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Principal Component Analysis (PCA) as a tool for dimensionality reduction is widely used in many areas. In the area of
bioinformatics, each involved variable corresponds to a specific gene. In order to improve the robustness of PCA-based method,
this paper proposes a novel graph-Laplacian PCA algorithm by adopting 𝐿1/2 constraint (𝐿1/2 gLPCA) on error function for feature
(gene) extraction.The error function based on 𝐿1/2-norm helps to reduce the influence of outliers and noise. Augmented Lagrange
Multipliers (ALM)method is applied to solve the subproblem.Thismethod gets better results in feature extraction than other state-
of-the-art PCA-based methods. Extensive experimental results on simulation data and gene expression data sets demonstrate that
our method can get higher identification accuracies than others.

1. Introduction

With the rapid development of gene-chip and deep-
sequencing technologies, a lot of gene expression data have
been generated. It is possible for biologists to monitor the
expression of thousands of genes with the maturation of the
sequencing technology [1–3]. It is reported that a growing
body of research has been used to select the feature genes
from gene expression data [4–6]. Feature extraction is a typ-
ical application of gene expression data. Cancer has become
a threat to human health. Modern medicine has proved all
cancers are directly or indirectly related to genes. How to
identify what is believed to be related to cancer has become a
hotspot in the field of bioinformatics.Themajor bottleneck of
the development of bioinformatics is how to build an effective
approach to integrate and analyze the expression data [7].

One striking feature of gene expression data is the case
that the number of genes is far greater than the number
of samples, commonly called the high-dimension-small-
sample-size problem [8]. Typically thismeans that expression
data are always with more than thousands of genes, while the

size of samples is generally less than 100.The huge expression
data make them hard to analyze, but only a small size of
genes can control the gene expression. More attention has
been attached to the importance of feature genes by modern
biologists. Correspondingly, it is especially important how
to discover these genes effectively, so many dimensionality
reduction approaches are proposed.

Traditional dimensionality reduction methods have been
widely used. For example, Principal Component Analysis
(PCA) recombines the original data which have a certain
relevance into a new set of independent indicators [9–11].
However, because of the sparsity of gene regulation, the
weaknesses of traditional approaches in the field of feature
extraction become increasingly evident [12, 13]. With the
development of deep-sequencing technique, the inadequacy
of conventional methods is emerging. Within the process of
feature selection on biological data, the principal components
of PCA are dense, whichmakes it difficult to give an objective
and reasonable explanation on the significance of biology.
PCA-based methods have achieved good results in the
application of feature extraction [3, 12]. Although thismethod
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shows the significance of sparsity in the aspect of handling
high dimensional data, there are still a lot of shortcomings in
the algorithm.

(1) The high dimensionality of data poses a great chal-
lenge to the research, which is called data disaster.

(2) Facing with millions of data points, it is reasonable to
consider the internal geometric structure of the data.

(3) Gene expression data usually contain a lot of outliers
and noise, but the above methods cannot effectively
deal with these problems.

With the development of graph theory [14] and manifold
learning theory [15], the embedded structure problem has
been effectively resolved. Laplacian embedding as a classical
method ofmanifold learning has been used inmachine learn-
ing and pattern recognition, whose essential idea is recovery
of low dimensional manifold structure from high dimen-
sional sampled data. The performance of feature extraction
will be improved remarkably after joining Laplacian in gene
expression data. In the case ofmaintaining the local adjacency
relationship of the graph, the graph can be drawn from
the high dimensional space to a low dimensional space
(drawing graph). However, graph-Laplacian cannot dispose
outliers.

In the field of dimensionality reduction, 𝐿𝑝 (0 < 𝑝 <1)-norm was getting more and more popular to replace 𝐿1,
which was first proposed by Nie et al. [16]. Research shows
that a proper value of 𝑝 can achieve a more exact result
for dimensionality reduction [17]. Furthermore, Xu et al.
developed an simple iterative thresholding representation
theory for 𝐿1/2-norm [18], which was similar to the notable
iterative soft thresholding algorithm for the solution of 𝐿0
[19] and 𝐿1-norm [20]. Xu et al. have shown that 𝐿𝑝-norm
generates more better solution than 𝐿1-norm [21]. Besides,
among all regularizationwith𝑝 in (0, 1/2], there is no obvious
difference. However, when 𝑝 ∈ [1/2, 1), the smaller 𝑝 is, the
more effective result will be [17].This provides amotivation to
introduce 𝐿1/2-norm constraint into original method. Since
the error of each data point is calculated in the form of the
square. It will also cause a lot of errors while the data contains
some tiny abnormal values.

In order to solve the above problems, we propose a novel
method based on 𝐿1/2-norm constraint, graph-Laplacian
PCA (𝐿1/2 gLPCA) which provides a good performance.
In summary, the main work of this paper is as follows. (1)
The error function based on 𝐿1/2-norm is used to reduce
the influence of outliers and noise. (2) Graph-Laplacian is
introduced to recover low dimensional manifold structure
from high dimensional sampled data.

