11–13). This review will explore and summarize the
current knowledge on calcium dynamics in pancreatic islets during pregnancy, and the implications
in gestational diabetes mellitus (GDM).
CHANGES IN ISLETS DURING PREGNANCY

During pregnancy, the maternal pancreatic islets are placed under high demand for insulin
production due to an increase in insulin resistance of maternal tissues (8, 14), a physiologic
change that encourages the diversion of nutrient from the mother to the developing fetus. In order
to accommodate for this increase in insulin demand, studies in rodent islets and b-cell lines have
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identified several mechanisms involved, including an increase in
b-cell proliferation, b-cell size (7, 10, 15), insulin gene
expression, insulin synthesis, and insulin content, as well as
lowering the glucose threshold for insulin secretion (16, 17). An
increase in b-cell mass and number has also been demonstrated
in human pregnancy (9, 18). An increase in gap-junction
coupling and islet vasculature density are also part of the
adaptive mechanism (19, 20). In contrast, there is no
significant change in a-cell number or size during pregnancy,
and no significant change in the spatial organization of the islets,
i.e. the majority of the b-cells form the core of the islet
surrounded by a-cells in the periphery (15, 21). Gene ontology
analysis of the islet transcriptome during pregnancy has
identified enrichment of genes that regulate cell proliferation,
apoptosis, response to stress, cell communication, cellular
physiological processes such as proteolysis and vesicle
trafficking, as well as cellular metabolic processes such as lipid
metabolism and electron transport (22–25). Many of these
adaptive responses are regulated by pregnancy hormones such
as lactogens (15, 26), growth hormone (27–29), estrogen (30, 31),
progesterone (20, 32), and other factors such as hepatic growth
factors (33)and serotonin (24). Whether these or other
pregnancy-associated factors regulate b-cell Ca2+ handling
directly and contribute to the enhanced insulin secretion
observed during pregnancy requires much more investigation,
although indirect evidence suggests that they may participate in
the regulation of Ca2+ dynamics in b-cells.

Estrogen (17 b-oestradiol or E2) level increases throughout
pregnancy (34). It acts through the classic nuclear hormone
estrogen receptor a and b isoforms (ERa and ERb) as well as
through the G protein-coupled estrogen receptor 1 (GPER1, or
GPR30) in both rodents and humans islets (35). The 3 receptors
have distinctive functions in b-cells. Activation of ERa regulates
insulin synthesis and b-cell survival (31, 36). Activation of ERb in
mouse islets stimulates guanylyl cyclase A and rapidly increases
cyclic GMP levels, leading to a reduction in KATP channel activity
in the plasma membrane, an increase in calcium oscillation and
cytosolic calcium ([Ca2+]c), and augments GSIS (37, 38). Mice
treated with an ERb agonist also demonstrated a higher b-cell
mass and b-cell proliferation (38). GPER1 (aka GPR30) is a
plasma membrane receptor that upon 17 b-estradiol binding,
stimulates cGMP synthesis and activates protein kinase G (PKG),
leading to closure of the KATP channel and increases frequency of
Ca2+ oscillation and intracellular Ca2+ concentration, enhancing
GSIS (35, 39–42). Martensson et al. found that in GPR30-/- mice,
there is a defect in 1st-phase insulin secretion in vivo and when
these islets were tested in vitro, E2-stimulated insulin secretion
was completely abolished, suggesting its dominant role in
regulating E2-mediated insulin secretion (42). GPER1 activation
also protects b-cells against apoptosis (43). During pregnancy,
estrogen receptor ERa and GPER expression are up regulated in
rodent islets (44, 45). Recently, Ma et al. reported activation of the
transient receptor potential ankyrin-repeat 1 (TRPA1) channels
in INS-1 cells as well as rodent and human b-cells by estradiol
metabolites (46). TRPA1 is a cation channel that is activated by a
wide variety of exogenous irritants and inflammatory cytokines
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(47). It has been shown to regulate insulin secretion (48). In this
study (46), estradiol metabolites (but not estradiol) induced
strong inward current and a robust and sustained elevation in
[Ca2+]c an increase that closely parallels their effect to
enhance GSIS.

