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A fast and fully‑automated 
deep‑learning approach 
for accurate hemorrhage 
segmentation and volume 
quantification in non‑contrast 
whole‑head CT
Ali Arab1,10, Betty Chinda2,3,10, George Medvedev4, William Siu5, Hui Guo3,6, Tao Gu3,7, 
Sylvain Moreno8,9, Ghassan Hamarneh1, Martin Ester1* & Xiaowei Song2,3*

This project aimed to develop and evaluate a fast and fully‑automated deep‑learning method applying 
convolutional neural networks with deep supervision (CNN‑DS) for accurate hematoma segmentation 
and volume quantification in computed tomography (CT) scans. Non‑contrast whole‑head CT scans 
of 55 patients with hemorrhagic stroke were used. Individual scans were standardized to 64 axial 
slices of 128 × 128 voxels. Each voxel was annotated independently by experienced raters, generating 
a binary label of hematoma versus normal brain tissue based on majority voting. The dataset was 
split randomly into training (n = 45) and testing (n = 10) subsets. A CNN‑DS model was built applying 
the training data and examined using the testing data. Performance of the CNN‑DS solution was 
compared with three previously established methods. The CNN‑DS achieved a Dice coefficient 
score of 0.84 ± 0.06 and recall of 0.83 ± 0.07, higher than patch‑wise U‑Net (< 0.76). CNN‑DS average 
running time of 0.74 ± 0.07 s was faster than PItcHPERFeCT (> 1412 s) and slice‑based U‑Net (> 12 s). 
Comparable interrater agreement rates were observed between “method‑human” vs. “human–
human” (Cohen’s kappa coefficients > 0.82). The fully automated CNN‑DS approach demonstrated 
expert‑level accuracy in fast segmentation and quantification of hematoma, substantially improving 
over previous methods. Further research is warranted to test the CNN‑DS solution as a software tool 
in clinical settings for effective stroke management.

Hemorrhagic stroke refers to the loss of brain function due to the accumulation of blood inside the brain arising 
from compromised cerebral  vasculature1,2. It is associated with high death rate and low recovery  probability3,4. 
Over 60 million DALY’s (Disability Adjusted Life Years—a measure of lost time and economic resources) are lost 
annually to hemorrhagic  stroke5, with stroke care costing 34 billion dollars in the United States  alone6.

Based on the stroke best practice recommendations, the presence of acute hemorrhagic stroke is confirmed 
clinically using non-contrast computed tomography (CT) imaging, which visibly distinguishes pathologic blood 
from normal brain  tissue7. Precision of clinical decision making for hemorrhagic stroke is greatly enhanced by the 
timely and accurate retrieval and application of information embedded within these scans. Hematoma detection 
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and assessment of the volume, location, and spread of the bleed are contingent for correct prognostication and 
treatment outcomes, constituting major determinants of stroke  mortality8–11.

However, the paucity of fast and accurate hematoma volumetric analysis tools have limited the effective util-
ity of CT-based information in guidance of care plans. Current clinical practice for hematoma quantification 
employs primarily the simple ABC (length, width, and height)/2 method, which assumes that the hemorrhage 
is elliptical and accordingly estimates hemorrhage volume by calculating the volume of the  ellipse12. Research 
even till recent has consistently shown that manual calculations involved with this clinical standard can be inher-
ently time-consuming, expertise dependent, error-prone, and challenging to deal with several complex, large, 
and irregular hematoma  cases11.

Given the clinical significance, numerous attempts at developing computer-assisted automation tools for 
hematoma volume have been  reported13–16. However, many of the techniques even till recent are either manual, 
semi-automatic, slow, or suffer from poor accuracy, especially for irregular hematoma shapes and  sizes13–19. Great 
efforts have been geared towards building automated segmentation tools with use of artificial intelligence tech-
nologies, in particular the promising deep-learning  algorithms20,21. Even so, established methods thus far have 
been largely restricted to handling intracranial hemorrhage and have not been evaluated in clinical  settings20,21. 
Developing fully-automated deep-learning methods with both high-level of accuracy and efficiency for improved 
clinical management of multiple types of hemorrhagic stroke is holding tremendous research  attention22,23.

Previously proposed approaches have attempted to address the problem through optimizing a hematoma 
mask using level-set techniques for computations of the hematoma surfaces and  shapes24–27. Despite the ease to 
follow complex shapes without the prerequisite of complicated parameterization, the level-set based methods 
have generally suffered from oversensitivity to the contour initialization, susceptibility to local optima and 
requiring numerous convergence  iterations24–27.

