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Abstract

Background: Ischemia and the following reperfusion damage are critical mechanisms of spinal cord injury. Statins
have been reported to decrease ischemia–reperfusion injury in many organs including the spinal cord. Anti-oxidative
effect is one of the main protective mechanisms of statin against neuronal death and cytotoxicity. We hypothesized
that statins’ anti-oxidative property would yield neuroprotective effects on spinal cord ischemia–reperfusion injury

Methods: Primary cultured spinal cord motor neurons were isolated from Sprague–Dawley rat fetuses. Ischemia–
reperfusion injury model was induced by 60 min of oxygen and glucose deprivation (OGD) and 24 h of reoxygenation.
Healthy and OGD cells were treated with simvastatin at concentrations of 0.1, 1, and 10 μM for 24 h. Cell viability was
assessed using water-soluble tetrazolium salt (WST)-8, cytotoxicity with LDH, and production of free radicals with DCFDA
(2′,7′-dichlorofluorescein diacetate).

Results: OGD reduced neuronal viability compared to normoxic control by 35.3%; however, 0.1–10 μM of simvastatin
treatment following OGD improved cell survival. OGD increased LDH release up to 214%; however, simvastatin treatment
attenuated its cytotoxicity at concentrations of 0.1–10 μM (p < 0.001 and p = 0.001). Simvastatin also reduced deteriorated
morphological changes of motor neurons following OGD. Oxidative stress was reduced by simvastatin (0.1–10 μM)
compared to untreated cells exposed to OGD (p < 0.001).

Conclusions: Simvastatin effectively reduced spinal cord neuronal death and cytotoxicity against ischemia–reperfusion
injury, probably via modification of oxidative stress.
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Background
Spinal cord injury (SCI) can lead to devastating complica-
tions, including permanent neurological damage [1–3]. In
acute traumatic spinal cord injury, ischemia and the fol-
lowing reperfusion play a critical role in primary mechan-
ical and secondary pathophysiological mechanisms [4–6].
After the initial rapid compression and trauma, spinal
cord ischemia occurs via various mechanisms, including
direct injury to the microvasculature, reduced spinal cord
blood flow, and disrupted spinal cord autoregulation [5].
In the following passages, restoration of vascular perfusion
and surgical intervention are an essential part of the treat-
ment approach to avoid persistent compression; however,
reperfusion per se can cause further damage [7–9].
Spinal cord ischemia–reperfusion damage is also an

important cause of postoperative neurological deficits
following decompression surgery, which are rare but
very serious. For example, 1.5–6.3% of patients with
cervical spondylotic myelopathy suffer postoperative de-
layed paraplegia related to ischemia–reperfusion injury
of the spinal cord [7–9]. In such cases, neuroprotection
against ischemia–reperfusion is crucial to prevent spinal
cord injury.
Statins, 3-hydroxy-3-methyl-glutaryl-coenzyme A

(HMG-CoA) reductase inhibitors, have been shown to
minimize the severity of ischemia–reperfusion injury in
many organs including the brain, heart, kidney, and lung
[10–14]. Statins attenuate neuronal injury and promote
neurologic recovery after cerebral ischemia in experimen-
tal animal models and in vitro cellular models [15–18].
Statins are frequently used as cholesterol-lowering agents,
but their protective effect against ischemia depends on
other actions as well [19], including modification of oxida-
tive stress [16, 20–22], anti-inflammatory effects, and
immunomodulation [15, 18].
Statins have been repeatedly reported to be neuroprotec-

tive against spinal cord injury, demonstrating neurologic
and histopathologic improvements [23–27]. Especially sim-
vastatin, since it readily crosses the blood–spinal cord bar-
rier, could be widely used to treat spinal cord injuries in
clinical practice [24]. As yet, the underlying mechanism has
not been fully studied. In models of cerebral ischemia,
simvastatin attenuated neuronal death by reducing the
production and toxicity of oxidative stress-related markers
[28, 29]. However, statins’ beneficial antioxidant properties
in spinal cord neurons have not yet been investigated.
In this study, we sought the efficacy of simvastatin in

attenuation of SCI-induced pathology. We first demon-
strated that ischemia–reperfusion injury elicits motor
neuron death and cytotoxicity in this model of SCI, and
then investigated whether simvastatin treatment re-
covers those deteriorations of spinal cord neurons
against oxidative stress as its neuroprotective mechan-
ism of action.