Serotonin has been identified as a key regulator of b-cell
proliferation during pregnancy. Expression of serotonin, as well
as tryptophan hydroxylase-1, the enzyme responsible for
serotonin synthesis, was found to increase significantly in rodent
islets during pregnancy (24). Inhibition of serotonin synthesis
during pregnancy blocks b-cell proliferation, resulting in glucose
intolerance. This was found to be downstream of lactogen and
prolactin receptor (PRLR) signaling. In human islets, serotonin is
secreted by b-cells and it exerts paracrine action on a-cells,
inhibiting glucagon secretion (49). Activation of the serotonin
receptor, 5-HT2B by a-methyl serotonin maleate salt has been
shown to alter [Ca2+]c oscillation, causing an increase in both peak
duration and distance between peaks in mouse islets, and an
increase in insulin secretion from both human and mouse islets
(50). Interestingly, exposure of b-cells in culture (MIN6 mouse
insulinoma cells) to a selective serotonin reuptake inhibitor (SSRI)
reduced ER calcium stores and inhibited ER calcium release
and store-operated calcium entry activation (51). SSRIs can also
inhibit insulin secretion by inhibiting mitochondrial complex I
and II, decrease oxidative respiration, ATP generation and KATP

channel activity, although this study did not measure [Ca2+]c (52).
Whether the increase in endogenous serotonin in islets during
pregnancy regulates intracellular Ca2+ dynamics and contributes
to GSIS require further investigation.

The corticotropin-releasing hormone (CRH) family of
peptides activates the cAMP/PKA signaling pathways,
potentiate Ca2+ influx through the L-type Ca2+ channels and
modulate insulin secretion in rat islets (53). CRH and its
paralogs, urocortin 1 (Ucn1), Ucn2, and Ucn3 act through
their cognate G-protein-coupled receptors, CRH receptor 1
(CRHR1) and CRH receptor 2 (CRHR2); both are expressed in
pancreatic b-cells, such as the MIN6 mouse insulinoma cells and
primary rodent islets (53–56). A recent study by Simpson et al.
found that during mouse pregnancy, urocortin 2 (Ucn2) is up
regulated and it acts through CRHR2 to regulate glucose
homeostasis, most likely via its effect on insulin secretion (57),
This conclusion was based on the observation that CRHR2
blockade had no effect on insulin sensitivity or b-cell
proliferation while both in vitro and in vivo blockage of
CRHR2 have been shown to attenuate GSIS in mice (58).

Hepatic growth factor (HGF) is another hormone that has
been shown to be important in the regulation of b-cell adaptation
to pregnancy (33). During pregnancy, there is an increase in
HGF level in the serum and HGF expression in the b-cells.
Transgenic mice with b-cell specific HGF overexpression had
increased glucokinase expression, glucose transport, and insulin
secretion (59). In kidney epithelial cells, HGF has been found to
inhibit Ca2+ release from the ER while in hepatocytes, HGF
activates the inositol-triphosphate-PLCg pathway and causes a
rapid rise in [Ca2+]c (60). Whether similar response to HGF
occurs in b-cells has yet to be determined.
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Lastly, many of the changes observed in the islets during
pregnancy are due to actions of prolactin and placental lactogens,
both signaling through the Prolactin Receptor (PRLR) (15, 26).
Work by us and others have shown that PRLR deletion led to
impaired glucose tolerance during mouse pregnancy, mainly by
dampening pregnancy-induced b-cell proliferation. This results
in a smaller b-cell mass, lower serum insulin levels, and reduced
pancreatic insulin content. Interestingly, several transcriptome
analyses have identified Leucine Rich Repeat Containing 55
(Lrrc55) (61), an auxiliary protein of big-potassium channels
(62), as one of the most highly upregulated genes downstream of
PRLR in the pancreatic islets during pregnancy (24, 63), and we
found that Lrrc55 is a novel, pro-survival factor in b-cells,
potentially by regulating calcium handling (25).
CALCIUM DYNAMICS IN b-CELLS

The electrically excitable pancreatic b-cells utilize the controlled
flux of a few key ions, all of which coupled to calcium flux, to
precisely regulate insulin release in response to high levels of
blood glucose (Figure 1).

