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Abstract

Halide vacancies and associated metallic lead (Pb˚) observed at the surface and deep

inside macroscopic organolead trihalide perovskite crystals is removed through a facile

and noninvasive treatment. Indeed, Br2 vapor is shown to passivate Br-vacancies and

associated Pb˚ in the bulk of macroscopic crystals. Controlling the exposure time can

markedly improve the overall stoichiometry for moderate exposures or introduce excessive

bromide for long exposures, resulting in p-doping of the crystals. In the low dose passiv-

ation regime, Hall effect measurements reveal a ca. 3-fold increase in carrier mobility to ca.

15 cm2V-1s-1, while the p-doping increases the electrical conductivity ca. 10000-fold,

including a 50-fold increase in carrier mobility to ca. 150 cm2V-1s-1. The ease of diffusion of

Br2 vapor into macroscopic crystals is ascribed to the porosity allowed in rapidly grown

crystals through aggregative processes of the colloidal sol during growth of films and mac-

roscopic crystals. This process is believed to form significant growth defects, including

open voids, which may be remnants of the escaping solvent at the solidification front.

These results suggest that due to the sol-gel-like nature of the growth process, macro-

scopic perovskite crystals reported in this study are far from perfect and point to possible

pathways to improving the optoelectronic properties of these materials. Nevertheless, the

ability of the vapor-phase approach to access and tune the bulk chemistry and properties

of nominally macroscopic perovskite crystals provides interesting new opportunities to pre-

cisely manipulate and functionalize the bulk properties of hybrid perovskite crystals in a

noninvasive manner.

1. Introduction

Hybrid organic-inorganic perovskites have recently emerged as strong contenders for next

generation thin film optoelectronics, owing to their interesting charge transport properties
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and their ease of solution-processability.[1–5] A spate of breakthroughs in device designs and

thin film preparation protocols in the last few years has helped the perovskite solar cells com-

munity to achieve >23% power conversion efficiency (PCE).[4] Additional, concurrent

advances have been made in the successful utilization of hybrid perovskites as light emitting

diodes and photodetectors.[6–8]

It is, however, difficult to completely avoid residual chemical contamination and defects in

perovskite thin films, given the realities of solution-processing and the sol-gel nature of hybrid

perovskite solidification.[9, 10] The presence of defects and contamination on surfaces is very

much expected, but these have been believed unlikely to be present within the bulk of macro-

scopic single crystals, as the latter are considered the most pristine embodiments of the mate-

rial.[11] Macroscopic single crystals of methylammonium lead tribromide (MAPbBr3) have

been shown to exhibit a low density of trap states,[12] while polycrystalline thin films of the

same chemical compositions suffer from several extrinsic factors such as grain boundaries,

which also play a role in defining charge transport. Macroscopic crystals therefore provide a

model surface which resembles that of thin films,[13, 14] along with a far more pristine bulk

than the latter. However, recent reports have questioned the pristine quality of macroscopic

crystals, suggesting that the electronic properties of hybrid perovskites are only modest at best,

compared to gallium arsenide and silicon.[15, 16] It has been suggested that the internal struc-

ture of the MAPbBr3 crystals is far from perfect due to light- and environment-induced mac-

roscopic voids.[17]

Herein, we find that as-synthesized macroscopic MAPbBr3 crystals exhibit significant pres-

ence of chemical contaminants such as oxygen and amorphous carbon, along with a substan-

tial amount of metallic lead (Pb˚), both at their surface and—most intriguingly—deep in the

bulk. The Br:Pb ratio is 2.6, instead of 3. We access the crystal’s bulk by cleaving and examin-

ing its fresh surface, and find that Pb˚ and contaminants are still present, albeit to a lesser but

still notable extent. We devise a simple, single-step, post-synthesis Br-vapor treatment to undo

some of these ill-effects at the surface, but to our surprise, we find that the vapor permeates

through the bulk crystal, increasing the Br:Pb ratio and demonstrably suppressing Pb˚ both at

the surface and deep inside the bulk. The bulk incorporation of bromine from the vapor phase,

as confirmed by X-ray diffraction (XRD), X-ray fluorescence (XRF) and X-ray photoelectron

spectroscopy (XPS), points to significant pathways for diffusion and permeation, which we

ascribe to growth imperfections and voids associated to the colloidal sol-gel nature of self-