Methods
Primary culture of spinal cord neuron
The animal procedures were carried out in Seoul National
University Bundang Hospital according to an approved ani-
mal research protocol (IRB number 63-13-034). Timed-
pregnant Sprague–Dawley rats were obtained, and primary
rat spinal cord neurons were isolated from embryonic day
14–15 rat fetuses using a previously described method [30].
Briefly, embryonic vertebral canals were opened, meninges
and blood vessels were cleared away using sterile fine-
tipped forceps, and the embryonic spinal cords were sliced
into small pieces using a scalpel. After microdissection and
trituration, the isolated cells were seeded on poly-L-lysine
(200 μg/mL) (PLL) (Sigma-Aldrich, St. Louis, MO, USA)
coated plates at a concentration of 105 cells/well and main-
tained in a 5% CO2 incubator at 37 °C. Cells were cultured
in neurobasal medium (Gibco, Carlsbad, CA, USA) supple-
mented with 2% B27 supplement (Gibco) and 2 mM
glutamine (Gibco). After 3 days in vitro (DIV), 5 μM
cytosine-β-D-arabinofuranoside (AraC) (Sigma-Aldrich, St.
Louis, MO, USA) was added into the medium to inhibit
non-neuronal cell proliferation. One half of the culture
medium was replaced by a fresh medium every 3 days.

Oxygen and glucose deprivation (OGD) followed by
reoxygenation
OGD and reoxygenation were carried out in cultures after
7 DIV as described previously [31]. Briefly, on the seventh
day, the original media was removed and replaced with
glucose-free DMEM. The cultures were then transferred
to an anaerobic incubator containing a mixture of 95% N2

and 5% CO2 at 37 °C. Several pilot experiments with vari-
ous durations of OGD and reoxygenation indicated that
60 min of OGD and 24-h recovery led to sufficient injury
for this study.

Treatment with simvastatin
Simvastatin (Sigma-Aldrich, St Louis, MO, USA) of
4 mg was dissolved in 100 μL of ethanol, with subse-
quent addition of 150 μL of 0.1 N NaOH. This solution
was incubated at 50 °C for 2 h and then neutralized with
HCl to pH 7. The resulting solution had a final volume
of 1 mL with sterile phosphate-buffered saline [32]. To
examine the toxicity of simvastatin on motor neurons,
various concentrations of simvastatin (0.1–50 μM) were
applied to healthy motor neurons for 24 h. In the main
experiment, simvastatin was applied to the ischemia–re-
perfusion-injured motor neurons at concentrations of 0,
0.1, 1, and 10 μM for 24 h. Injured control cultures
(OGD only) were given equal volume of phosphate-
buffered vehicle. Each dose of simvastatin was applied
from the start of the OGD and was maintained during
the following 24-h reoxygenation period.
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Determination of cellular viability
Cellular viability was assessed with tetrazolium salt reduc-
tion assay. This is a colorimetric method for determining
the number of living cells. The viable cells containing
NADH or NADPH can convert tetrazolium compound,
WST-8, 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-
(2,4-disulfophenyl)-2H tetrazolium, into formazan prod-
uct that is soluble in tissue culture medium [33, 34]. Ac-
cording to the manufacturer’s instruction (cell counting
kit 8 (CCK-8), Sigma-Aldrich, St. Louis, MO, USA), 10 μL
of WST-8 solution was added to each well in 96-well
plates. After 2-h incubation at 37 °C, absorbance at
450 nm was measured using a microplate reader. The
quantity of formazan product is directly proportional to
the number of living cells in the culture, and the results
are expressed as the percentage of viable cells relative to
untreated controls.

Determination of cytotoxicity
Lactate dehydrogenase (LDH) is a stable cytoplasmic en-
zyme that is released into the cell culture supernatant
when the cytoplasmic membrane is ruptured [28, 35,
36]. LDH activity in the medium was determined using a
colorimetric diagnostic kit (CytoTox96® Non-Radioactive
Cytotoxicity Assay, Promega, Madison, WI, USA). In
brief, 50-μL aliquots of the culture medium and 50 μL
of reconstituted substrate were mixed and incubated for
30 min at 37 °C in the dark, after which the reaction was
terminated with a stop solution (1 M HCl, 50 μL). The
color intensity is directly proportional to the number of
lysed cells and can be qualified by reading the absorb-
ance at 490 nm. The percentage of cytotoxicity is deter-
mined by calculating the optical density at 490 nm
(OD490nm) and subtracting from the absorbance value
obtained in the background control.