Alternatively, recent research has applied supervised learning methods, where the algorithm can learn the 
hematoma mapping function under supervision from the ground truth, i.e., previously defined labels indicating 
the hematoma regions. For example, the well-established PItcHPERFeCT method computes hand-engineered 
features (i.e., extract useful information from the images using the domain knowledge) for each voxel based on 
the surrounding patch, and a random forest model is trained to classify each  voxel28. However, despite the high 
accuracy, PItcHPERFeCT is slow as its feature extraction is computationally very  expensive28.

As an important aspect of artificial intelligence, the deep learning approaches have drawn an increasingly great 
attention in medical imaging analyses, due to its abilities to learn non-linear relationships from the data and to 
perform automatic feature extraction without using any domain knowledge. Several deep learning applications 
have tackled intracerebral hemorrhage (ICH)  segmentation17,29,30. Many of the methods are based on the U-Net 
model, a deep neural network based approach designed for training end-to-end for dense segmentation, i.e., 
producing voxel-wise  labelling7,29. Although the currently available deep learning methods have shown effective-
ness and efficiency in segmenting ICH, there are unsolved questions calling for further research. First, most of 
the previous findings were based on CT images from a single institute and thus requires generalization testing. 
The model’s performance might be affected by slice spacing that can vary between CT scans in multiple center 
data. Also, the input data to most of the methods were only patches or a small number of consecutive slices of 
the CT scan, which limited the model’s field of view while requiring additional inferences to reconstruct the 
whole-brain images, increasing the time for the error-prone prediction.

Here, our team aimed to develop a fast and fully-automated deep-learning oriented approach for accurate 
hemorrhage segmentation and volume quantification on non-contrast whole-head  CT31. To achieve this goal, 
we applied a convolutional neural network with deep supervision (CNN-DS) on a novel dataset collected from 
three hospitals. This modified U-Net with deep supervision method combined the strengths of CNN in effectively 
learning visual imagery data with deep supervision to speed up the convergence and reduce over-fitting32, and 
thereby increasing generalizability of the model. This ability is crucial in studying medical images where train-
ing sample size is often limited by the availability of clinical data and human-expert  labeling32. This study marks 
the first effort to our knowledge that extends the usability of U-Net with deep supervision for the segmentation 
and quantification of hematoma volume in CT scans. We evaluated the performance of the CNN-DS method 
in terms of accuracy and efficiency, and compared these with those of three recently established well-adopted 
machine-learning algorithms. We hypothesized that the CNN-DS approach can yield an expert-level of accuracy 
in segmenting and evaluating hemorrhage volume on head CT images, while being highly time-efficient.

Results
Training and test cohort. Table 1 provides the characteristics of the patients randomly selected for the 
training and testing data subsets. Patients in the two subsets showed similar demographics, even though patients 
in the testing set appeared to be slightly older (t = − 1.6, p = 0.12 two-tailed).

Segmentation accuracy, efficiency, and reliability. The CNN-DS method for hematoma quantifica-
tion in the training set had a Dice coefficient score of 0.82 ± 0.06 at an average running time of 0.59 ± 0.02 s.

Compared with the reference standard of expert labelling, the CNN-DS method resulted in a Dice similar-
ity coefficient, precision, and recall of 0.84 ± 0.06, 0.85 ± 0.07 and 0.83 ± 0.07 respectively in the testing set. The 
Cohen’s kappa coefficient for each pair of raters was consistently high as shown in Table 2 (M indicates the CNN-
DS method; Ei , human-expert rater i; CI, 95% confidence interval; kappa, Cohen’s kappa coefficient; β and α, 
slopes and intercepts in the regressed linear model; * indicates p < 0.001.). The average of the kappa coefficient 
for inter-expert pairs in {E1, E2, E3} was 0.88 ± 0.01 and the corresponding value for “method-expert” pairs was 
0.83 ± 0.01. For the two groups containing kappa coefficient measures for all images and all raters, there was 
no statistically significant difference in the mean between “expert-expert” and “method-expert” pairs (Mann 
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Whitney U, p > 0.05). In addition, the estimated parameters of linear regression showed significant  (pβ ≤ 0.002) 
correlations and insignificant intercept  (pα ≥ 0.09) between different pairs (Table 2).

Similarly, the linear models obtained for each pair of raters in terms of measurements showed that the 
CNN-DS method was highly similar to those between the two neuroradiology experts, while rater 3 appeared 
to be more likely showing dissimilarity (Fig. 1). The average disagreement rate between experts {E1, E2, E3} was 
0.09 ± 0.02, whilst the corresponding value between “method-expert” was a comparable 0.08 ± 0.02.

Figure 2 shows several examples of segmentation output of the CNN-DS method compared to radiologist 
raters; demonstrating high accuracy with a Dice score of 0.88 (Panel A), false positive (Panel B), false negative 
(Panel C), and more obvious discrepancies (Panel D). As the examples showed, even though it might be perceived 
as false negative, the areas missed by our CNN-DS method are controversial parts for which even radiologists 
do not agree on; e.g., as shown by the voxels of missed subarachnoid hemorrhage identification in the sulci of 
bilateral parietal lobes (Fig. 2D).