Glucose enters b-cells via the facilitated glucose transporter
GLUT2 in rodents and GLUT1 and GLUT3 in humans. Upon
phosphorylation by glucokinase, glucose-6-phosphate is
Frontiers in Endocrinology | www.frontiersin.org 3
metabolized by glycolysis and the TCA cycle to generate ATP.
The increase in the ATP/ADP ratio results in closure of the KATP

channels in the plasma membrane and a burst of action
potentials, which leads to opening of the voltage-dependent
Ca2+ channels (VDCC), allowing Ca2+ influx and an increase
in [Ca2+]c, especially in submembrane areas near the Ca2+

channels. At moderate glucose concentration (7-15mM), the
intermittent opening of VDCC causes [Ca2+]c oscillation while
at high glucose concentration (>20mM), the continued opening
of VDCC causes a sustained increase in [Ca2+]c (11). VDCC is
not distributed uniformly throughout the plasma membrane,
generating microdomains with high [Ca2+] (64). These
subdomains of high [Ca2+]c are in close proximity to the
voltage-gated Ca2+ channels and form hot spots for insulin
granule to dock and fuse (65), a process that is facilitated by
soluble N-ethylmaleimide-sensitive factor attachment protein
receptors (SNAREs) and SNARE regulator proteins, such as
syntaxin 1A (66), SNAP-25 (67–69) and synaptotagmins (70–
73). Repolarization of the plasma membrane results from the
rapid inactivation of VDCC and the opening of potassium
channels (Kv2.1 voltage-dependent channels and large-
conductance Ca2+-activated K+ channels, (BK) (11, 74, 75).

Limited data are available on pregnancy-induced changes in
intracellular calcium dynamics. In a study on the effect of protein
restriction on insulin secretion and intracellular calcium
FIGURE 1 | Glucose is transported into the cytoplasm through glucose transporters (GLUT2 in rodents). Once inside, glucose are metabolized in the mitochondria
to generate ATP. An increase in ATP to ADP ratio will cause the closure of ATP-sensitive potassium channel (KATP), resulting in membrane depolarization. This leads
to the opening of the L-type voltage-dependent Ca2+ channels (VDCC) and an influx of Ca2+. To maintain [Ca2+]m, Ca

2+ enters through the MCU or the VDACs and
escapes through the NCLX. Ca2+ is pumped into the ER through ATP-dependent SERCA, and is released back into the cytosol through the IP3R or RyR calcium
channels. Calcium can also flow from the ER to the mitochondria. During pregnancy, placental hormones bind to PrlR, inducing a signal cascade that results in up
regulation of several genes to increase insulin production and secretion. These include Lrrc55 and SERCA to maintain [Ca2+]ER, MCU to maintain [Ca2+]m, and INS1/2 to
increase insulin expression. VDAC, voltage-dependent anion channels; MCU, mitochondrial Ca2+ uniporter; PRLR, prolactin receptor; Prl/PL, prolactin/placental lactogen. The
dashed line arrow indicates that influx of calcium induces insulin secretion. Created with BioRender.com.
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concentration, Marin et al. reported that in islets from control
(not protein restricted) rats, on day-15 of pregnancy, glucose
elicited a larger and earlier rise in [Ca2+]c in comparison to b-
cells from non-pregnant rats. Interestingly, while this larger rise
in [Ca2+]c did not result in a change in the total amount of Ca2+