The remainder of the paper is organized as follows.
Section 2 provides some related work.We present our formu-
lation and algorithm for 𝐿1/2-norm constraint graph-Lapla-
cian PCA in Section 3. We evaluate our algorithm on both
simulation data and real gene expression data in Section 4.
The correlations between the identified genes and cancer data
are also included. The paper is concluded in Section 5.

2. Related Work

2.1. Principal Component Analysis. In the field of bioinfor-
matics, the principal components (PCs) of PCA are used to
select feature genes. Assume X = (x1, . . . , x𝑛) ∈ R𝑚×𝑛 is the
input data matrix, which contains the collection of 𝑛 data
column vectors and 𝑚 dimension space. Traditional PCA
approaches recombine the original data which have a certain
relevance into a new set of independent indicators [9]. More
specifically, this method reduces the input data to 𝑘-dim (𝑘 <𝑛) subspace by minimizing:

min
U,V

󵄩󵄩󵄩󵄩󵄩X − UV𝑇󵄩󵄩󵄩󵄩󵄩2𝐹
s.t. V𝑇V = I,

(1)

where each column of U = (u1, . . . , u𝑘) ∈ R𝑚×𝑘 is the
principal directions and V𝑇 = (k1, . . . , k𝑛) ∈ R𝑘×𝑛 is the
projected data points in the new subspace.

2.2. Graph-Laplacian PCA. Since the traditional PCA has
not taken into account the intrinsic geometrical structure
within input data, the mutual influences among data may
be missed during a research project [9]. With the increas-
ing popularity of the manifold learning theory, people are
becoming aware that the intrinsic geometrical structure is
essential for modeling input data [15]. It is a well-known fact
that graph-Laplacian is the fastest approach in the manifold
learning method [14]. The essential idea of graph-Laplacian
is to recover low dimensional manifold structure from high
dimensional sampled data. PCA closely relates to 𝐾-means
clustering [22]. The principal components 𝑉 are also the
continuous solution of the cluster indicators in the 𝐾-means
clustering method. Thus, it provides a motivation to embed
Laplacian to PCA whose primary purpose is clustering
[23, 24]. Let symmetric weight matrix W ∈ R𝑛×𝑛 be the
nearest neighbor graph where W𝑖𝑗 is the weight of the edge
connecting vertices 𝑖 and 𝑗. The value ofW𝑖𝑗 is set as follows:

W𝑖𝑗 = {{{
1 if x𝑖 ∈ N𝑘 (x𝑗) or x𝑗 ∈ N𝑘 (x𝑖) ,
0 otherwise, (2)

where N𝑘(x𝑖) is the set of 𝑘 nearest neighbors of x𝑖. V𝑇 =
(k1, . . . , k𝑛) ∈ 𝑅𝑘×𝑛 is supposed as the embedding coordinates
of the data and D = diag (d1, . . . , d𝑛) is defined as a diagonal
matrix and d𝑖 = ∑𝑗W𝑖𝑗. V can be obtained by minimizing:

min
V

𝑛∑
𝑖,𝑗=1

󵄩󵄩󵄩󵄩󵄩k𝑖 − k𝑗
󵄩󵄩󵄩󵄩󵄩2W𝑖𝑗 = tr (V𝑇 (D −W)V)

= tr (V𝑇LV)
s.t. V𝑇V = I,

(3)

where d𝑖 is the column or row sums of W and L = D − W
is named as Laplacian matrix. Simply put, in the case of
maintaining the local adjacency relationship of the graph, the
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graph can be drawn from the high dimensional space to a
low dimensional space (drawing graph). In the view of the
function of graph-Laplacian, Jiang et al. proposed a model
named graph-Laplacian PCA (gLPCA), which incorporates
graph structure encoded in W [23]. This model can be
considered as follows:

min
U,V

𝐽 = 󵄩󵄩󵄩󵄩󵄩X − UV𝑇󵄩󵄩󵄩󵄩󵄩2𝐹 + 𝛼 tr (V𝑇LV)
s.t. V𝑇V = I,

(4)

where 𝛼 ≥ 0 is a parameter adjusting the contribution of
the two parts. This model has three aspects. (a) It is a data
representation, where X ≃ UV𝑇. (b) It uses V to embed
manifold learning. (c) This model is a nonconvex problem
but has a closed-form solution and can be efficient to work
out.

In (4), from the perspective of data point, it can be
rewritten as follows:

min
U,V

𝐽 = 𝑛∑
𝑗=1

(󵄩󵄩󵄩󵄩󵄩X𝑛 − Uk𝑛
𝑇󵄩󵄩󵄩󵄩󵄩2𝐹 + 𝛼 tr (k𝑛𝑇Lk𝑛))

s.t. V𝑇V = I.
(5)

In this formula, the error of each data point is calculated in
the form of the square. It will also cause a lot of errors while
the data contains some tiny abnormal values.Thus, the author
formulates a robust version using 𝐿2,1-norm as follows:

min
U,V

󵄩󵄩󵄩󵄩󵄩X − UV𝑇󵄩󵄩󵄩󵄩󵄩2,1 + 𝛼 tr (V𝑇LV)
s.t. V𝑇V = I,

(6)

but the major contribution of 𝐿2,1-norm is to generate sparse
on rows, in which the effect is not so obvious [3, 25].

