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Immune checkpoint inhibitor (ICI) treatment has been used to treat advanced urothelial
cancer. Molecular markers might improve risk stratification and prediction of ICI benefit
for urothelial cancer patients. We analyzed 406 cases of bladder urothelial cancer
from The Cancer Genome Atlas (TCGA) data set and identified 161 messenger
RNAs (mRNAs) as differentially expressed immunity genes (DEIGs). Using the LASSO
Cox regression model, an eight-mRNA-based risk signature was built. We validated
the prognostic and predictive accuracy of this immune-related risk signature in 348
metastatic urothelial cancer (mUC) samples treated with anti-PD-L1 (atezolizumab) from
IMvigor210. We built an immune-related risk signature based on the eight mRNAs:
ANXA1, IL22, IL9R, KLRK1, LRP1, NRG3, SEMA6D, and STAP2. The eight-mRNA-
based risk signature successfully categorizes patients into high-risk and low-risk groups.
Overall survival was significantly different between these groups, regardless if the initial
TCGA training set, the internal TCGA testing set, all TCGA set, or the ICI treatment set.
The hazard ratio (HR) of the high-risk group to the low-risk group was 3.65 (p < 0.0001),
2.56 (p < 0.0001), 3.36 (p < 0.0001), and 2.42 (p = 0.0009). The risk signature was
an independent prognostic factor for prediction survival. Moreover, the risk signature
was related to immunity characteristics. In different tumor mutational burden (TMB)
subgroups, it successfully categorizes patients into high-risk and low-risk groups, with
significant differences of clinical outcome. Our eight-mRNA-based risk signature is a
stable biomarker for urothelial cancer and might be able to predict which patients benefit
from ICI treatment. It might play a role in precision individualized immunotherapy.
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INTRODUCTION

Bladder cancer is a common tumor of the urinary system; 90%
of the pathological types are urothelial cancer (UC). For bladder
cancer patients with local progression or distant metastasis,
cisplatin combined with gemcitabine is the first choice. However,
the effect is not satisfactory. The median survival time of patients
is only 15 months, and the 5 years survival rate is difficult to
reach 15% (Griffiths et al., 2011). In recent years, with the rapid
development of tumor immune checkpoint inhibitors (ICIs),

especially the rapid development of programmed cell death
molecule 1 (PD-1)/programmed cell death molecule ligand 1
(PD-L1) inhibitors, the treatment of bladder cancer patients
has brought new options. In patients with metastatic UC
(mUC) who cannot receive cisplatin chemotherapy and PD-
L1 positive, ICIs can already be used as a first-line treatment
(Nadal and Bellmunt, 2019).

Although it is proved the efficacy of PD-1/PD-L1 inhibitors
is better than that of traditional platinum-based chemotherapy
(Bellmunt et al., 2017; Sidaway, 2017), studies have confirmed

FIGURE 1 | Heatmap of 22 immune cell types based on immune microenvironment clustering. Missing clinical data are shown as blank on the top of the heatmap.
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FIGURE 2 | Selection of differentially expressed immunity genes (DEIGs) and establishment of immune-related risk models. (A) Heatmap of all differentially expressed
genes (DEGs) in the immunity low group and immunity high group. (B) Volcano plot of all DEGs showing the log 2 fold change and q value of each DEG. (C) Venn
diagram of DEGs showing immune-related gene set obtained from ImmPort and InnateDB. (D) LASSO coefficient distribution map, prognostic biomarker selection
characteristics, and forest plot based on multivariable Cox proportional hazards regression. *p < 0.05, **p < 0.01, ***p < 0.001.

that only about 20% of solid tumor patients can benefit from
the treatment (Braun et al., 2016). Therefore, it is becoming
more and more important to identify and verify biomarkers that
can accurately predict ICI treatment efficacy. There have been
some clinical studies exploring the corresponding biomarkers,
such as PD-L1 expression (Powles et al., 2014), CD8+ T
cell (Ghatalia and Plimack, 2019), tumor mutational burden
(TMB) (Yarchoan et al., 2017), and microsatellite instability
(MSI) (Dudley et al., 2016). However, these biomarkers have
shortcomings in clinical application. In addition, multi-factor
joint prediction may be able to provide better prediction results
(Mazzaschi et al., 2020).