influx during plasma membrane depolarization, it was
accompanied by a more sustained and gradual insulin
secretion profile. Islets from pregnant rats also expressed more
SNAP-25, although its specific role on calcium dynamics was not
explored (76). Vanzela et al. reported that islets from pregnant
rats (15th or 16th day of pregnancy) had increased calcium
oscillation and a higher level of expression of Cava1.2 and
SERCA2a in comparison to non-pregnant rats (77). In a model
of cafeteria-diet (Caf) induced obesity, islets from Caf-exposed
rats exhibited a blunted glucose-induced calcium increase and
insulin secretion, both of which were reversed by pregnancy. The
Caf-induced reduction in Cava1.2 expression was also reversed
by pregnancy. They concluded that pregnancy reversed the
deleterious effects of Caf on islet function by restoring calcium
handling, in part through the up regulation of Cava1.2 and
SERCA2a expression. Expression of the SNARE protein,
synaptotagmin 4 (Syt4), has also been shown to be up
regulated in islets isolated from rats on day 15 of pregnancy
and in prolactin-treated islets in vitro (70). Syt4 regulates Ca2+

sensitivity in b-cells and its expression is increased by ~8-fold
during b-cell maturation, leading to increased GSIS in mature
islets in comparison to neonatal islets in mice (78). Syt4 is
expressed in insulin vesicles, Golgi, and the ER, and potentially
regulates general Ca2+ signaling in the ER of b-cells (78). Syn4 is
expressed in human b-cells and it regulates insulin secretion in
the human b-cell line EndoC-bH1 (78). Taken together, these
changes in expression and activities of Ca2+ channels, SNARE
proteins, and glucose metabolism may contribute to the changes
in Ca2+ influx and insulin secretion in pregnancy.
ER CALCIUM IN b-CELLS

ER calcium concentrations are mainly determined by the sarco/
endoplasmic reticulum Ca2+-ATPase (SERCA), which actively
pumps calcium into the ER from the cytosol, as well as two
receptor-type membrane proteins, the ryanodine receptor (RyR)
and the Inositol Triphosphate Receptor (IP3R) (79–81), both of
which releases calcium from the ER. Blocking IP3R, RyR, and
combinations thereof, has been shown to rescue b-cells from ER
calcium depletion caused by SERCA inhibitor (82). Luciani et al.
found that in the mouse b-cell line MIN6, blocking IP3R
appeared to have a more pronounced effect on b-cell survival
than blocking RyR (82). Interestingly, Hara et al. found that in
conditions associated with b-cell death, such as ER stress,
oxidative stress, exposure to palmitate, chronic high glucose,
and overexpression of mutated insulin, there were decreases in
ER calcium levels (in INS-1 cells) and SERCA expression (in
INS-1, human and mouse islets) (83). They hypothesize that
genetic and environmental stressors cause b-cell stress, leading to
a reduction in SERCA2b and an increase in IP3R expression,
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resulting in a reduction in ER calcium and an increase in [Ca2+]c
leading to b-cell death. How ER stress causes a reduction in
SERCA2b expression is currently unknown.

The increased insulin demand seen during pregnancy and the
associated increase in protein synthesis can activate the unfolded
protein response (UPR), which if unresolved, can lead to ER
stress. Indeed, while we did not observe an increase in the
number of apoptotic b-cells during mouse pregnancy (15), we
found that expression of IRE1a and CHOP, components of the
UPR pathways, are up regulated in mouse islets during early
pregnancy (25). Anhe et al. reported that on d19 of pregnancy,
SERCA2 expression was upregulated in rat islets. This increase
may contribute to the increase in GSIS observed during
pregnancy, as inhibition of SERCA2 activity by thapsigargin
led to a reduction in 1st phase insulin secretion in isolated rat
islets (84). Activation of prolactin receptor may also contribute
to these pregnancy-associated changes, as levels of prolactin and
its related hormones, placental lactogens, are high throughout
pregnancy, and treatment of the rat islet cell line, RINm5F, with
prolactin recapitulated the increase in SERCA2 expression
observed during pregnancy (84). Interestingly, prolactin has
been shown to up regulate SERCA2b expression, increase
[Ca2+]ER, and stimulate cell proliferation in prostate cells.
Conversely, SERCA2b knockdown reduced both [Ca2+]ER and
cell proliferation (85). Whether primary b-cells would have a
similar response to prolactin in terms of increasing [Ca2+]ER has
not been examined.