3. Proposed Algorithm

Research shows that a proper value of 𝑝 can achieve a more
exact result for dimensionality reduction [17]. When 𝑝 ∈[1/2, 1), the smaller 𝑝 is, the more effective result will be
[17]. Then, Xu et al. developed a simple iterative thresholding
representation theory for𝐿1/2-norm and obtained the desired
results [18].Thus, motivated by former theory, it is reasonable
and necessary to introduce 𝐿1/2-norm on error function to
reduce the impact of outliers on the data. Based on the
half thresholding theory, we propose a novel method using𝐿1/2-norm on error function by minimizing the following
problem:

min
U,V

󵄩󵄩󵄩󵄩󵄩X − UV𝑇󵄩󵄩󵄩󵄩󵄩1/21/2 + 𝛼 tr (V𝑇LV)
s.t. V𝑇V = I,

(7)

where 𝐿1/2-norm is defined as ‖A‖1/2
1/2

= ∑𝑛𝑗 ∑𝑚𝑗 |a𝑖𝑗|1/2, X =
(x1, . . . , x𝑛) ∈ R𝑚×𝑛 is the input data matrix, andU = (u1, . . . ,
u𝑘) ∈ R𝑚×𝑘 and V𝑇 = (k1, . . . , k𝑛) ∈ R𝑘×𝑛 are the principal

directions and the subspace of projected data, respectively.
We call thismodel graph-Laplacian PCAbased on 𝐿1/2-norm
constraint (𝐿1/2 gLPCA).

At first, the subproblems are solved by using the Aug-
mented Lagrange Multipliers (ALM) method. Then, an effi-
cient updating algorithm is presented to solve this optimiza-
tion problem.

3.1. Solving the Subproblems. ALM is used to solve the
subproblem. Firstly, an auxiliary variable is introduced to
rewrite the formulation (4) as follows:

min
U,V,S

‖S‖1/21/2 + 𝛼 trV𝑇 (D −W)V,
s.t. S = X − UV𝑇, V𝑇V = I.

(8)

The augmented Lagrangian function of (8) is defined as
follows:

𝐿𝜇 (S,U,V,Λ) = ‖S‖1/21/2 + trΛ𝑇 (S − X + UV𝑇)
+ 𝜇
2
󵄩󵄩󵄩󵄩󵄩S − X + UV𝑇󵄩󵄩󵄩󵄩󵄩2𝐹

+ 𝛼 tr (V𝑇LV) ,
s.t. V𝑇V = I,

(9)

where Λ is Lagrangian multipliers and 𝜇 is the step size of
update. By mathematical deduction, the function of (9) can
be rewritten as

𝐿𝜇 (S,U,V,Λ) = ‖S‖1/21/2 + 𝜇
2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩S − X + UV𝑇 + Λ𝜇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

𝐹

+ 𝛼 tr (V𝑇LV) ,
s.t. V𝑇V = I.

(10)

The general approach of (10) consists of the following itera-
tions:

S𝑘+1 = argmin
S

𝐿𝜇 (S,U𝑘,V𝑘,Λ𝑘) ,
V𝑘+1 = (k1, . . . , k𝑘) ,
U𝑘+1 = MV𝑘,
Λ
𝑘+1 = Λ𝑘 + 𝜇 (S𝑘+1 − X + U𝑘V𝑇

𝑘) ,
𝜇𝑘+1 = 𝜌𝜇𝑘.

(11)

Then, the details to update each variable in (11) are given as
follows.

Updating S. At first, we solve S while fixing U and V. The
update of S relates the following issue:

S𝑘+1 = argmin
S

‖S‖1/21/2 + 𝜇
2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩S − X + U𝑘V𝑇

𝑘 + Λ𝑘𝜇
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

𝐹

, (12)
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which is the proximal operator of 𝐿1/2-norm. Since this
formulation is a nonconvex, nonsmooth, non-Lipschitz, and
complex optimization problem; an iterative half thresholding
approach is used for fast solution of 𝐿1/2-norm and summa-
rizes according to the following lemma [18].

Lemma 1. The proximal operator of 𝐿1/2-norm minimizes the
following problem:

min
X∈R𝑚×𝑛

‖X − A‖2𝐹 + 𝜆 ‖X‖1/21/2 , (13)

which is given by

X∗ = H𝜆 (A) = U diag (H𝜆 (𝜎))V𝑇, (14)

where H𝜆(𝜎) fl (ℎ𝜆(𝜎1), ℎ𝜆(𝜎2), . . . , ℎ𝜆(𝜎𝑛)) 𝑇 and ℎ𝜆(𝜎𝑖) is
the half threshold operator and defined as follows:

ℎ𝜆 (𝜎𝑖)