Measurement of free radical production
The production of free radicals was assessed by using
DCFDA (2′,7′-dichlorofluorescein diacetate), which is
one of the most widely used techniques for direct meas-
uring of cell redox state [37]. DCFDA is a fluorogenic

dye for highly selective detection of hydroxyl, peroxyl,
and any other intracellular reactive oxygen species
(ROS) activity. DCFDA is diffused into cells and is dea-
cetylated by cellular esterases into a non-fluorescent
compound that is subsequently oxidized by ROS into
DCF (2′,7′-dichlorofluorescein). DCF is a highly fluores-
cent compound and hence is detectable by fluorescence
spectroscopy.
The DCFDA assay was performed according to the

manufacturer’s instruction (DCFDA Cellular ROS Detec-
tion Kit, Abcam, Cambridge, UK). In brief, 10 μL of
DCFDA was added to cells and incubated for 30 min.
After being washed out with PBS, the intensity of fluor-
escence was examined by flow cytometry. Accumulation
of the oxidized fluorescent derivate (DCF) in the cells
was measured at emission and excitation wavelengths of
530 and 485 nm, respectively.

Statistical analysis
Data are expressed as mean ± SEM. Statistical comparisons
between groups were done using t tests, and comparisons
between three or more groups were performed by one-way
ANOVA followed by Dunnett T3 post hoc comparisons. A
p value less than 0.05 was considered significant. All statis-
tical analyses were performed using SPSS 19.0 software for
Windows (SPSS, Chicago, IL, USA).

Results
Motoneuron cultures and effects of simvastatin on
healthy motor neuron
After 7 to 8 days in culture, cells showed neuronal mor-
phological characteristics and an extensive meshwork of
neurite outgrowth (Fig. 1a, b).
Concentrations of simvastatin from 1 to 50 μM were

applied to healthy control cells. Concentrations of 1,
5, and 10 μM did not affect the viability of cultured
spinal neurons as indicated by WST-8. In contrast, at
a concentration of 50 μM, cell viability was statistically
decreased compared to the control cells (p = 0.002).
Since the 50 μM concentration seemed to be toxic, we

Fig. 1 Typical morphology of healthy primary spinal cord neurons from rats. a The healthy neurons showed extensive neurite outgrowth and
neurons with a dense meshwork on day 4. b Much denser meshwork can be seen on day 7 compared to (a)
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applied simvastatin at concentrations of 1 to 10 μM in
further experiments (Fig. 2).

The effect of simvastatin on ischemia–reperfusion-
induced cell death and cytotoxicity
Spinal cord ischemia–reperfusion injury was simulated
by 60 min of OGD and 24 h of reoxygenation. This
duration of injury resulted in moderate loss of the
neural meshwork and morphological changes in the
remaining cells (Fig. 3).
The ischemia–reperfusion injury dramatically re-

duced cell survival (35% decrease) measured by WST-
8 assay compared to the control culture. Simvastatin
markedly ameliorated OGD/reoxygenation-evoked cell
death at concentrations of 1 and 10 μM (p = 0.032
and p = 0.008, respectively) when compared to injured
controls (Fig. 4). The protective effect was shown
within a range of 0.1 to 10 μM. However, simvastatin
did not fully restore viability of ischemia–reperfusion-
injured motor neurons to that of healthy controls.
The effects of simvastatin on the motor neuron

damage are shown in Fig. 5. The ischemia–reperfu-
sion damage resulted in cell death, as evidenced by
an increase in LDH (214%). Within a range of 0.1 to
10 μM, simvastatin-treated motor neurons showed
significantly lower values for LDH when compared to
injured controls (p < 0.001 and p = 0.001, respectively),
though cell death was not completely blocked.

The effect of simvastatin on ischemia–reperfusion-
induced oxidative stress
OGD and reoxygenation dramatically increased DCFDA
value, implying higher levels of oxidative stress. Simvastatin
effectively reduced the oxidative stress. All tested doses of
simvastatin (0.1–10 μM) attenuated the rise in DCFDA
level (p < 0.001 at all experimental concentrations), but not
to a value as low as that of the healthy controls (Fig. 6).