Protein kinase R (PKR)-like endoplasmic reticulum kinase
(PERK) (EIF2AK3) is an eIF2a kinase in the ER membrane,
known to regulate b-cell development, function, and ER stress
response (13, 86, 87). PERK inhibition lowered the glucose-
induced rise in intracellular calcium and blunted GSIS in INS-1
cells as well as in rat and human islets (88). PERK regulates
intracellular calcium levels by at least two mechanisms: first, it
controls calcium influx into the cytosol by regulating store-
operated Ca2+ channel (SOCC) activity (89); second, it
stimulates SERCA-mediated calcium reuptake into the ER after
[Ca2+]ER depletion or release via a calcineurin dependent
pathway (88). During pregnancy, expression of PERK in the
islets rises near the end of gestation (day 19 in mice) and peaks
on day 1 of lactation, but promptly drops below pre-pregnancy
level by day 2 of lactation (90). How and whether this increase in
PERK expression contributes to pregnancy-associated changes in
calcium dynamics in b-cells remains to be determined.
MITOCHONDRIAL CALCIUM DYNAMICS
IN b-CELLS

Calcium influx into the mitochondria is important for facilitating
GSIS from b-cells. Under basal condition, intramitochondrial
calcium ([Ca2+]m) is low, comparable to that of [Ca2+]c
(<100nM) (91). Calcium is transported into mitochondria
through voltage-dependent anion channels (VDACs) in the
outer mitochondrial membrane and the mitochondrial Ca2+

uniporter (MCU) (92) in the inner mitochondrial membrane,
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while calcium exits the mitochondria through the Na+/Ca2+

exchanger (NCLX) (93). Endoplasmic reticulum is another
source of Ca2+ for mitochondria, and tethering molecules such
as GRP75 and mitofusins are present in microdomains between
ER and mitochondria to facilitate calcium flow from ER (which
has basal calcium concentration of ~5mM) into the
mitochondria (94, 95).

In mouse b-cells, Tarasov et al. demonstrated that [Ca2+]m
follows the slow but not fast changes in [Ca2+]c, and [Ca2+]m is
highly sensitive to calcium oscillation (91). At low glucose
concentration, the small spikes in [Ca2+]c is not transmitted
to the [Ca2+]m but as glucose levels rises, the increase in
[Ca2+]c oscillation leads to an increase in [Ca2+]m. The
rise in intramitochondrial calcium activates mitochondrial
dehydrogenases and further stimulates ATP production,
resulting in a biphasic phase increase in [ATP/ADP]c. Tarasov
et al. speculated that the second phase of ATP production may be
involved in mobilization of the reserve pool of insulin
granule (91).

While changes in [Ca2+]m have not been directly determined
in b-cells during pregnancy, it is tempting to speculate that the
subtle changes in cytosolic calcium oscillation discussed above
may influence [Ca2+]m, and explain in part the increase in insulin
secretion observed during pregnancy. Expression of MCU
increased throughout gestation in human placenta (96).
Whether a similar change is present in pancreatic islets and
the functional consequence to mitochondrial calcium handling
is unknown.
CALCIUM AND GESTATIONAL DIABETES

Gestational diabetes mellitus (GDM) is defined as diabetes
diagnosed for the first time during pregnancy (97). While
estimates differ depending on the populations studied,
approximately 3-20% of pregnancies are complicated by GDM
(97, 98). GDM is associated with a higher risk of maternal and
neonatal adverse outcomes, such as pre-eclampsia, macrosomia,
stillbirth, and neonatal hypoglycemia (99). Women who have
developed GDM are at high risk of developing GDM in
subsequent pregnancies as well as progressing to type 2
diabetes. Additionally, exposure of the offspring to
hyperglycemia in utero significantly increases their risk of
developing Type 2 diabetes later in life (14, 100, 101).