= {{{{{
2
3𝜎𝑖 (1 + cos(2𝜋3 − 2

3𝜓𝜆 (𝜎𝑖))) , if 󵄨󵄨󵄨󵄨𝜎𝑖󵄨󵄨󵄨󵄨 >
3√54
4 𝜆2/3

0, otherwise,
(15)

where 𝜓𝜆(𝜎𝑖) = arccos((𝜆/8)(|𝜎𝑖|/3)−2/3).
Solving U and V. Here, we solve U while fixing others. The
update of U amounts to solving

U𝑘+1 = argmin
U

𝜇
2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩S
𝑘 − X + U𝑘V𝑇

𝑘 + Λ𝑘𝜇
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

𝐹

. (16)

Letting X − S − Λ/𝜇 = M, (16) becomes U𝑘+1 =
argminU(𝜇/2)‖M − UV𝑇

𝑘‖2𝐹, taking partial derivatives of U
as follows:

𝜕𝐽
𝜕U = −𝜇 (M − UV𝑇

𝑘)V. (17)

Setting the partial derivatives to 0, we have

U𝑘+1 = MV𝑘. (18)

Then, we solveVwhile fixing others. Similarly, lettingX−S−
Λ/𝜇 = M, U = MV, the update of V can be listed as follows:

V𝑘+1 = argmin
V

𝜇
2
󵄩󵄩󵄩󵄩󵄩M −MVV𝑇󵄩󵄩󵄩󵄩󵄩2𝐹 + 𝛼 tr (V𝑇LV) ,

s.t. V𝑇V = I.
(19)

By some algebra, we have

V𝑘+1 = argmin
V

󵄩󵄩󵄩󵄩󵄩M −MVV𝑇󵄩󵄩󵄩󵄩󵄩2𝐹 + 2𝛼
𝜇 tr (V𝑇LV)

= argmin
V

tr (MM𝑇) − 2 (√tr (MM𝑇))2

+ 2𝛼
𝜇 tr (V𝑇LV)

= argmin
V

trV𝑇 (−M𝑇M + 2𝛼
𝜇 L)V.

(20)

Therefore, (19) can be rewritten as follows:

V𝑘+1 = argmin
V

trV𝑇 (−M𝑇M + 2𝛼
𝜇 L)V,

s.t. V𝑇V = I.
(21)

Thus, the optimal V𝑘+1 can be obtained by calculating
eigenvectors

V𝑘+1 = (k1, . . . , k𝑘) , (22)

which corresponds to the first 𝑘 smallest eigenvalues of the
matrix 𝐺𝛼 = −M𝑇M + 2𝛼L/𝜇.
Updating Λ and 𝜇. The update of Λ and 𝜇 is standard:

Λ
𝑘+1 = Λ𝑘 + 𝜇 (S𝑘+1 − X + U𝑘V𝑇

𝑘) ,
𝜇𝑘+1 = 𝜌𝜇𝑘,

(23)

where 𝜌 > 1 is used to update the parameter 𝜇. Since the
value of 𝜌 is usually bigger than 1, and over a large number
of experiments, we find 𝜌 = 1.1∼1.5 are good choice. We
selected 𝜌 = 1.2 in such practice conditions.

The complete procedure is summarized in Algorithm 1.

3.2. Properties of Algorithm. We set 𝜌 = 1.2 through all our
gene expression data experiments.Whereas we introduce 𝜎𝑚,𝜎𝑙 is the largest eigenvalue ofmatrixM𝑇M and L to normalize
them, respectively. Setting

2𝛼
𝜇 = 𝛽

1 − 𝛽
𝜎𝑚𝜎𝑙 , (24)

where 𝛽 is the parameter to substitute for 𝛼, (20) can be
rewritten as

V = argmin
V

trV𝑇 [(1 − 𝛽)(I − M𝑇M
𝜎𝑚 ) + 2𝛽

𝜇
L
𝜎𝑙]V,

𝑠.𝑡. V𝑇V = I.
(25)

Therefore, the solution ofV can be expressed by the eigenvec-
tors of 𝐺𝛽:

𝐺𝛽 = (1 − 𝛽)(I − M𝑇M
𝜎𝑚 ) + 2𝛽

𝜇
L
𝜎𝑙 . (26)

It is easy to see that 𝛽 should be in the range 0 ≤ 𝛽 ≤ 1.
Without 𝐿1/2-norm, there will be standard PCA if 𝛽 = 0.
Similarly, when 𝛽 = 1, it reduces to Laplacian embedding.

Furthermore, we rewrite the matrix 𝐺𝛽 as follows:
𝐺𝛽 = (1 − 𝛽)(I − M𝑇M

𝜎𝑚 ) + 2𝛽
𝜇 ( L

𝜎𝑙 +
ee𝑇

𝑛 ) , (27)

where e = (1 ⋅ ⋅ ⋅ 1)𝑇 is an eigenvector of 𝐺𝛽: 𝐺𝛽e = (1 − 𝛽)e.
We have Me = 0, because X is centered and it is easy to
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Input: Data matrix X ∈ R𝑚×𝑛;
weight matrix:W ∈ 𝑅𝑚×𝑛;
parameters: 𝛽, 𝜌, 𝑘, 𝜇.