In this study, we analyzed the messenger RNA (mRNA)
transcriptome data of 406 bladder cancer patients from The
Cancer Genome Atlas (TCGA) data combined with immune-
related genes to establish an immune-related risk signature, and
we verified the 348 mUC patients receiving anti-PD-L1 therapy

from IMvigor210 study. We emphasized the strong predictive
power of the risk score in selecting patients with good response
to atezolizumab and verified its role in ICI treatment.

TABLE 1 | Characteristics of differentially expressed immunity genes (DEIGs) in
the risk signature.

coef HR HR.95L p-value

ANXA1 0.1444935 1.16 1.04–1.29 0.0085

IL22 −0.3872357 0.68 0.47–0.98 0.0365

IL9R −0.1038636 0.9 0.82–0.99 0.0325

KLRK1 −0.2910349 0.75 0.66–0.85 < 0.0001

LRP1 0.13726797 1.15 0.96–1.37 0.128

NRG3 0.09008937 1.09 0.99–1.21 0.0771

SEMA6D 0.0918811 1.1 0.97–1.24 0.1539

STAP2 −0.1380731 0.87 0.74–1.02 0.0878
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MATERIALS AND METHODS

Clinical Cohorts and Data Sets
The gene expression sequence matrix and clinical characteristics
of 406 bladder cancer patients can be downloaded from TCGA
data set1. The immune gene sets come from the ImmPort2 and
InnateDB3 data sets (Breuer et al., 2013; Bhattacharya et al., 2014).
Clinical information and gene transcription information of 348
patients with mUC who received ICI treatment are downloaded

1https://portal.gdc.cancer.gov
2https://www.immport.org
3http://www.innatedb.com

from4 (Mariathasan et al., 2018). The infiltration of 22 immune
cells was downloaded from the TIMER database5 and Dongqiang
Zeng’s research (Li T. et al., 2020; Zeng et al., 2020).

Bioinformatic Analysis
R package DESeq2 was used for gene expression differential
analysis, and R package clusterProfiler for Gene Ontology/Kyoto
Encyclopedia of Genes and Genomes/Gene Set Enrichment
Analysis (GO/KEGG/GSEA) function enrichment analysis and
visualization (Subramanian et al., 2005; Love et al., 2014). The

4http://research-pub.gene.com/IMvigor210CoreBiologies
5http://timer.cistrome.org

FIGURE 3 | The characterization of the training and validation cohorts highlights that risk scores are potential biomarkers. (A–D) Kaplan–Meier survival analysis and
time-dependent receiver operating characteristic (ROC) curve of the risk signature. The risk score derived from the constructed model is significantly correlated with
overall survival. (E,F) The infiltration trends of 22 immune cells are consistent in the two data sets. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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ggstatsplot package was used to evaluate the relationship between
risk score, TMB, and immunophenotype.

Establishment and Evaluation of Risk
Prediction Model
We randomly divide the samples in TCGA cohort into
training/validation (3:1) groups to identify and evaluate

predictors. The “glmnet” R package was used for LASSO
analysis, and 14 immune-related genes were identified (Ternes
et al., 2016). Then we conducted multiple Cox regression
analysis to establish an eight-mRNA-based risk prediction
model. Use the formula to generate the risk score for each
patient: risk score = EXP 1 ∗ β 1 EXP2 ∗ β 2 . . . EXPÑ ∗ β

Ñ, where “EXP” represents the expression level of key
genes and β is the corresponding regression coefficient.