assembly/crystallization in organolead perovskites. Porosity in these crystals is also a likely out-

come of halide vacancies. Interestingly, the presence of oxygen vacancies is a well-known

observation in oxide perovskites, and is being investigated for potential gas (for e.g. carbon

dioxide) adsorption applications.[18–20] Access to the bulk of macroscopic crystals by a Br2

vapor meant that the Br content could be tuned post-growth. Pb˚ was shown to be passivated

after relatively short vapor exposures by careful XPS measurements, while longer exposures

led to p-doping of the crystal with bromide. In the latter case, a remarkable 10000-fold

enhancement in bulk electrical conductivity was measured, including a 50-fold increase of

mobility up to ~150 cm2/Vs. The significant improvement in bulk transport properties pro-

vided further proof and points to the presence of Pb˚ as an important obstacle to charge trans-

port in hybrid perovskite semiconductors. The opportunity to non-invasively access the bulk

properties of macroscopic semiconductor crystals, previously thought to be compact and

impermeable, opens up new opportunities for tuning the semiconductor and optoelectronic

properties as well as adding new functionalities to this important class of semiconductors after

growth.
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2. Materials and methods

Perovskite single crystal synthesis

The single crystals were synthesized using the inverse temperature crystallization protocol

reported elsewhere.[12, 21] Lead bromide (99.99%) and dimethylformamide, DMF (anhy-

drous, 99.8%) were purchased from Sigma Aldrich. Methylammonium bromide (MABr) was

purchased from Greatcell Solar (Australia). All salts and solvents were used as received with-

out any further purification. 1.5 M PbBr2 and MABr was prepared in DMF. The solutions

were filtered using a PTFE filter with 0.2 mm pore size. Two mL of the filtrate were placed in

a vial and the vial was kept in an oil bath, increasing the temperature from 60 ˚C to 100 ˚C.

The crystals were grown for 4 h. We have chosen MAPbBr3 single crystals over the other

types, since the stability of these crystals has been demonstrated in the ambient.[22] MAPbI3

crystals are known to degrade in ambient conditions.[23] The crystals were ca. 5 mm x 3 mm

x 2 mm in dimensions. We note that the proposed porosities/voids that allow bromine

vapors to enter the crystals, are an outcome of the aggregative assembly involved in perov-

skite crystallization, whereby the sol, consisting of bromoplumbate-solvent complexes aggre-

gates and solidifies without full densification and introduces unintentional voids into the

crystals.

Single crystal cleaving

The perovskite single crystal was cleaved in ambient and N2 conditions using a steel blade that

scraped off the top few millimeters of the crystal. Thickness of each crystal was measured

through Vernier calipers. Thickness of 1.27 mm, 0.69 mm and 1.15 mm was recorded for the

as-is, brominated and cleaved crystals, respectively.

X-ray photoelectron spectroscopy

XPS was measured in an ultrahigh vacuum (UHV) Omicron chamber equipped with a

SPHERA U7 hemispherical energy analyzer. Photoemission was carried out using X-ray pho-

tons with an incident kinetic energy of 1486.6 eV obtained from a monochromated Al Kα X-

ray source with a total energy resolution of 0.1 eV. The chamber base pressure for these mea-

surements was < 5 × 10-9 mbar. Spectra were collected at room temperature. Importantly, all

the high-resolution core levels (including Pb 4f) were collected within 10 min of X-ray expo-

sure to avoid measurement artefacts. The X-ray flux, exposure time, and the UHV conditions

were kept exactly the same throughout the study, across all the samples. The X-ray spot size

was in the order of microns. XPS measurements were calibrated using the Fermi edge of a

sputter-cleaned Ag sample. Relative atomic quantification was carried out using the CasaXPS

software by comparing the relative intensities of the various core level peaks, employing appro-

priate relative sensitivity factors (RSFs). RSFs take into account the different differential cross

sections, electron transmission and asymmetry parameters for the different orbitals. Shirley

background subtraction was used for peak fitting.

Kelvin probe measurements

The contact potential difference (CPD) was measured by Kelvin Probe (KP technology Ltd.,

UK) with reference to a vibrating stainless-steel tip of 5 mm diameter. The reported values

were averaged over 100 readings for each measurement. The measurements were carried out

in a nitrogen glove box environment. An HOPG sample was used for calibration.
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Hall effect measurements

Room-temperature Hall effect measurements were performed using the van der Pauw method

in a commercial Lakeshore 7700 system with linear sweeps of magnetic fields up to 2 T using a

20 nA excitation current. Contacts were fabricated using conductive silver paste to fix low

strain Ag alloy wires (Lake Shore PN 671–260) which were soldered to the sample holder.