Output: Optimized matrix: U, V.
Initialization: S = Λ = 0, U = 0, V = 0.
repeat
Step 1. Update S and fix the others by S𝑘+1 = argmins‖S‖1/21/2 + (𝜇/2)‖S − X + UV𝑇 + Λ/𝜇‖2𝐹.
Step 2. Update U and fix the others by U𝑘+1 = MV𝑘.
Step 3. Update V and fix the others by V𝑘+1 = (k1, . . . , k𝑟).
Step 4. Update Λ, 𝜇 and fix the others by
Λ
𝑘+1 = Λ𝑘 + 𝜇(S𝑘+1 − X + U𝑘V𝑇

𝑘 )
𝜇𝑘+1 = 𝜌𝜇𝑘
until converge

Algorithm 1: Procedure of 𝐿1/2 gLPCA.

see that M = X − S − Λ/𝜇 is centered. 𝐺𝛽 is semipositive
definite, because 𝜎𝑚 is the biggest eigenvalue of M𝑇M; thus
I − M𝑇M/𝜎𝑚 is semipositive definite. Meanwhile, it is easy
to see that L is semipositive definite. Since 𝐺𝛽 is a symmetric
real matrix that eigenvectors are mutually orthogonal, thus
e is orthogonal to others. Although we apply ee𝑇/𝑛 in the
Laplacian matrix part, the eigenvectors and eigenvalues do
not change, which guarantees that the lowest 𝑘 eigenvectors
do not include e.

4. Experiments

In this section, we compare our algorithm with Laplacian
embedding (LE) [26], PCA [9], 𝐿0 PCA, 𝐿1 PCA [12],
gLPCA, and RgLPCA [23] on simulation data and real gene
expression data, respectively, to verify the performance of
our algorithm. Among them, PCA and LE are obtained by
adjusting the parameters of gLPCA 𝛽 = 0 and 𝛽 = 1,
respectively. Since our algorithm is not sensitive to parameter
mu in practice. In the first subsection, we provide the source
of simulation data and experimental comparison results.
The experimental results and the function of selected genes
on real gene expression data with different methods are
compared in the next two subsections.

4.1. Results on Simulation Data

4.1.1. Data Source. Here, we describe a method to produce
simulation data. Supposing we generate the data matrix A ∈
R𝑘×𝑗, where 𝑘 = 2000 and 𝑗 = 10 are the number of genes
and samples, respectively, the simulation data are generated
as A ∼ (0, Σ4). Let k̃1∼k̃4 be four 2000-dimensional vectors;
for instance, k̃1𝑘 = 1, 𝑘 = 1, . . . , 50, and k̃1𝑘 = 0, 𝑘 =51, . . . , 2000; k̃2𝑘 = 1, 𝑘 = 51, . . . , 100, and k̃2𝑘 = 0, 𝑘 ̸=51, . . . , 100; k̃3𝑘 = 1, 𝑘 = 101, . . . , 150, and k̃3𝑘 = 0, 𝑘 ̸=101, . . . , 150; k̃4𝑘 = 1, 𝑘 = 151, . . . , 200, and k̃4𝑘 = 1, 𝑘 ̸=151, . . . , 200. Given a matrix E ∼ 𝑁(0, 1) as a noise matrix
with 2000-dimension and different Signal-to-Noise Ratio
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Figure 1:The accuracy of differentmethods on simulation data with
different parameters.

(SNR), which is added into Ṽ, the four eigenvectors of Σ4 can
be expressed as k̃𝑘 = k̃𝑘/‖k̃𝑘‖, 𝑘 = 1, 2, 3, 4. Let the four
eigenvectors dominate; the eigenvalues of A can be denoted
as 𝑐1 = 400, 𝑐2 = 300, 𝑐3 = 200, 𝑐4 = 100, and 𝑐𝑘 = 1 for𝑘 = 5, . . . , 2000.
4.1.2. Detailed Results on Simulation Data. In order to give
more accurate experiment results, the average values of the
results of 30 times are adopted. For fairness and uniformity,
200 genes are selected by the five methods with their unique
parameters. Here, we show the accuracy (%) of these meth-
ods. In Figure 1, two factors as two different axes are in the
figure. In Figure 2, 𝑥-axis is the number of samples. 𝑥-axis is
the value of parameter 𝜇. The accuracy is defined as follows:

Accuracy = 1
𝑡
𝑡∑
𝑖=1

Acc𝑖 × 100%, (28)
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Table 1: The average accuracy and variance of different methods on simulation data with different parameters.

Methods 𝐿1/2 gLPCA RgLPCA gLPCA 𝐿0 PCA 𝐿1 PCA PCA LE
Average accuracy (%) 66.12 65.47 63.53 44.43 48.43 59.00 65.10
Variance 1.48 1.62 1.76 23.60 20.30 1.61 1.97

Table 2: The average accuracy and variance of different methods on simulation data with different numbers of samples.