Many human studies have examined the relationship between
serum calcium and vitamin D levels and the risk of diabetes
(102–104). A large epidemiological study in >3400 US women
found that periconceptional calcium intake was inversely
associated with the risk of developing GDM (105). They
hypothesized that the relationship between calcium intake and
GDM risk may lie in the positive association between
intracellular calcium ([Ca2+]i) and insulin secretion in b-cells;
they also observed a U-shaped relationship between [Ca2+]i and
insulin sensitivity in vascular smooth muscle and adipocytes
(106). Calcium sensing receptor (CaSR) may potentially link
serum calcium levels to b-cell function. CaSR is expressed in
Frontiers in Endocrinology | www.frontiersin.org 5
b-cells and it contributes to b-cell adhesion, coupling, and
communication. CaSR has also been shown to inhibit basal
and GSIS in human islets (107). Transgenic mice with gain-of-
function mutation of CaSR have reduced islet mass and b-cell
proliferation, as well as hypoinsulinemia and hyperglycemia
(108). In human pregnancies complicated by GDM, expression
of CaSR was found to be significantly reduced in the placenta,
which may have contributed to the hypocalcemia observed in
16% of the newborns (109). Whether CaSR expression was also
altered in islets of women with GDM could not be determined
due to the inaccessibility of pancreatic tissue for analysis.

In support of the link between calcium dynamics and GDM
risk, Goldstein et al. used an informatics-based approach to
determine the association between GDM and/or type 2 diabetes,
disease-associated SNPs, and the effects of a list of 129 active
drugs in 9960 patients. They found that the use of a calcium
channel blocker (CCB) such as nifedipine was associated with a
reduction in serum glucose during glucose tolerance tests, and
there was a strong association between genes targeted by CCBs
and GDM risk (110). Mechanistically, treatment of mouse islets
with CCB increased basal insulin secretion and reduced glucagon
secretion (111) while blocking calcium entry was shown to
protect b-cells and human islets against ER stress and
apoptosis (112–114).

The level of circulating vitamin D (25-hydroxyvitamin D
[25(OH)D]) during pregnancy has also been shown to inversely
correlate with GDM risk (103, 115). In a meta-analysis, Wei et al.
reported that low levels of circulating vitamin D increase the risk
of GDM by 1.38-fold (116). Vitamin D levels may contribute to
GDM via its putative effect on both insulin sensitivity and insulin
secretion (117). Non-genomic signaling through vitamin D
receptor has been shown to augment GSIS by increasing
intracellular Ca2+ concentration, which was blocked by the
CCB nitrendipine (118). Norman et al. found that pancreas
from vitamin D deficient rats showed a 48% reduction in GSIS
in an ex-vivo perfusion experiment (119). Moreover, in a study
of 126 healthy human subjects, serum vitamin D levels were
found to negatively correlate with 1st and 2nd phase insulin
release during a hyperglycemic clamp, and an effect on b-cell
function remains after correction for insulin sensitivity
index (120).
CONCLUSION

In this review, we discussed the current knowledge of calcium
dynamics in pancreatic islets during pregnancy. The hallmark of
b-cell adaptation to pregnancy is an increase in insulin secretion,
a process that is tightly regulated by intracellular calcium
dynamics. Hormones and small molecules such as estrogen,
corticotropin releasing hormone, serotonin, HGF, and
placental lactogens potentially enhance insulin secretion and b-
cell proliferation via regulating calcium dynamics. Furthermore,
up regulation of GLUT2 and glucokinase during pregnancy
allows more efficient glucose metabolism. Coupled with the
increased expression of L-type Ca2+ channel, these changes
March 2022 | Volume 13 | Article 853876
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allow b-cells to secrete insulin more efficiently. The finding that
calcium channel blockers improve glycemia is very exciting and
encouraging, as it points to abnormal intracellular calcium
dynamics as a potential contributing factor to GDM but it also
provides a safe and effective treatment for those with GDM.
Currently, our understanding of how intracellular calcium
dynamics changes as part of b-cell adaptation to the increased
insulin demand of pregnancy is very limited and fragmented. A
thorough understanding of this field would allow for design of
more targeted therapy for GDM and prevent the vicious cycle of
GDM begetting more GDM.
Frontiers in Endocrinology | www.frontiersin.org 6
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