XRD measurements

XRD measurements were carried out at a Bruker D8 Advance XRD equipment equipped with

Cu K-alpha source. Reflected scattering from the crystals was measured. Height alignment was

performed for all samples and so the observed peaks shifts are not due to subtle differences in

the sample heights/thicknesses.

Bromine-vapor treatment

MAPBBr3 crystals were suspended in a sealed container holding liquid bromine kept at room

temperature (approximately 5 cm above liquid Br2). Br2-vapor treatment was carried out in an

ambient of uncontrolled humidity (ca. 50–60% RH) at room temperature, ca. 22 ˚C. We did

not perform a direct measurement of the vapor pressure of bromine, but we believe the vapor

pressure saturates in the sealed container achieving its room temperature of 270 mbar.[24]

The bromine uptake by the crystals was controlled simply by the exposure time inside the

sealed container.

Photoluminescence measurements

PL spectra were collected in air by exciting the crystals with a Cobalt solid-state laser operating

at 473 nm, with excitation neutral density filter (ND 2.0). The emitted light was collected into

a spectrometer equipped with 600/600 grating and recorded using a Peltier-cooled CCD cam-

era (Andor) using a 1 second acquisition time.

UV-vis absorption measurements

Absorbance was measured using Varian Cary 5000 UV-vis spectrometer, using a transmission

mode in the range of 450–800 nm. All measurements were taken with respect to air as

baseline.

X-ray fluorescence measurements

XRF spectra were collected using Bruker M4 Tornado. The X-ray tube (Rh) was set at 50 kV

and 280 μA, and the signal was collected using XFlash430 detector. The measurements were

performed at low vacuum conditions (~2 mbar).

Time Correlated Single Photon Counting (TCSPC)

The sample was excited by pulsed laser diode (400 nm) that was purchased from HORIBA

Jobin Yvon, model (DD-405L, IRF� 65 ps). The repetition rate of the pulsed laser ranges

from few kHz to MHz by DDC1 picosecond controller purchased also from HORIBA. The

laser light is tightly focused on the sample using objective lens brought from Olympus Ltd.,

(Plan N, 10x/0.25). The maximized emission is collected from the same excited area by the

objective lens after passing through reflective beam splitter (R 488), bought from Thorlabs.

Then, the collected emission was focused on a commercial Avalanche photodiode that is con-

trolled and by Hydra Harp 400 multichannel picosecond event timer unit, purchased from
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PicoQuant, to detect the emission in a single photon fashion, i.e., one per laser pulse at max.

Then, the collected emission intensity versus time was analyzed and fitted using multi-expo-

nential decay equations.

3. Results and discussion

We employed X-ray photoelectron spectroscopy (XPS) to study the surface and bulk chemical

compositions of macroscopic MAPbBr3 crystals, synthesized by the inverse temperature crys-

tallization technique (S1 Fig).[12] To compare the surface and the bulk, we cleaved the macro-

scopic crystal in an inert environment and compared the properties of this newly formed

pristine surface (called ‘cleaved’ hereafter) with those of the native surface of as-synthesized

crystals (called ‘as-is’ hereafter). We note that although XPS is primarily a surface-sensitive

technique with up to 10 nm depth sensitivity, measurement of the freshly cleaved surface is

only an indirect way to examine the bulk. In other words, the near-surface region of a cleaved
crystal is expected to resemble the bulk, ignoring, for the context of this study, the various sur-

face relaxation and reorganization phenomena which are confined to the topmost monolayers,

and which are outside the current scope. This approximation has recently been used by Snaith

and Koch groups which have utilized XPS on cleaved MAPbBr3 and methylammonium triio-

dide (MAPbI3) crystals to probe dopant concentration and the impact of light illumination,

respectively, in the crystal bulk.[25, 26] In principle, hard X-ray photoelectron spectroscopy

(HAXPES) measurements can allow for a deeper sample probing due to larger inelastic mean

free paths of the photoelectrons at higher kinetic energies, these need to be carried out at a syn-

chrotron facility and, as such, are beyond the scope of this study.[13]