Discussion
The present study demonstrated that motor neuron
death, cytotoxicity, and oxidative stress induced by is-
chemia–reperfusion injury are significantly attenuated
by simvastatin. To our knowledge, this is the first study
to suggest the protective role of statins against ischemic
injury of spinal cord neurons devising a primary motor
neuron culture.
OGD and reoxygenation are well established and reli-

able neuronal cellular injury models that mimic changes
that occur after ischemic insult in vivo [38–40]. Neurons
are the cell type most sensitive to ischemic injury. Previ-
ous studies of cerebral ischemia–reperfusion have demon-
strated that ischemia–reperfusion injury leads to obvious
morphological neuronal changes, decreased cell survival,
and dramatic increases in LDH release [38–40]. Our
model of motor neuron ischemia–reperfusion yielded
similar damages; motor neurons of primary cultured rat
spinal cord resulted in a significant decrease in cell viabil-
ity as evidenced by WST-8. After OGD, almost twice as

Fig. 2 Effect of simvastatin on the viability of healthy motor neuron. Effect of simvastatin on the viability of motor neuron was assessed with
WST-8 assay. There were no differences in the viability of healthy cells depending on the concentration of simvastatin. Simvastatin showed little
or no effect on normal motoneuron ranges from 1 to 10 μM. However, at concentration of 50 μM, WST-8 statistically decreased compared to con-
trol cell. Data are expressed as the percentage of total WST-8 and represent the mean ± SEM. Asterisk denotes significant difference from control
(n = 16; p < 0.05)

Sohn et al. Journal of Orthopaedic Surgery and Research  (2017) 12:36 Page 4 of 9



much LDH had leaked out through the injured cell mem-
brane as was leaked from healthy cells, implying increased
neurotoxicity. Also OGD and reoxygenation dramatically
increased DCFDA value, implying enhanced free radical
generation in cells.
Statins reduce OGD and reoxygenation-induced neuronal

injury [28, 40]. Statins reduce cerebral infarct volume [41,
42], improve perfusion deficits [43], and facilitate cognitive
improvement [17] mostly using the experimental preclinical
stroke models [39, 43]. Protective effect of statins against is-
chemic injury has also been reported in other organs, such
as myocardial ischemia–reperfusion injury [11, 44], ische-
mic acute kidney injury [14], and intestinal ischemia–

reperfusion injury [45]. We obtained similar results; simva-
statin effectively attenuated ischemia–reperfusion-induced
spinal cord motor neuron death. Quantitative analysis
showed an increase in cell survival after simvastatin treat-
ment at concentrations from 0.1 to 10 μM.
Similarly, ischemia–reperfusion-evoked LDH release

was reduced by simvastatin in a dose-dependent manner,
which supports the protective effect of simvastatin against
ischemia–reperfusion-induced cytotoxicity. LDH leakage
indicates cytotoxicity as a result of cell membrane disinte-
gration [20]. The elevated LDH following OGD in our
study significantly decreased with simvastatin treatment at
concentrations of 0.1, 1, and 10 μM, indicating that it

Fig. 3 Morphological change in the motor neuron following ischemia–reperfusion injury with or without simvastatin. a Without simvastatin.
Ischemia–reperfusion damage resulted in massive cell loss and destruction of neural networks. b With simvastatin. Treatment of simvastatin
markedly increased neuronal survival after ischemia–reperfusion damage. Cells treated with simvastatin showed preserved morphological features
of neurons with a denser meshwork of neurites when compared to (a)

Fig. 4 Effect of simvastatin on the viability of the motor neuron following ischemia–reperfusion injury. Effect of OGD and simvastatin on the
viability of motor neuron was assessed with WST-8 assay. OGD resulted in marked reduction of cellular viability. Simvastatin, treated at the indi-
cated concentrations, resulted in an increase in cell survival, particularly at 1 and 10 μM. Values are represented as means ± SEM; asterisk denotes
significant difference from control. Number sign denotes significant difference from the OGD cells (n = 16; p < 0.05). OGD oxygen and
glucose deprivation
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attenuates the cellular injury/death induced by ischemia.
Our basic research performed at the cellular level demon-
strated the safety margin of simvastatin in terms of motor
neuron protection.
Ischemic injury leads to production of massive amounts

of ROS that directly damage the main cellular constituents

[18, 22]. In addition, reperfusion to an ischemic organ, a
restoration of oxygen levels in hypoxic tissues, also stimu-
lates ROS production [46, 47]. However, the CNS is ex-
tremely sensitive to oxidative stress due to delicate lipid
layers of its cell membranes and low levels of antioxidant
enzymes [48]. Oxidative stress responses in the CNS vary