Table 1.  Patient demographics.

Training set Testing set

N 45 10

Age (years, mean ± std) 62.6 ± 15.7 70.7 ± 8.4

Sex (male, %) 51 60

Deep-seated intracerebral hemorrhage (ICH, %) 40 30

Hemorrhage reaching cortical surface (%) 77.8 100

Intraventricular hemorrhage (%) 40 30

Oral anticoagulants (%) 24.4 40

Antiplatelet (%) 6.7 0

Hematoma evacuation (%) 11.1 0

Table 2.  Agreement measures for each pair of raters on the testing data set.

Raters Cohen’s kappa β (p-value) α (p-value)

E1, E2 0.88 ± 0.05 1.13 (p = 7.99e−10*) − 2.30 (p = 0.141)

E1, E3 0.87 ± 0.07 1.45 (p = 1.11e−06*) − 8.26 (p = 0.107)

E2, E3 0.89 ± 0.07 1.29 (p = 1.15e−07*) − 5.60 (p = 0.126)

E1, M 0.84 ± 0.06 1.05 (p = 6.12e−08*) − 1.24(p = 0.600)

E2, M 0.82 ± 0.08 0.93 (p = 4.97e−08*) 1.01 (p = 0.648)

E3, M 0.82 ± 0.08 0.69 (p = 1.31e−05*) 6.36 (p = 0.142)

Figure 1.  Disagreement percentages between each pair of raters. E1, E2, E3 represents expert 1, 2, and 3, 
respectively, while M indicates the CNN-DS method. Disagreements rate is displayed in gray-scale blocks; the 
darker the block, the higher the disagreement rate. Figure 1 was created using Matlab R2017b (https ://www.
mathw orks.com).

https://www.mathworks.com
https://www.mathworks.com
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Efficiency evaluation. The training of the CNN-DS model was executed for 500 iterations with a batch of 
size one (i.e., one image), taking 18 h to complete. Once trained, the neural network could complete the segmen-
tation of any new whole-head CT image of size 128 × 128 × 64 in < 1.0 s. Here, the average execution time was 
0.74 ± 0.07 s on a single graphics processing unit (GPU). This included all the pre-processing steps, demonstrat-
ing superb efficiency.

Comparison with previous methods. Table 3 summarizes the result of the experiments comparing the 
CNN-DS method against the patch-wise U-Net, slice-based U-Net, and the PItcHPERFeCT methods. The bold 
values in the table indicate the method that achieved the best performance for a particular metric. In all metrics 
except recall, the CNN-DS method developed in the present study outperformed the others. The apparent higher 
recall of the PItcHPERFeCT method compared to CNN-DS was associated with (i) a cost of higher processing 

Figure 2.  Examples showing the segmentation outcomes using the CNN-DS method. In each panel, the 
left, middle, and right images are the original CT slice, the ‘ground truth’ labels, and the CNN-DS predicted 
segmentation, respectively. The pointing arrows indicate the error. (A) Represents a case where the CNN-DS 
method demonstrates an expert-level performance. (B) Shows a false positive instance where a calcified 
structure is labelled as a hemorrhagic area due to its Hounsfield Unit values being higher than those of its 
surrounding tissues. (C) Shows a false negative example in which the CNN-DS method identified part of the 
hemorrhage but missed some blood close to the bone. (D) Illustrates a more complicated case of complex 
hemorrhage where the discrepancies between the ‘ground truth’ and the predicted segmentation cannot 
necessarily be attributed to erroneous prediction.
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time; i.e., CNN-DS was 1900 times faster than PItcHPERFeCT (0.74 ± 0.07 s verses 1412.34 ± 20.05 s), and (ii) 
a large precision hit, i.e., a drop from 0.85 for CNN-DS to 0.63 for PItcHPERFeCT, suggesting the promising 
potential of CNN-DS with clinical utility in support of fast decision making.

Ablation study. Figure 3 shows the training and validation for the two models, comparing CNN with and 
without deep supervision (DS). For the model with the deep supervision, the training loss converges at a con-
siderably faster rate while the converged loss value is lower than the converged value of the model without deep 
supervision, demonstrating that the model with deep supervision had an improved robustness.

As shown in Table 4, removal of deep supervision introduced a respectively 0.05, 0.04, and 0.06 drop in the 
dice coefficient score, precision, and recall, respectively. The CNN with DS showed slightly higher processing 
time, presumably attributed to the skip connections that can induce a delay in the GPU (graphical process-
ing unit) buffer de-allocation as the input of the skip connection must be kept in memory until the end of the 
skipped block to be added to the output. The bold values in the table indicate the method that achieved the best 
performance for a particular metric.