2.1. Presence of Pb˚

XPS spectra of the Pb 4f core level for the as-is and cleaved surfaces are shown in Fig 1. The Pb

4f core level peaks of the as-is surface reveals that in addition to the major components, namely

the 4f7/2 and 4f5/2 doublet (138.4 and 143.3 eV, respectively), we observe shoulders at lower

binding energy (BE), (136.4 and 141.3 eV, respectively). These have recently been ascribed to

Fig 1. Presence of Pb˚ and chemical contaminants. XPS data showing the Pb 4f, C 1s and O 1s core level peaks for the as-is and cleaved
surfaces of crystals. Pb 4f peaks show a shoulder (red) ca. 2 eV below the main peaks (green), corresponding to Pb˚. C 1s core peaks can

be split into three components: amorphous carbon (grey), carbon belonging to methylammonium (orange), carbon belonging to oxygen-

functionalities (red). Oxygen functionalities, depicted by O 1s comprise of O-H (blue) and adsorbed water (green) components. Possibly,

the O-C species overlaps the O-H component.

https://doi.org/10.1371/journal.pone.0230540.g001
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Pb˚ due to under-coordinated Pb.[7, 26–29] We find the Br:Pb ratio (ca. 2.6) to be below the

stoichiometry of the perovskite at the as-is surface, pointing toward the presence of PbBr2. The

C 1s core level peak on as-is surfaces, is found to comprise of 3 components: amorphous car-

bon, carbon belonging to CH3NH3 and a higher BE component (ca. 287 eV) corresponding to

carbon-oxygen functionalities. We posit that the amorphous carbon is from residual solvents

used during the crystal growth process. A significant amount of oxygen is also found on as-is
surfaces.[30, 31]

It is important to note that MAPbBr3 crystals tend to be robust during brief XPS measure-

ments and do not undergo any measurable chemical changes, as recent, carefully performed

studies have shown.[26, 32] Whereas brief exposures to X-rays do not induce any noticeable

changes,[26] longer exposures up to 1.5 hours cause MAPbBr3 to degrade causing a very small,

but noticeable increase in Pb˚.[32] Keeping the vulnerability of MAPbBr3 to long X-ray expo-

sures in mind, we have performed XPS measurements on freshly prepared and cleaved crystals

strictly keeping the X-ray exposure times to within 10 minutes for all the Pb 4f scans. It was

also ensured that X-ray flux, exposure time and the ultra-high vacuum (UHV) conditions

remained the same across all the samples measured. S2 Fig. shows a high resolution Pb 4f scan

taken on the same spot on a cleaved crystal 1 hour apart during constant X-ray exposure

under normal measurement conditions. No change in peak shape and position is detected con-

firming the robustness of our crystals to the X-ray exposure conditions. We are therefore able

to confidently ascribe the observed Pb˚ as intrinsic to the crystals and not a measurement

artifact.

The chemical impurities and metallic lead detected on as-is surfaces also abound in the

bulk of the crystal, as revealed by XPS measurements on cleaved surfaces (Fig 1, lower panel

and Table 1), whether prepared in air or in inert atmosphere (S1 Table). The Pb˚ content is

found to remain high, but decreased slightly by ca. 12% compared to the as-is surface. C:Pb

and O:Pb ratios are reduced from 2.9 and 0.7 for the as-is surface to 1.3 and 0.3 upon cleaving.

The Br:Pb ratio remains relatively unchanged (ca. 2.5), suggesting that Br-deficiency prevails

throughout the crystal. The cleaved surface, however, does show a significantly reduced amor-

phous carbon content, suggesting the residual solvent is primarily present near the growth sur-

face of the crystal. Importantly, the ratio of the CH3NH3
+ carbon component in C 1s (orange

component of C 1s in Fig 1) to Pb is similar for both the as-is and cleaved surfaces (0.95), sug-

gesting a uniform presence of the methylammonium cation across the surface and the bulk.

The likely presence of PbBr2 in crystals can be explained by chemical reactions between

perovskite and the ambient moisture. Perovskites are prone to hydration,[33] as summarized

for the well-known case of MAPbI3 in Eq (1):

4MAPbI3ðsÞ þ 2H2OðlÞ ! MA4PbI6 � 2H2OðsÞ þ 3PbI2ðsÞ ð1Þ

MAPbI3ðsÞ þH2O! PbI2ðsÞ þMAIðsolutionÞ ð2Þ

MAPbI3ðsÞ ! PbI2ðsÞ þMAIðgÞ ð3Þ

Table 1. Summary of atomic ratio determined from XPS relative atomic quantification.