FIGURE 4 | Validation of the correlation between the risk signature and immunity characteristics. (A) Risk scores are correlated with tumor mutational burden (TMB)
in The Cancer Genome Atlas (TCGA) set. (B) Risk scores are correlated with TMB in immune checkpoint inhibitor (ICI) treatment set. (C) Risk scores are correlated
with immunity subtype in ICI treatment set. (D) Risk scores are correlated with TCGA subtype in ICI treatment set.
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The “timeROC” package was used to establish the receiver
operating characteristic (ROC) curve and verify the area value
under it (AUC). Draw a Kaplan–Meier curve to show the
association of risk scores and potential prognostic genes with
patient survival.

Statistical Analysis
The Kaplan–Meier method was used to analyze the
correlation between relate risk factors with patient
survival. Statistical tests were performed using R software,
version 3.6. 2 (R Foundation for Statistical Computing;

FIGURE 5 | Verification of the risk signature to be used as a stable predictor. (A–C) Kaplan–Meier survival analysis based on tumor mutational burden (TMB) levels
and TMB subgroups in The Cancer Genome Atlas (TCGA) data set. (D–F) Kaplan–Meier survival analysis based on TMB levels and TMB subgroups in the immune
checkpoint inhibitor (ICI) treatment set.
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Vienna, Austria). Values of p < 0.05 were considered
statistically significant.

RESULTS

Describe Immune-Related Gene
Features and Construct Immune-Related
Prediction Models
Based on the Cibersort algorithm, the infiltration levels of 22
immune cells in 406 bladder cancer patients in TCGA data
set were evaluated. The fuzzy clustering algorithm divided the
samples into two categories: 210 samples were clustered into
cluster 1 and 196 samples were clustered into cluster 2 (Figure 1).
Cluster 1 had high-level immune characteristics (high-immunity
group), and cluster 2 had low-level immune characteristics (low-
immunity group). Missing clinical data are shown as blank on the
top of the heatmap.

We were trying to study immune-related genes stratified
by immune phenotype and their prognostic potential and to
establish a good immunological prediction model, which can
make more accurate individual risk stratification and prognosis
prediction for UC patients. After preliminary screening through
single-factor regression analysis and difference analysis based
on immunity clustering, a total of 1,976 genes were identified
as differentially expressed genes (DEGs). All DEG expression
levels are shown in Figure 2A, and the log2 and p-values of all
DEGs are shown in Figure 2B. Subsequently, 161 genes were
identified as differentially expressed immunity genes (DEIGs)
based on ImmPort and InnateDB databases (Figure 2C). In
order to further explore the prognostic significance of DEIGs,
161 important genes were used for multiple LASSO regression
and multiple Cox regression analysis (Figure 2D), and eight
key DEIGs were identified. Distribution of each DEIG in
TCGA set and ICI treatment set is shown in Supplementary
Figure 1. The Kaplan–Meier curve of each DEIG in TCGA set
is shown in Supplementary Figure 2 [ANXA1: p < 0.0001,
hazard ratio (HR) = 2.02; IL22: p < 0.0001, HR = 0.50; IL9R:
p < 0.0001, HR = 0.71; KLRK1: p < 0.0001, HR = 0.54;
LRP1: p = 0.0051, HR = 1.96; NRG3: p = 0.00065, HR = 1.40;
SEMA6D: p = 0.01, HR = 1.65; STAP2: p = 0.00029, HR = 0.68].
Finally, according to the relative coefficient in the multiple
regression analysis, the risk score was calculated according
to the following formula: (0.144493498 ∗ ANXA1) +
(−0.387235675 ∗ IL22) + (−0.103863619 ∗ IL9R) +
(−0.291034924 ∗ KLRK1) + (0.137267967 ∗ LRP1) +
(0.090089369 ∗ NRG3) + (0.091881101 ∗ SEMA6D) +
(−0.138073124 ∗ STAP2) (Table 1).