Discussion
In this study, we developed and evaluated a fully automatic deep-learning solution to accurately and efficiently 
segment and quantify hemorrhage volume, using the first non-contrast whole-head CT images taken during clini-
cal stroke management. We also compared the performance of this novel U-Net convolutional neural network 
with deep supervision (CNN-DS) solution with that of the currently available patch-wise U-Net  solution33, slice-
based U-Net20, and the random forest based PItcHPERFeCT  solution28. The results suggested that the CNN-DS is 

Table 3.  Segmentation quantitative performance.

Method Dice score Precision Recall F1 score Processing time (s)

Patch-wise U-Net33 0.74 ± 0.09 0.73 ± 0.17 0.76 ± 0.09 0.74 9.4 ± 0.2

Slice-based U-Net20 0.80 ± 0.7 0.78 ± 0.10 0.84 ± 0.08 0.80 12.3 ± 3.6

PItcHPERFeCT28 0.76 ± − 0.11 0.63 ± 0.15 0.98 ± 0.01 0.77 1412.34 + 20.05

CNN-DS (present study) 0.84 ± 0.06 0.85 ± 0.07 0.83 ± 0.07 0.84 0.74 ± 0.07

Figure 3.  The training and validation loss for the U-Net model with and without deep supervision. The x-axis 
indicates the number of epochs, which is the number of times the deep learning model has passed through the 
entire training data during the training phase. The y-axis represents the loss value which implies how well the 
model behaves after each epoch; the lower the loss, the better a model. The dashed lines show the validation 
losses while the solid lines show the training losses. For the model with the deep supervision (blue lines), the 
training loss converges at a considerably faster rate, and the converged loss value is lower than the converged 
value of the model without deep supervision (green lines).

Table 4.  Segmentation quantitative performance for the two models with and without deep supervision (DS).

Method/evaluation Dice score Precision Recall F1 score Processing time (s)

Without DS 0.79 ± 0.11 0.81 ± 0.09 0.77 ± 0.09 0.74 0.72 ± 0.10

With DS 0.84 ± 0.06 0.85 ± 0.07 0.83 ± 0.07 0.84 0.74 ± 0.07
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highly accurate at segmenting hematoma, as demonstrated by a Dice similarity coefficient of > 88%. Additionally, 
agreement analysis examining the automated deep-learning method compared to the human experts revealed 
that the CNN-DS approach reached an expert-level reliability. Moreover, with an average running time of just 
0.7 s, the fully automated solution exhibited its potential in aiding real-world clinical stroke management, where 
fast segmentation plays a critical  role9,10,15.

Our data must be interpreted with caution. First, a main general limitation in the field of medical image 
analysis applying deep learning technologies is the lack of access to sufficiently large  datasets34,35, and our work 
is no exception. We were REB-approved to use the very first non-contrast CT images of 200 patients during the 
approved study time, but had to randomly selected 55 for use in the project due to limitations on expert time with 
manual input. Future studies with increased sample size will verify and test the generalization of the research find-
ing. Even so, our data were from multiple hospitals, included different kinds and levels of hematoma complexities, 
and involved a variety of scanner types, making the sample representative of the diverse patient population.

This need of larger datasets is typically compounded by the need for multiple voxel-wise labelling of each 
image set by multiple clinical experts, making ground-truth reference preparation a time-consuming and tedious 
task and challenging to perform manually by busy  clinicians36,37. Despite such obstacles, we succeeded in engag-
ing a team of six qualified raters who independently labelled a dataset of 55 CT images of 512 × 512 ×  [45–66] 
voxels (i.e., of a total of 57,671,680 voxels) for training and validation. Our testing dataset, though relatively 
small, consisted of randomly selected new cases that were completely unknown to the model, and thus involved 
no possibility of data leakage as with other cross validation methods.

Certainly, the raters varied in their experience of evaluating the CT scans and segmenting hematoma, which 
appeared to be the primary source of the variation in the human–human reliability of the segmentation results 
(Fig. 1). Despite the difference, the human–human variation was still reasonably low in our study. Here, impor-
tantly, even by counting only the highest agreement rate between the two experts with quite similar experience, 
the CNN-DS based machine–human reliability was only marginally but not statistically lower (0.88 ± 0.05 vs 
0.83 ± 0.009). Further research needs to pay a closer attention to improved uniformity of the human rater quality 
in generating the best possible ground-truth reference standard. This is particularly true with the training dataset, 
a portion of which was labelled by non-neuroradiology experts. Nevertheless, the supplementary labelling was 
used only for training the CNN-DS and a high-performance model on testing data was yielded, confirming the 
superior capacity of the U-Net based solution in effectively dealing with the noise in the training  data38,39. Future 
work may leverage recent advances in deep learning from noisy  annotations40.