Sample Atomic ratio

Br:Pb N:Pb C:Pb O:Pb

As-is 2.6 1.1 2.9 0.7

Cleaved 2.5 1.0 1.3 0.3

https://doi.org/10.1371/journal.pone.0230540.t001

PLOS ONE Facile and noninvasive passivation, doping and chemical tuning of macroscopic hybrid perovskite crystals

PLOS ONE | https://doi.org/10.1371/journal.pone.0230540 March 17, 2020 6 / 16

https://doi.org/10.1371/journal.pone.0230540.t001
https://doi.org/10.1371/journal.pone.0230540


Perhaps similarly likely is the chemical decomposition of MAPbBr3 into PbBr2 and MABr

in the presence of moisture, e.g., water vapor in air or water dissolved in solution (correspond-

ing scenarios for MAPbI3 are shown in Eqs 2 and 3). It has been shown that MAPbI3 films

decompose under annealing, leading to desorption of the MAI species at the grain boundaries

and resulting in PbI2-rich boundaries, a mechanism also possible in MAPbBr3, and possibly

explaining the presence of more PbBr2 on the as-is surface compared to the cleaved surface.

[34] Contamination in solution may also be exacerbated in a sol-gel process as the surface of

precursor colloids which assemble in the final solidification process can be pre-contaminated,

leading to incorporation of such contaminants into the bulk of macroscopic crystals.

2.2. Bromine-vapor treatment

Br-deficiency and, therefore, a sub-stoichiometry in MAPbBr3, is obviously expected to result

in Pb2+ cations, which can then trap electrons forming Pb˚.[22, 35] Pb˚ has been suggested to

pin the Fermi level near the conduction band minimum (CBM) resulting in an n-type charac-

ter of perovskites.[26, 36, 37] Our Kelvin-probe measurements (S3 Fig) suggest a slightly

reduced work function for the as-is crystal indicative of a Fermi level pinned near the CBM

due to a high trap density, which agrees with the 12% higher Pb˚ content for the as-is crystal,

as determined from XPS. In fact, Hall measurements (discussed later) suggest that the initial

n-character of the as-is crystal converts into a p-character upon cleaving. Our findings are

commensurate with a prior report on triiodide-based perovskite crystals where a work func-

tion increase upon cleaving was linked to reduced trap states in the bulk.[38] Angle-resolved

XPS was recently employed to reveal a ca. 30% increase in the relative amount of Pb˚ on the

top surface of as-is MAPbBr3 (accessed using shallow-angle emission) versus the bulk

(accessed using normal emission).[26, 39] In light of this earlier report, our findings affirm

that Pb˚ is present in the crystal bulk, albeit gets enriched at the surface of as-is crystals.

With sufficient literature suggesting that Pb˚ behaves as carrier traps resulting in exciton

quenching, and our XPS data finding that ca. 10% Pb in the bulk of our crystals is Pb˚, we were

tempted to find a facile way to suppress Pb˚ and enhance charge transport in our crystals. One

way of realizing this is to supply Br which can compensate for the Br deficiency, coordinating

with Pb˚ and increasing the Br:Pb ratio. This has been demonstrated recently in the context of

MAPbI3, when Zhang and co-workers employed hypophosphorous acid in the precursor solu-

tion to reduce the Pb˚.[40] The treatment, carried out in the solution-phase during synthesis

of MAPbI3 films, effectively increased the I:Pb ratio, suppressed metallic Pb and enhanced the

PL, resulting in optoelectronically superior semiconducting films. Around the same time, Cho

and co-workers reported an enhancement in current efficiency of their MAPbBr3 light-emit-

ting diodes by preventing formation of Pb˚.[7] The authors employed a higher molar concen-

tration of MABr in the precursor solution resulting in significant PL improvement.[7]

Seeking process-simplicity, we were interested in developing a Pb˚-suppression protocol

that can be applied on as-grown bulk crystals without intervening in the crystal growth step.