Fig. 5 Effect of simvastatin on the cytotoxicity following ischemia–reperfusion injury. Cytotoxicity of OGD was assessed with LDH release. Cells
were subjected to 60 min of OGD and 24 h of recovery time. LDH significantly increased after OGD compared to healthy cells. Simvastatin
treatment (0.1, 1, and 10 μM) effectively attenuated LDH release. Values are represented as means ± SEM; asterisk denotes significant difference
from control. Number sign denotes significant difference from the OGD cells (n = 16; p < 0.05). LDH lactate dehydrogenase, OGD oxygen and
glucose deprivation

Fig. 6 Effect of simvastatin on the motor neuron oxidative stress induced with ischemia–reperfusion. Oxidative stress of the motor neuron was
assessed with DCFDA assay. OGD led to marked increase in DCF labeling of cells. Simvastatin treatment (0.1, 1, and 10 μM) effectively reduced
DCF labeling following OGD. Values are represented as means ± SEM; asterisk denotes difference from control, and number sign denotes
difference from OGD cells (n = 16; p < 0.05). OGD oxygen and glucose deprivation, DCFDA 2′,7′-dichlorofluorescein diacetate,
DCF 2′,7′-dichlorofluorescein
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among different cell types. Neurons have relatively low
antioxidant capacity and limited scope to upregulate it
upon increased oxidative stress, so they are much more
vulnerable to oxidative damage than other cells in CNS
[49, 50]. Previous studies investigated the correlation be-
tween increased production of ROS and neuronal death
following ischemia/hypoxia [51, 52]. Simvastatin has been
reported to have pleiotropic effects, including reducing
oxidative stress [18, 19, 53].
In our study, simvastatin significantly decreased free

radical production induced by ischemia–reperfusion, im-
plying that the drug modifies ischemia–reperfusion-in-
duced oxidative stress. Numerous studies have reported
that statins decrease ROS production in tissue and in vivo
models and in cultured neurons derived from embryonic
rat brain tissue [18, 20, 29] and following major vascular
surgery [54] including thoracoabdominal aneurysm repair
[55, 56] and decompression surgery of degenerative
changes of the spine including cervical spondylotic myel-
opathy [57–59]. Our study results agree with these find-
ings, showing that simvastatin reduces the production of
DCFDA in spinal cord cells exposed to OGD and reoxy-
genation. DCFDA is one of the most widely used tech-
niques for directly measuring the redox state of a cell [60].
Despite numerous reports of the neuroprotective effects

of statins [19, 28, 29, 61–63], some investigators have re-
ported that they are toxic to neurons in vitro [64, 65]. The
toxicity versus protective effects of statins are dependent
upon various factors, including the pharmacological char-
acteristics of the individual statin agent, concentration of
the drug, and cholesterol content of the neural cell used
in the experiment [66]. Therefore, before the main experi-
ment, we evaluated simvastatin’s toxicity to healthy motor
neurons using concentrations ranging from 0.1 to 50 μM,
based on the previous studies [28, 66–70]. Cellular viabil-
ity, assessed by WST-8, was not affected at any experi-
mental simvastatin dose from 0.1 to 10 μM. However,
with a dose of 50 μM, the viability of the normal motor
neuron was significantly reduced. This finding is consist-
ent with that of previous reports and suggests possible
cytotoxicity of high-dose statins [71]; that high dose was
not applied in the main experiments.
The limitation of this study is that we did not determine

the precise mechanism of action of simvastatin. Our cap-
abilities did not allow us to examine whether the protective
effects were due to direct reduction of cholesterol or
whether indirect/nonspecific mechanisms of the statins
modify cellular signaling. Further studies will help to eluci-
date the exact mechanism and the long-term effects of
statins for clinical application. Second, there were no
additional experiments to show antagonizing the neuropro-
tective effect of simvastatin, by coapplication of other drugs,
such as mevalonate, one of the downstream products of
HMG-CoA reductase. Third, it is significant that our spinal

cord cells were cultured from embryonic 14–15 fetus be-
cause only embryonic cells can be used for extended cul-
ture. However, younger cells are more sensitive to
neurotoxins, and therefore, the results should generalize to
adults with caution.

Conclusions
In conclusion, simvastatin reduces ischemia and reperfusion-
induced injury of spinal cord motor neurons through its
antioxidant effects. Our results could lead to clinical use of
simvastatin to treat this type of spinal cord injury.
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