Meanwhile, even though the chances do get better with larger sets of correctly labelled data, no dataset can 
possibly cover absolutely all-different variants of hemorrhagic stroke, whilst the theoretical ‘ground-truth’ ref-
erence can always be subject to human errors and thus never be perfectly accurate. To this end, our on-going 
effort is to explore techniques such as active learning to identify a set of unlabeled  images41, as well as creating 
automated simulation datasets with known labels (unpublished data under review), whose ‘ground truth’ would 
be most beneficial to increase the accuracy of the method in future work.

Even with these limitations, our study has contributed to the development of clinically translatable software 
tools in support of hemorrhagic stroke management. There are several clinical scenarios where detection and 
quantification of the volume of hematoma are of unequivocal  importance9,11,17,22,23. First, in a triage system, such 
software tools can be used to identify the presence of hemorrhage in patients and alert physicians for immediate 
attention, reducing the turnaround time for patients with such critical conditions. Also, once a patient is diag-
nosed with hemorrhagic stroke, a physician can launch the software to obtain information about the volume and 
location of the hematoma, and consequently develop effective intervention strategy. In addition, segmentation 
software can be useful in evaluating repeated imaging performed for hematoma growth  estimation42,43. In this 
case, the software will be used to provide a numerical value of the hematoma volume change between consecutive 
CT scans of the same patient performed within a short period. Such knowledge is valuable for prognostication as 
well as to guide future care planning. In this paper, we have aimed to realize the utility of the CNN-DS method 
to be established into a potential software tool for aiding all three clinical scenarios.

Our research also contributes to the advancement of computer science. Although several methods have been 
described in the literature to segment intracranial hemorrhage, they all suffer from some major drawbacks such 
as failing to balance the trade-off between accuracy and time-efficiency, sensitivity to initialization states, and 
lack of evaluation on CT images from multiple  institutes9–17. Even the most recently developed deep learning 
solutions have often not been able to realize the targeted level of  performance18,19. As one of the favorable meth-
ods standing out in the literature, the PItcHPERFeCT solution achieved a Dice similarity coefficient of 91%28. 
Even so, the level of accuracy is sabotaged by a slow processing speed (i.e., the extremely long running time), 
due to prolonged pre-processing steps such as skull stripping, and template registration, and computing several 
hand-engineered features for every  voxel28. As a result, segmentation of one whole-head CT image can take more 
than 20 min, which makes it less suitable for solving real-world problems in clinical settings. Similarly, the novel 
CNN-DS method outperformed the more recently introduced methods for segmenting hematoma volume based 
on other deep learning  models20,33, both in accuracy measures and running time.

Future work in this research line will test the possibility to build the CNN-DS method into an “easy-to-
operate” software application with a user-friendly interface. This will enable future clinical translation of deep-
learning innovations into bedside tools for point-of-care usage.

Conclusion
In this study, we have developed and evaluated a fully automatic deep-learning method, namely convolutional 
neural networks with deep supervision (CNN-DS), for segmentation and quantification of hematoma volume in 
CT images. This method demonstrated human-expert level reliability while being highly time-efficient compared 
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to other established machine-learning approaches. The CNN-DS solution has the potential to be deployed in 
clinical settings in the future to assist physicians in identifying and evaluating hemorrhage and guiding clinical 
decision-making, leading to improved clinical outcomes for patients with hemorrhagic stroke.

Methods
Dataset. This is a secondary use of existing clinical CT scans. Based on the REB approval, 200 patient CT 
images were obtained: The first non-contrast whole-head CT scans of patients who were newly identified with 
a primary diagnosis of acute hemorrhagic stroke between January 1st 2011 and January 1st 2018 across Fraser 
Health, British Columbia. The samples were retrieved using non-probability sampling based on accessibility at 
the time of data  preparation44. Patients with history of hematomas or with hemorrhage due to tissue plasmino-
gen activator administration for treatment of ischemic stroke were excluded. Out of the retrieved data, we ran-
domly selected 55 CT image sets (52.7% male; mean age = 64.1 ± 14.9 years) applying a random data generator. 
The images were then annotated and pixel-wise labeled for use in the study (i.e., there were 780,894,208 labeled 
voxels per CT scan). The CT dataset contained images that were acquired using several models of CT scanners, 
including GE Discovery CT750, GE LightSpeed VCT, and Siemens SOMATOM Definition Flash.

Image preprocessing. Each CT image contained 43 to 60 2D slices (mean: 53.72 ± 7.16) with a matrix 
size of 512 × 512. Voxel spacing for x and y varied from 0.42 mm to 0.50 mm, and slice thickness ranged from 
2.4 mm to 3 mm. Each CT image was first stripped off the patient identifying information prior to further use. 
Then, each of the anonymized whole-head CT images was resized to a standard space of 128 × 128 (in plane) × 64 
(axial slice) voxels using linear and nearest-neighbor  interpolation45,46. The average voxel size was (1.8, 1.8, 2.4) 
 mm3 with no gap.