We took the view that sol-gel processes leading to the solidification of hybrid perovskite crys-

tals through colloidal self-assembly and solvent removal may have space-filling challenges and

require pathways for the trapped solvent to escape through during crystal growth. While this is

likely to occur via grain boundaries in polycrystalline films,[9, 10, 41] the same cannot be said

for macroscopic crystals. In the latter case, a growth front of finite thickness forms between the

solid MAPbBr3 crystal and the precursor solution and moves during inverse temperature crys-

tallization, forming opposing steady-state gradients of solvent and solute concentrations, as

well as a gradient of density. The solvent is released by the colloidal sol-gel precursor in order

for the solute to incorporate the growing MAPbI3 crystal. We hypothesize the escaping solvent
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may leave behind nanoscopic defects and porosities which subsequently allow the diffusion of

gases and vapors back into the bulk. Besides, as is well-known in metal oxides and oxide perov-

skites, gas diffusion is possible through oxygen vacancies.

In light of these possibilities, we devised a facile and single-step Br-vapor treatment which

should be capable of diffusing through defects, and vacancies (Fig 2A), and perhaps even pene-

trate well into the bulk material as does intercalation, for instance, into layered materials such

as graphite and few layer graphene.[42, 43] As-grown and cleaved MAPbBr3 crystals were

exposed to Br2-vapors for a duration ranging from a few tens-of-minutes to an hour. A 20-min

treatment resulted in a Br:Pb ratio of ca. 3, as determined by XPS, and successfully removed

Pb˚ species from the surface and bulk of the crystal, as verified by cleaving the same sample.

Shift of the Pb 4f to lower BE by ca. 500 meV (Fig 2B) is consistent with the picture of p-doping

(unpinning of the Fermi level). Fig 2B also shows the Br 3p peaks where a higher BE compo-

nent (blue) develops upon 20-min bromination, becoming stronger with 60-min bromination.

No changes are observed in Pb 4f peak as the treatment time is increased from 20 to 60 min. It

Fig 2. Bromine-vapor treatment. (A) Schematic showing the treatment process (B) XPS data showing the Pb 4f core peak from the top

surface of the brominated crystals. Suppression of the Pb˚ peaks is found (C) XRD of the various MAPbBr3 crystals showing the (002)

scattering peak shift (D) PL peaks for the various conditions. A blue-shift of ca. 2 nm is observed after Br-vapor treatment.

https://doi.org/10.1371/journal.pone.0230540.g002
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is important to discuss here the nature and origin of the higher BE components in Br 3p,

which are absent in spectra taken on as-is surfaces (S4 Fig). In recent work on bromination of

graphene,[42, 44] these higher BE shoulders have been ascribed to anionic Br (Br-). The species

was observed upon bromine intercalation in graphene sheets and was found to form via

extraction of electrons from nearby electron-rich centers resulting in p-doping. In the current

context, we postulate that bromination serves dual roles: (i) bromine incorporated in the

perovskite host lattice accepts electrons from metallic lead, passivating Pb˚ and restoring stoi-

chiometry; (ii) once stoichiometry is restored, further bromination (60-min treatment) results

in an enhanced anionic Br content pushing the Br:Pb ratio to 3.3 and, probably increasing

hole concentration, as shall be revealed later. We have confirmed the successive increase of

anionic Br with vapor exposure time, by analyzing Br 3d peaks as well (S5 Fig).

Interestingly, similar findings have been made very recently for iodine vapor exposure of

MAPbI3 films,[39] where the authors have observed p-doping resulting in enhanced electrical

conductivity. The authors have argued that p-doping occurs as a result of suppression of iodide

vacancies. In fact, the authors have used angle-resolved XPS to prove that iodine exposure

results in uniform bulk doping of the perovskite rather than surface adsorption. Encouraged

by these results, we carried out angle-resolved XPS on our MAPbBr3 crystals for the as-is,
cleaved and brominated samples. XPS was measured at normal- (90 degree) and grazing- (25

degree) emission with respect to the crystal plane and the relative bromine content was deter-

mined. Following the Cahen group’s report,[39] normal emission highlights the bulk chemical

composition, while grazing emission is highly surface sensitive. S2 Table summarizes the data

and clearly demonstrates that the bulk/surface ratio for the relative bromine content remains

unaltered by bromine vapor exposure, suggesting that there is no excess bromide on the sur-

face. For the extended exposure for 60 mins (leading to maximum improvement in charge

transport), however, the bulk/surface value is higher indicative of a significantly higher bro-

mine incorporation in the bulk.