Methods 𝐿1/2 gLPCA RgLPCA gLPCA 𝐿0 PCA 𝐿1 PCA PCA LE
Average accuracy (%) 70.25 68.25 67.90 67.30 69.20 58.62 69.60
Variance 2.58 3.84 4.41 3.52 2.23 1.79 2.50
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Figure 2:The accuracy of differentmethods on simulation datawith
different numbers of samples.

where 𝑡 is the iterative times and Acc𝑖 is the identification
accuracy of the 𝑖th time. We define Acc as follows:

Acc = 1
𝑟
𝑟∑
𝑗=1

𝛿 (𝐼𝑗,map (𝐼𝑗)) , (29)

where 𝑟 denotes the number of genes, 𝛿(𝑚, 𝑛) is a function
that equals to 0 if 𝑚 ̸= 𝑛 and equals to 1 if 𝑚 = 𝑛. We use
the function map(𝐼) to map the identification of labels. In
Figure 1, we show the average accuracies of the sevenmethods
with different sparse parameters while the simulation data is2000 × 10 and the average accuracy with all parameters is
listed in Table 1. In general, if the algorithm is more sensitive
to noise and outliers, the deviation will be greater and the
accuracy will be greatly reduced. It is worthy to notice that𝐿1/2 gLPCA works better than other six methods with higher
identification accuracies. This means that our algorithm has
lower sensitivity to noise and outliers. This table clearly
displays the detail of the identification accuracies in different
sparse parameters; our method indicates the superiority
when the parameter is larger than 0.4 and the curve is
more stable. The accuracy of 𝐿0 PCA and 𝐿1 PCA starts a
precipitous decline when the parameter is larger than 0.7 and
0.8. Comparedwith𝐿0 PCAand𝐿1 PCA, themethods of𝐿1/2

gLPCA, RgLPCA, gLPCA, PCA, and LE are not sensitive to
the parameter, so there is no substantial change. The stability
and average accuracy of various methods can be seen from
Table 1.

Furthermore, the number of samples in real gene expres-
sion data has a significant influence on the identification
accuracy when we select feature gene. Based on this theory,
we test different numbers of samples with their best parame-
ters and the average values of the results of 30 times. From
the results of Figure 1, we select 0.8 as the parameters of𝐿1/2 gLPCA, gLPCA, RgLPCA, PCA, and LE. For 𝐿0 PCA
and 𝐿1 PCA, we do not change its parameters, since it can
obtain the best result from the author’s description. The
details of average identification accuracies which use seven
methods with different sample numbers can be seen from
Figure 2. As seen in Figure 2, the accuracy of 𝐿1/2 gLPCA is
generally better than other methods and increases with the
increase of the number of samples. Besides, Table 2 shows
the average accuracy and variance of seven different methods
on simulation data with different number of samples. From
Table 2, our approach performs better than other methods,
even though, in the case of a small number of samples, the
accuracy is still high.

4.2. Results on Gene Expression Data. In this subsection,
the features (genes) are selected by these methods and sent
to ToppFun to detect the gene-set enrichment analysis,
which is a type of GOTermFinder [27]. The primary role of
GOTermFinder is to discover the common of large amounts
of gene expression data. The analysis of GOTermFinder
provides critical information for the experiment of feature
extraction. It is available publicly at https://toppgene.cchmc
.org/enrichment.jsp. We set 𝑃 value cutoff to 0.01 through
all the experiment. For fair comparison, about 𝐿1/2 gLPCA,
RgLPCA, and gLPCA, we both set 𝛽 = 0.5 to control the
degree of Laplacian embedding through all experiments in
this paper. When 𝛽 = 0, 𝛽 = 1, it results in standard PCA
and LE, respectively. Since our algorithm is not sensitive to
parameter 𝜇 mu in practice, we set 𝜇 = 0.3 through our
experiment.

4.2.1. Results on ALLAML Data. The data of ALLAML as a
matrix includes 38 samples and 5000 features (genes), which
are publicly available at https://sites.google.com/site/feiping-
nie/file. It is made up of 11 types of acute myelogenous
leukemia (AML) and 27 types of acute lymphoblastic

https://toppgene.cchmc.org/enrichment.jsp
https://toppgene.cchmc.org/enrichment.jsp
https://sites.google.com/site/feipingnie/file
https://sites.google.com/site/feipingnie/file


BioMed Research International 7

leukemia (ALL) [28]. This data contains the difference
between AML and ALL, and ALL is divided into T and B cell
subtypes. In this experiment, 300 genes are selected and sent
to ToppFun. A series of enrichment analyses are conducted
on the extracted top 500 genes corresponding to different
methods. The complete experimental data have been listed
as supplementary data. The 𝑃 value and hit count of top
nine terms about molecular function, biological process, and
cellular component of ALLAML data by different methods
are listed in Table 3. The 𝑃 value is significance for these
genes enrichment analysis in these GO terms; the smaller the𝑃 value is, the more significant these GO terms are. In this
Table, the number of hits is the number of genes from input,
and the 𝑃 value was influenced by the number of genes from
input and so on. Thus, the difference in number of hits is
smaller than the difference in𝑃 value. It shows clearly that our
method performs better than compared methods in 8 terms.
The lower 𝑃 value shows that the algorithm is less affected
by noise and outliers and thus has high efficiency. If the
algorithm is affected by noise and outliers significantly, the
degree of gene enrichment will be reduced. Nevertheless, LE
has the lowest 𝑃 value in term GO: 0098552. From this table,
we can see that there are 93 genes in the item of “immune
response” which are selected by our method. This item can
be considered as the most probable enrichment item, since it
has the lowest 𝑃 value. Andmany researches were focused on
the immune status of leukemia [29–32]. Besides, 210 genes
associated with leukemia are listed in an article, and 26 out
of top 30 genes selected by our method can be found in this
article [33]. And 30 genes selected by our method can be
found in another published article [34].The high overlap rate
of these genes selected by our method with this published
literature approved the effectiveness of our method.