The non-contrast CT scans had relatively low contrast due to reasons including low-dosage radiation and 
noise during image acquisition and reconstruction, which is a known source of artefacts with image  processing47. 
Therefore, signal intensity normalization was performed, to increase the contrast in highlighting the hemorrhagic 
areas as typically applied in CT  analyses47. This was implemented using  python48 to adjust the grayscale and the 
brightness components of the images: Hounsfield Unit values less than 0 were mapped to zero, values higher 
than 100 were clamped to 100, and the values within the range (0, 100) remained the same.

Creation of reference standard. To create a “ground truth” reference standard for training the CNN-DS 
model and for evaluating and comparing the performance, each CT scan was manually segmented slice by slice 
to generate a binary classification of hematoma vs. normal brain tissue. Each voxel was labelled as either zero or 
one, representing the non-hemorrhagic and hemorrhagic class respectively. Then the processed CT data were 
separated into two completely non-overlapping subsets through random selection: the training set (n = 45) and 
a testing set (n = 10).

Segmentation of the testing set and a portion of the training set (n = 15) was performed by a group of three 
raters, consisting of two experienced neuroradiologists (co-authors of this article TG and HG, with respectively 12 
and 10 years of medical imaging experience); and a neuroscience MSc candidate (BC with three years of research 
training and additional specific training in hemorrhage evaluation and CT image segmentation), whose work 
was supervised and double-checked per request by a third neuroradiologist (WS, with 20 years of experience). 
Each rater segmented each of the voxels independently, blinded from patient information as well as the decision 
of other raters. The final label of a voxel was selected based on majority voting of the three raters.

This was supplemented with the segmentation of an additional training dataset (n = 40) by an experienced 
neurologist (co-authors of this article, GM with 20 years of experience) and a computing science PhD candidate 
(AA with three years of research training and specific training and supervision in hemorrhage evaluation and 
CT segmentation from GM). Each voxel was labelled with the final decision agreed upon by both raters.

Overall workflow. A convolutional neural network with deep supervision (CNN-DS) model for automatic 
segmentation of hematoma was developed using the training set. Then, the model was evaluated using the novel 
testing set consisting of data previously unseen by the model. Out of the available data, 10 images were selected 
randomly as the testing test, while the rest of the 45 images were used for training. Based on the segmented vox-
els, the hemorrhage volume was estimated automatically applying probability threshold, e.g., 0.50.

Neural network architecture. The U-Net architecture is a CNN network designed for training end-to-
end for dense segmentation, i.e., producing voxel-wise labelling. The present study was developed based on the 
improved version of the U-Net  architecture33,49. The network consists of a contracting path and an expansive 
path, each with a depth of four layers, as shown in Fig. 4.

The contracting path consisted of image filters to capture context and the convolutional layers followed by 
rectified linear units (ReLU) and max-pooling layers. Each context module was a residual  block50 consisting 
of two 3 × 3 × 3 convolutional layers with a dropout layer in between. The application of context modules was 
repeated and connected by 3 × 3 × 3 convolutions with stride  250.

The expansive path is applied to perform voxel labelling. It has a similar architecture as the contracting path. 
However, with the expansive path, the feature map resolution was increased by replacing max-pooling operators 
with up-sampling  operators50. Each up-scaling module consisted of a 3 × 3 × 3 up-sampling layer followed by a 
3 × 3 × 3 and a 1 × 1 × 1 convolution. The output of the upscaling module was concatenated with corresponding 
feature maps from the contracting path, and the result was fed to a localization module containing a 3 × 3 × 3 
followed by a 1 × 1 × 1 convolution. The expansive path recovers the original spatial size image from feature maps 
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using up-sampling operations. Localization modules, i.e., the two convolutions, are applied in each level to help 
the model learn to assemble a more precise output.

Deep  supervision51 was utilized by integrating segmentation layers at different levels of the network and merg-
ing them using element-wise summation to produce the final network output. The output of segmentation layers, 
as shown in Fig. 4, were first upsampled before being fed into the element-wise summation. To produce precise 
automated segmentation, high-resolution features (image properties that the CNN learns from the training set) 
from the contracting path were concatenated with the up-sampled feature maps. Feature maps were injected 
into the deeper layers of the network to mitigate the problem of the vanishing gradients. In each of such down-
sampling steps, the number of channels were doubled for the feature map.

The segmentation layers consisted of 3 × 3 × 3 convolution layers. Both input and output of the network are 
an image of size 128 × 128 × 64 voxels, with one channel representing the Hounsfield Unit values for each voxel 
and the probability map for the input and the output image, respectively. A threshold of 0.5 was applied on the 
probability map to yield the final labels.