XRD analysis (S6 Fig) shows the scattering signatures of (001), (002) and (003) planes of

cubic MAPbBr3 in all the samples,[12, 45, 46] suggesting that the host lattice structure is pre-

served. However, we observe an expansion of the lattice in the [001] direction. Further analysis

of the concomitant (002) peak (Fig 2C) informed us of an apparent crystallinity enhancement

as well—indicated by a dramatic increase of the diffraction intensity—in addition to a possible

Br incorporation-led lattice expansion. The (002) planes appear to diffract coherently through-

out the crystal with a new interplanar spacing, upon Br incorporation. Probing depth for this

peak was estimated using X-ray optical constants and Bragg angle corresponding to the (002)

plane and was found to be several microns (ca. 8 μm), directly implying that incorporation is a

bulk process. The incorporation of Br into the crystal bulk was further confirmed by X-ray

fluorescence (XRF) measurements, with probing depths of several hundreds of microns. Br:Pb

ratio was measured by XRF: first on the top surface and then in the bulk (accessed by cleaving

the crystals) of the brominated crystals. The brominated crystals retain their increased Br:Pb

ratio in the bulk (S7 Fig).

Analysis of (002) peak shifts upon bromination (Fig 2C) suggests that the lattice parameter

of MAPbBr3 increases to 5.910 Å from 5.885 Å for the as-is crystal. The value of 5.910 Å is

close to the reported value (5.920 Å-1) for MAPbBr3.[12, 45, 47] This corresponds to a unit cell

volume expansion by ~ 1.3% upon bromination. We measured the change in crystal volume

using an optical microscope and found that it increased by ~ 11% upon a 60-min bromine

vapor exposure. The significant discrepancy between the two values can be ascribed to factors

such as deformation and strain in the crystal undergoing bromination that can exaggerate the

volume expansion due to bromine-incorporation. Additionally, incorporation and adsorption

of Br on the internal vacancies and porosities of a macroscopic crystal can result in volume
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expansion of the macroscopic crystal without incurring a lattice expansion. Taken together,

these results suggest a combination of bromine-incorporation into the perovskite lattice as

well as adsorption onto pore surfaces within the macroscopic crystal.

It is worth highlighting that we do not detect any presence of a crystalline Pb˚ phase in

XRD measurements performed on the as-prepared and cleaved crystals. This is consistent with

the colloidal sol-gel nature of perovskite crystallization as established previously.[48] The sol-

gel ink is a complex between the precursor and the solvent. Sub-stoichiometric species can be

produced through its solidification.[9, 10] Pb˚ is expected to form as a side-product—most

likely a chemical variation of one of the chemical components (MABr/PbBr2)–and locally

incorporate the perovskite rather than form a well-defined and crystallographically coherent

phase.

Although no change in the optical band gap is found upon bromination (S8 Fig), we

observe significant photoluminescence (PL) enhancement upon Br-treatment, as shown in Fig

2D, providing clear indication of significantly suppressed trap states. Given its wider bandgap

compared to the usually used MAPbI3, MAPbBr3 is a strong candidate as a top cell in perov-

skite tandem solar cells, and can in itself lead to high open-circuit voltages (VOC). Improve-

ment of PL for our brominated MAPbBr3 crystals is, therefore, an encouraging result in this

direction. Increased radiative recombination is suggestive of suppressed trap states, which can

otherwise lead to unwanted VOC-losses in a solar cell. For this promise to hold, the developed

bromination recipe needs to be translated to device-relevant MAPbBr3 thin films, which is

beyond the scope of the current paper. We note, however, that there has been recent interest

in solar cells that employ ~20 μm thick perovskite single crystals as the active layer.[49, 50]

Given the suppressed trap states and longer carrier diffusion lengths in single crystals, these

cells have shown excellent carrier extraction. We believe that the Br-treatment developed in

this paper is directly applicable to such single crystal solar cells for device performance

improvements.

We also note a blue-shift of ca. 2 nm for the 60-min treated crystal compared to the

untreated crystal. Our findings closely agree with studies on solution-phase Br incorporation

in perovskite nanocrystals where a blue-shift and an associated enhancement was observed in

PL intensity.[51] In addition, a recent report highlights the role of redox processes in perov-

skites (Pb+2! Pb˚) and demonstrates that Pb˚ species form deep traps in MAPbI3 resulting in

PL quenching. These results point toward the deleterious role Pb˚ plays in electrical transport

and that removal of this species is expected to enhance charge transport.