4.2.2. Pathway Search Result on ALLAML Data. For the sake
of the correlations between the selected genes and ALLAML
data, the genes selected by 𝐿1/2 gLPCA are proved based on
gene-set enrichment analysis (GSEA) that is publicly available
at http://software.broadinstitute.org/gsea/msigdb/annotate
.jsp. We make analysis by GSEA to compute overlaps for
selected genes. Figure 3 displays the pathway of hematopoi-
etic cell lineage that has highest gene overlaps in this
experiment. From Figure 3, 15 genes from our experiment
are contained. Among them, HLA-DR occurs seven times.
Hematopoietic cell lineage belongs to organismal systems
and immune system. On the subject of acute myeloid
leukemia (AML), there is consensus about the target cell
within the hematopoietic stem cell hierarchy that is sensitive
to leukemic transformation, or about the mechanism, that
is, basic phenotypic, genotypic, and clinical heterogeneity
[35]. Hematopoietic stem cell (HSC) developing from the
blood-cell can undergo self-renewal and differentiate into a
multilineage committed progenitor cell: one is a common
lymphoid progenitor (CLP) and the other is called a common
myeloid progenitor (CMP) [36]. A CLP causes the lymphoid
lineage of white blood cells or leukocytes, the natural killer
(NK) cells and the T and B lymphocytes. A CMP causes the
myeloid lineage, which comprises the rest of the leukocytes,
the erythrocytes (red blood cells), and the megakaryocytes

that produce platelets important in blood clotting. Cells
express a stage- and lineage-specific set of surface markers
in the differentiation process. So the specific expression
pattern of these genes is one way to identify the cellular
stages. Related diseases include hemophilia, Bernard-Soulier
syndrome, and castleman disease. In medicine, leukemia is a
kind of malignant clonal disease of hematopoietic stem cells.
Bone marrow transplantation is a magic weapon for the cure
of leukemia, by recreating the hematopoietic system to cure
leukemia. Generally speaking, when a person has problem in
hematopoietic system, it might be related to leukemia [37].

4.2.3. Results on TCGA with PAAD-GE Data. As the largest
public database of cancer gene information, The Cancer
Genome Atlas (TCGA, https://tcgadata.nci.nih.gov/tcga/)
has been producing multimodal genomics, epigenomics, and
proteomics data for thousands of tumor samples across over
30 types of cancer. At the same time, as a multidimensional
combination of data, five levels of data are involved, such as
gene expression (GE), Protein Expression (PE), DNAMethy-
lation (ME), DNA Copy Number (CN), and microRNA
Expression (miRExp). Two disease data sets are downloaded
fromTCGA to be analyzed in the following two experiments.
Pancreatic cancer is a type of disease that threatens human
health. In this experiment, pancreatic cancer gene expression
data (PAAD-GE) is analyzed by these methods. The data
of PAAD-GE data as a matrix includes 180 samples and
20502 features (genes). In this subsection, we extract PAAD-
GE data to complete this set of comparative experiments
and 500 genes are selected and sent to ToppFun. We select
top nine terms from molecular function, biological process,
and cellular component by 𝐿1/2 gLPCA and compare with
other methods. The 𝑃 value and hit count of these terms
are listed in Table 4. It is indicated clearly in Table 4 that
our method is more stable than other methods, which has
lower 𝑃 value in 7 terms. But in terms GO:0045047 and
GO:0072599, PCA performs better than other methods.
Nevertheless, 𝐿1/2 gLPCA has the same 𝑃 value with gLPCA
in terms GO:0045047 and GO:0072599. 196 genes in the item
of “extracellular space” are selected by our method.