Neural network training. The training dataset was further split randomly in two independent subsets: a 
set of 40 images for training, and a set of 5 images for validation. The parameters of the neural network were 
updated during the training process using the training set, to minimize the difference between the predicted 
segmentation masks against the segmentation of the reference standard (commonly referred to as ground truth). 
Dice similarity coefficient was used for multi-class segmentations as the loss function of the network, as defined 
by the  formula52:

where g and p are the label vectors for the predicted segmentation and the reference standard, respectively, 
L = {0,1} is the label space with 1 indicating a voxel belonging to the hemorrhage region and 0 otherwise, and 

∣

∣g
∣

∣

=
∣

∣p
∣

∣ is the size of vectors g and p.
A grid-search was used to tune the hyper-parameters of the neural network based on the validation set. We 

tuned the network depth {3,4,5,6}, learning rate { 10−2, 5 ∗ 10−3, 10−3, 5 ∗ 10−4, 10−4 }, and dropout rate {0.3, 
0.4, 0.5}. The Adam  optimizer53 was used to minimize the loss function. Table 5 shows the final values for the 
tuned hyper-parameters and the fixed ones. During the training, if the validation loss did not improve for ten 
consecutive epochs, the learning rate was divided by two. We also incorporated an early stopping mechanism, 
which stopped the training if no further improvement in validation loss was observed after 50 consecutive epochs.

Performance evaluation metrics. To assess the ability of the developed CNN-DS method to segment 
accurately, several approaches were employed. First, the segmentation mask predicted by the CNN-DS method 
was compared with the reference standard using the Dice similarity coefficient, precision, and recall.

Additionally, to evaluate the reliability of the CNN-DS method, the agreement rate between the neurora-
diology experts and the automation method were compared using standard Cohen’s kappa  coefficient54,55. For 
n ∈ {1,…,N} and i,j ∈ {1,2,3}, let K(Ei,Ej)n, be the kappa coefficient computed by annotation of image n by experts 
Ei and Ej, and let K(M,Ei)n be the kappa coefficient computed by annotation of image n by our method and 

loss = −
1

|L|

.
∑

lǫL

2
∑|g|

i g il p
i
l

∑|g|
i (gil+pil)

Figure 4.  The architecture of the CNN-DS neural network model. The dashed lines show the skip connections 
while the solid lines show the normal ones. The neural network learns features of the image based on a 
hierarchy framework starting with simple features such as edges and shapes and going through more complex 
and high-level features in the deeper levels. The contracting path extracts the features while the expansive path 
reconstructs the final labelling. Google Slides was used to produce this figure (https ://docs.googl e.com/prese 
ntati on).

https://docs.google.com/presentation
https://docs.google.com/presentation
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expert Ei, where N is the number of test images. The kappa measures for all the image voxels were grouped into 
two disjoint sets, where the first set, {K(Ei,Ej)n} , includes all “human–human” comparisons while the second set, 
{ K(M,Ei)n} , includes “human–machine” comparisons, where “machine” refers to the CNN-DS segmentation 
method. The size of each set is R × N, where R is the number of raters, and as mentioned above, N is the number 
of test images (in our case, R = 3, N = 10).

If it can be shown that the “human–human” and the “human–machine” comparisons come from the 
same distribution, it can be concluded that the CNN-DS method performs at a human-expert level, where 
the “human–machine” agreement rate is indistinguishable from that of “human–human”. This hypothesis was 
tested using the Mann–Whitney U test at a 0.05 significance level and presented adopting a previously reported 
procedure. Because there are no meaningful matching between the coefficients from the first group, {K(Ei,Ej)
n}, with the second group, {K(M,Eij)n}, we used the appropriate statistical for unpaired  data56. As three raters 
each manually segmented the 10 testing images independently, 30 samples were yielded for each comparison, 
satisfying the recommended sample size for performing the statistical  tests53.

Also, the predicted volume of the hemorrhage was compared with volumes measured by each neuroradiol-
ogy expert using the disagreement measure. The hemorrhage volume is computed by multiplying the number of 
hemorrhage voxels in the binary label image by the corresponding voxel size. For raters i and j, the disagreement 
measure was defined as:

where Vi,k and Vj,k are the volumes measured for image k by raters i and j, respectively, and N is the number of 
images. Moreover, to measure how biased the raters are against each other, we fit a linear model y = βx + α , 
where x and y denote volume measurements of the two raters to be evaluated.

Comparison with other ML methods. The performance of the CNN-DS method was compared to that 
of three established ML methods in the literature for hematoma segmentation, namely the original patch-wise 
U-Net33, slice-based U-Net20, and  PItcHPERFeCT28. Dice score, precision, recall, F1-score (showing a tradeoff 
between precision and recall) and processing time of each method was obtained on the testing set (n = 10) and 
compared with each other using non-parametric statistics.