2.3. Charge transport enhancement

Hall-effect measurement data for untreated and Br-treated samples are shown in Fig 3 (and S3

Table). The trends reveal massively enhanced charge transport upon exposure to Br-vapor.

Interestingly, charge transport is found to improve further beyond the 20 min Br-treatment by

which point Pb˚ is already completely passivated. This confirms our above proposition that

the extra anionic Br is, in fact, responsible for hole concentration enhancement.

Resistivity of the crystals decreases by four orders of magnitude indicating a 10000-fold

enhancement of electrical conductivity. This entails a ca. 100-fold free carrier density increase

to ca. 1013 cm-3 and a ca. 50-fold carrier mobility enhancement (to a maximum of ca. 300

cm2V-1s-1). Importantly, the brominated crystals exhibit p-character compared to the n-type

as-is crystal.[26, 29, 36] Time-resolved PL experiments demonstrate that the average carrier

lifetimes increase by a factor of two upon bromination, providing clear experimental evidence

for the suppression of the surface defect states (S9 Fig). We ascribe the enhancements in carrier

mobility and carrier concentration primarily to trap passivation and doping. However, an
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additional effect of the treatment may very well be an enhancement of the long-range crystal-

line order, as demonstrated by XRD measurements. Crystallinity improvements imply a

reduction of structural defects which can potentially trap charge carriers.[12, 52] Although

cleaving the as-is surface is also found to result in a significant enhancement of crystalline

order (Fig 2C), we do not observe a markedly improved charge transport for the cleaved crystal

(Fig 3), largely owing to the fact that metallic lead species is still detected upon cleaving. Also,

the cleaving process is abrasive in nature and leads to a significantly rough crystal surface,

most likely resulting in carrier scattering during Hall effect measurements and possibly

compromising any gains that crystallinity enhancement can have. The carrier mobility and

conductivity values that the Br2-vapor treatment helps us achieve are notably more than those

Fig 3. Charge transport enhancement. (A) Conductivity, (B) Carrier density, and (C) Mobility, of the untreated and

Br-treated crystals obtained from Hall measurements. The measurements reveal enormous gains in charge transport.

‘Br-20 min’ and ‘Br-60 min’ represent 20-min and 60-min bromine-treated samples, respectively. Values are averages

over 4–5 crystals (see S3 Table for details).

https://doi.org/10.1371/journal.pone.0230540.g003
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reported for device-relevant MAPbBr3 thin films,[53] and crystals recently used for thermo-

electric applications.[54]

It is important to understand the above trends in charge transport in light of the earlier XPS

findings. These trends confirm that for smaller bromination times, Pb˚ is successfully removed

from the crystals accompanied with an increase in transport properties (conductivity, mobility

and carrier concentration) while for longer bromination times, the transport properties

improve further owing to incorporation of bromide interstitials that behave as acceptor defects.

Having demonstrated the presence of Br in the crystal bulk earlier on, we obviously expect

enhanced charge transport throughout the bulk of brominated crystals. To confirm, we cleaved

a 60-min brominated crystal and performed Hall measurements. Conductivity (10-4 Ω-1.cm-1),

free carrier density (1012 cm-3) and carrier mobility (280 cm2V-1s-1) were found to be very sim-

ilar to the values measured before cleaving, in line with our expectations.

4. Conclusion

In summary, our carefully-performed chemical compositional analysis of MAPbBr3 perovskite

macroscopic single crystals reveals presence of Pb˚ besides other chemical contaminations

within the bulk of as-synthesized crystals. Although amorphous C and O get significantly

reduced in the crystal bulk, Pb˚, a well-known charge carrier trapper, still abounds, most likely

inhibiting carrier transport. We devise a single-step, facile post-synthesis Br2-vapor treatment

protocol which takes advantage of the inherent vacancies and porosity of MAPbBr3 crystals to

allow vapor permeation throughout the bulk of the crystal. At shorter exposure times Br2

vapor treatment significantly suppresses bromine vacancies and, therefore, Pb˚, while at longer

timescales it introduces bromide interstitials that act as acceptor defects and p-dope the crys-

tals, leading to 10000-fold and 50-fold enhancements in electrical conductivity and carrier

mobility, respectively.
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