4.2.4. Pathway Search Result on PAAD-GE Data. Similarly
as the last experiment, we send our result to GSEA and list
the highest genes overlap pathway map in Figure 4. In 1982,
Ohhashi reported 4 cases with unique clinical pathological
features and is different from normal pancreatic cancer
cases, and these 4 cases belong to a completely new clinical
type, known as “mucus production type carcinoma (mucin-
producing carcinoma, M-pC).” Focal adhesion belongs to
cellular processes and cellular community. More specifically,
cell-matrix adhesions play important roles in biological pro-
cesses including cell motility, cell proliferation, cell differenti-
ation, regulation of gene expression, and cell survival. At the
cell-extracellularmatrix contact points, specialized structures
are created and termed focal adhesions, where bundles of
actin filaments are fixed to transmembrane receptors of
the integrin family through a multimolecular complex of
junctional plaque proteins. Integrin signaling is dependent
on the nonreceptor tyrosine kinase activities of the FAK

http://software.broadinstitute.org/gsea/msigdb/annotate.jsp
http://software.broadinstitute.org/gsea/msigdb/annotate.jsp
https://tcgadata.nci.nih.gov/tcga/
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Figure 3: The pathway of hematopoietic cell lineage.

and src proteins as well as the adaptor protein functions
of FAK, src and Shc to start downstream signaling events.
Similar morphological alterations and modulation of gene
expression are started by the binding of growth factors
to their respective receptors, underling the considerable

crosstalk between adhesion- and growth factor-mediated
signaling. The early literatures have shown that there is a
certain relationship between the pancreatic cancer and focal
adhesion [38]. Activation of focal adhesion kinase enhances
the adhesion and invasion of pancreatic cancer cells. Besides,
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Figure 4: The pathway of focal adhesion.

Table 5: The function of top 7 extraction genes.

Gene ID Gene name Related GO annotations Related diseases Paralogous genes

5644 PRSS1 Serine-type endopeptidase activity Trypsinogen deficiency and prss1-related
hereditary pancreatitis KLK12

5406 PNLIP Carboxylic ester hydrolase activity and
triglyceride lipase activity

Pancreatic colipase deficiency and pancreatic
lipase deficiency LPL

1357 CPA1 Metallocarboxypeptidase activity and
exopeptidase activity Borna disease and pancreatitis, hereditary CPA3

1360 CPB1 Metallocarboxypeptidase activity and
carboxypeptidase activity

Acute pancreatitis and tricuspid valve
insufficiency CPA3

63036 CELA2A Serine-type endopeptidase activity and serine
hydrolase activity Pancreatitis, hereditary CELA2B

5967 REG1A Carbohydrate binding and growth factor
activity

Acinar cell carcinoma and tropical calcific
pancreatitis REG3G

1056 CEL Hydrolase activity and carboxylic ester
hydrolase activity

Maturity-onset diabetes of the young, Type
VIII and maturity-onset diabetes of the

young
CES2

Type II diabetes mellitus is another important pathway and
is widely believed to be associated with pancreatic cancer; a
meta-analysis has examined this association [39].

4.2.5. Correlations between the Selected Genes and PAAD-GE
Data. The function of top 7 genes selected by 𝐿1/2 gLPCA
is listed in Table 5 based on literatures and GeneCards
(http://www.genecards.org/). As can be clearly seen from
the table, most of these genetic lesions would likely incur
pancreas-related diseases. The etiology of pancreatic cancer
is not very clear; it is noted that there is a certain relationship
between the incidence of chronic pancreatitis and pancreatic

cancer, and we find a significant increase in the proportion
of chronic pancreatitis patients with pancreatic cancer. This
view is consistent with our experimental result. The clinical
observation shows that abdominal pain is the most obvious
symptom in the early stage of pancreatic cancer. Some liter-
ature on these genes also made a further research as follows.
The gene PRSS1 variant likely affects disease susceptibility by
altering expression of the primary trypsinogen gene [40].The
pancreatic lipase gene (PNLIP) is located within the genomic
region of a bovine marbling quantitative trait locus. PNLIP is
a positional and functional candidate for the marbling gene
[41].

http://www.genecards.org/
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4.3. The Accuracy and Highest Relevance Score. Because
ALLAML and PPAD are human disease data sets, we can find
them directly fromGeneCards and they are publicly available
at http://www.genecards.org/.

In order to summarize the experiments on gene expres-
sion data, we compute the accuracy and highest relevance
score of these methods from GeneCards and list the details
in Table 6. The accuracy in Table 6 indicates the proportion
of genes which are real associated with the disease in all
of the genes selected by these methods. From Table 6, we
observe the following. (1) Both PCA and LE commonly
provide better accuracy results than 𝐿0 PCA and 𝐿1 PCA,
demonstrating the usefulness of PCA and LE. (2) gLPCA has
a good performance in some conditions and is unstable.Thus,
it is necessary to reduce the effects of outliers and noise. (3)𝐿1/2 gLPCA and RgLPCA consistently perform better than
other methods, but 𝐿1/2 gLPCA has the highest relevance
score and highest accuracy.

5. Conclusions

This paper investigates a new method of graph-Laplacian
PCA (𝐿1/2 gLPCA) by applying 𝐿1/2-norm constraint on
the former method. 𝐿1/2-norm constraint is applied on
error function to improve the robustness of the PCA-based
method. Augmented Lagrange Multipliers (ALM) method
is applied to solve the optimization problem. Extensive
experiments on both simulation and real gene expression
data have been performed. Results on these two kinds
of data show that our proposed method performs better
than compared methods. Based on our proposed method,
many genes have been extracted to analyze. The identified
genes are demonstrated that they are closely related to the
corresponding cancer data set.

In future, wewill modify themodel to improve sparse and
robustness of the structure at the same time.
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