PItcHPERFeCT is a hemorrhage segmentation tool utilizing random forests  algorithm28. It was selected for 
comparison with the CNN-DS method because of the high Dice score that was reported previously for PItcH-
PERFeCT. This high accuracy is achieved through extraction of extensive hand engineered features along with 
using prior knowledge such as template of the healthy  brain28. This makes it an interesting choice as it can be 
examined whether such hand-engineered feature selection and use of prior knowledge are advantageous com-
pared to CNN-DS method, which fully automatically learns the features. Previous research has noted that several 
pre-processing steps in PItcHPERFeCT can result in a reduced speed and efficiency, while it may not always be 
applicable to certain clinically relevant cases with intraventricular hemorrhage and subarachnoid  hemorrhages28.

The original Patch-wise U-Net method on the other hand is a deep neural network based approach, which 
follows a U-shaped CNN architecture as shown in Fig. 4. However, instead of being able to directly use the whole 
image as the input to the network as with the CNN-DS method, with the original patch-wise U-Net method, 
several patches must be extracted from the images before being fed to the network as  input33. The original 
patch-wise U-Net method also does not utilize skip connections, likely affecting the efficiency. This method 
was chosen due to the characteristics of the clinical dataset. It is well documented that typically, medical image 
segmentation tasks can suffer from lack of sufficient training samples. Patch-wise U-Net addresses this problem 
by partitioning the image into several small patches, and augments the data via a variety of transformations on 
the  patches33. This operation leads to increased sample sizes for training. However, by feeding the neural network 
with patches, the classifier loses the context for those patches so that segmentation quality can be negatively 
impacted. The CNN-DS adopts the original patch-wise U-Net model but overcomes its drawbacks, which will 
be examined through the comparison.

The backbone of the slice-based U-Net is a classic U-Net20. However, instead of the patches, image slices are 
fed into the network. The U-Net architecture utilizes batch normalization to limit drift of the activation outputs, 
and 50% dropout to minimize  overfitting20. Several operations are applied on the images before feeding to the 
network. First, windowing is performed by applying a threshold of 30 to 130 HU to the original grayscale CT 

1

N

N
∑

k=1

(Vi,k − Vj,k)

(
Vi,k+Vj,k

2
)

Table 5.  The model hyper-parameters.

Hyper-parameter Value

Network depth 4

Initial learning rate 0.005

Dropout rate 0.3

Batch size 1

First moment estimate 0.9

Second moment estimate 0.999
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images. Then, images are normalized by subtracting the mean and dividing by the standard deviation of gray 
levels. Next, the images are denoised by applying curvature driven image  denoising20. Finally, morphological 
closing operation was applied on the manually segmented hemorrhage region. As the dataset used for our study 
incorporated images from three hospitals, instead of an uni-site as with the original  work20, the present study 
finding is expected to help determine the algorithm’s generalizability to CT scans from multiple institutions.

Ablation study. We performed additional experiments to isolate the contribution of the deep supervision 
mechanism to the CNN algorithm. We trained two CNN networks where one utilized deep supervision in the 
architecture and the other did not, but were similar otherwise. The backbone architecture is shown in Fig. 4.

Software and programming information. Codes for the study were developed in Python3 (https ://
www.pytho n.org/downl oad/relea ses/3.0/) with use of the open source Keras 2.2.2 library and SimpleITK python 
 library46. The experiments were executed on a workstation with one Nvidia Tesla K40 GPU. The software 3D 
Slicer (version 4.8.1) was used for image processing and labelling of the CT images in creation of ground  truth57,58. 
Among the three baseline methods for comparison to ours, we used the public code available for reproducing the 
PItcHPERFeCT, and re-implemented the other two methods based on the published algorithms.

Statistical analyses. All statistical analyses were performed using RStudio version 1.1.383 (RStudio, Inc., 
Boston, MA, https ://www.rstud io.com), R 3.2.3 (The R Foundation for Statistical Computing, Vienna, Austria, 
https ://www.r-proje ct.org), Python 2.7.12 (https ://www.pytho n.org), and sklearn Version 0.19.2 (https ://pypi.
org/proje ct/sciki t-learn /).

Ethics. This research protocol has received harmonized Research Ethics Board review approval from Fraser 
Health Authority and Simon Fraser University (FHREB 2016-113). This research project did not involve the 
enrolment of any new participants. The project consisted of the de-identification and secondary analyses of 
existing non-contrast CT data of adult patients. The project was conducted with a waiver of informed consent, 
as approved by the Fraser Health Authority and the Simon Fraser University Human Research Ethics Boards. All 
methods carried out in this study were in accordance with the ethical standards of the national research commit-
tee, Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans (TCPS), and with the 1964 
Helsinki Declaration and its later amendments.
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