Survival Analysis, Prognostic Value, and
Immune Infiltration Verification of the
Risk Signature
The prognostic value of eight DEIG signatures was further
evaluated in three verification sets (TCGA test set, all TCGA set,
and independent ICI treatment set). We calculated the risk score
of each patient using the same formula, and we divided them

into high-risk and low-risk groups by 1.54 as a cutoff. Consistent
with the results of TCGA training set, the prognosis of high-risk
patients in the three validation sets was worse than that of patients
in the low-risk group (Figures 3A–D, left; TCGA training set:
p < 0.0001, HR = 3.65; TCGA test set: p < 0.0001, HR = 2.56; all
TCGA set: p < 0.0001, HR = 3.36; ICI treatment set: p = 0.0009,
HR = 2.42). The results of the time-dependent ROC curve
analysis verified the predictive value of the established risk model
(Figures 3A–D, right), suggesting that the prognosis prediction
for 3–5 years was more robust. The univariate and multivariate
Cox analyses of TCGA set showed that the risk signature can
be used as an independent prognostic factor (Supplementary
Table 1). We examined the correlation between risk signature and
the bladder cancer immune microenvironment. Both TCGA and
ICI data sets showed a relatively consistent trend of infiltration.
In terms of immune cell infiltration, such as T.cell.CD8.positive,
T.cell.CD4.activated, and Macrophage.M0, the infiltration trend
was the same in the two data sets. The differences were
statistically significant (Figures 3E,F).

Verification and Comparison of the
Correlation Between the Risk Signature
and Immune Checkpoint Inhibitor
Treatment Efficacy
There was a significant correlation between the risk signature and
TMB, regardless if in TCGA or ICI treatment set (Figures 4A,B).
At the same time, the immune subtypes classified according to
CD8 cell infiltration (desert, excluded, and inflamed) were also
obviously related to the risk signature (Figure 4C). TCGA type II
subgroup had the lowest risk score (Figure 4D). This is consistent
with the previous results (Mariathasan et al., 2018).

We divided TMB into high-risk and low-risk groups and
then subdivided them into subgroups based on the risk scores
level (TCGA set: p < 0.0001, HR = 0.49; ICI treatment set:
p = 0.0006, HR = 0.54). The results suggested that even in the
TMB subgroup, the risk signature still remained its prognostic
ability, regardless if in TCGA or ICI treatment set (Figure 5,
TCGA high-TMB group: p < 0.0001, HR = 4.26; TCGA low-
TMB group: p < 0.0001, HR = 2.83; ICI treatment high-TMB
group: p = 0.0034, HR = 10.64; ICI treatment low-TMB group:
p = 0.031, HR = 2.56). Multivariate risk regression also confirmed
this result (Table 2).

Gene Ontology/Kyoto Encyclopedia of
Genes and Genomes/Gene Set
Enrichment Analysis
In order to further explore the molecular mechanisms related
to risk scores, we divided TCGA cohort patients into high-risk

TABLE 2 | Multivariate Cox regression of risk scores and tumor mutational burden
(TMB) in immune checkpoint inhibitor (ICI) treatment set.

HR 95%CI p-value

Risk score 4.83 2.14−10.93 0.0002

TMB 0.96 0.94−0.99 0.0012
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and low-risk groups. The results of GO and KEGG suggested
that the risk signature was related to the extracellular matrix
and energy metabolism changes in the tumor microenvironment
(Figures 6A,B). GSEA results suggested that the high-risk group
is positively correlated with steroid metabolism and YP450
metabolism, while pathways such as cytokine interaction and
immune response are positively correlated with low-scoring
risks (Figure 6C).

DISCUSSION

As a new treatment method, ICI has initially proven efficacy
and safety in the treatment of UC. Unfortunately, not all

patients with cancer respond to ICI treatment. In previous
studies, the use of risk signature derived from the gene
transcriptome to monitor the immune status of tumors and
guide individualized treatment has proven to be meaningful
(Li et al., 2017; Cristescu et al., 2018; Wang et al., 2019).
Therefore, the development of meaningful genetic markers to
monitor the immune status of patients not only can monitor
the prognosis of patients but also can screen out potential ICI
responding patients, avoiding the waste of medical resources
and overtreatment. In this study, we validated immune-related
gene risk model based on eight DEIGs, which proved to be
a reliable indicator of favorable ICI efficacy and can identify
bladder cancer patients with poor prognosis. Our results showed
that the prognosis is worse if the risk score is higher. At the

FIGURE 6 | Exploration of the molecular mechanisms related to risk scores. (A) Gene Ontology enrichment analysis based on risk scores. (B) Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis based on risk scores. (C) Gene Set Enrichment Analysis (GSEA) based on risk scores.
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same time, the time-dependent ROC curve results suggested
that the 3–5 years’ prognosis prediction for UC patients was
more robust. In terms of tumor immune cell infiltration, whether
in TCGA group or the ICI treatment group, the differences
in T.cell.CD8.positive, T.cell.CD4.activated, and Macrophage.M0
were statistically significant. Patients in the high-risk group
had significantly lower representation of T.cell.CD8.positive
and T.cell.CD4.activated and significantly higher abundance of
Macrophage.M0. This is also consistent with the results of other
studies (Li W. et al., 2020; Lin et al., 2020).

PD-L1 is currently the most mature and in-depth biomarker,
but the results obtained in different ICI studies are not consistent.
It may be due to the different monitoring methods and positive
standards between different platforms, and the evaluation is
subjective. At present, due to technical requirements, it is
difficult to apply TMB to routine clinical practice (Fenizia et al.,
2018). In addition, TMB has not yet proven its predictive
or prognostic value for overall survival (Addeo et al., 2019).
According to the immune microenvironment, most solid tumors
can be divided into three different immunological phenotypes:
immune inflamed, immune excluded, or immune desert (Chen
and Mellman, 2013; Hegde et al., 2016). Studies have shown
that immune inflamed subtypes have the best response to ICI
treatments (such as anti-PD-1 and anti-CTLA-4) (Mariathasan
et al., 2018; Galon and Bruni, 2019). The immune-related
risk signature we established was significantly correlated with
TMB and immunophenotype. A lower risk score means a
higher TMB, a better response, and a better prognosis. At
last, the K-M curve of TMB subtype showed that the risk
signature was able to be used as a stable predictor. In order
to further clarify the mechanism of immune risk score, we
subsequently used TCGA data set to conduct GO, KEGG,
and GSEA. The results of GO and KEGG show that the risk
score is related to the energy metabolism and synthesis of the
tumor microenvironment, and the formation and activation
of extracellular matrix. In the analysis of GSEA results, we
can see that the synthesis and metabolism of steroids are
positively correlated with high-scoring risks, while pathways
such as cytokine interaction and immune response are positively
correlated with low-scoring risks. This is consistent with the
results of other studies. Zeng et al. (2020) found that the defect
of M1 macrophage function is related to poor prognosis of
UC immunotherapy, and it is also positively related to steroid
synthesis and metabolism.

Among the eight DEIGs, there are few studies in bladder
cancer, but some of their interactions with immunity have
been explored and verified in other researches. ANXA1 can
enhance the function of regulatory T cells (Tregs) and reduce
the survival rate of patients with breast cancer (Bai et al.,
2020). IL-22 producing T cells in colorectal cancer enhance
T cell function by recruiting neutrophils, thereby enhancing
immune response (Tosti et al., 2020). Th9 cells promote the
expansion of CD8+ T cells in an IL-9R-dependent manner
in colorectal cancer (Wang et al., 2020). CIK cells can target
lung cancer cells expressing NKG2D/KLRK1 ligand, and the
killing effect can be partially blocked by NKG2D/KLRK1
ligand inhibitors (Yin et al., 2017). The correlation between

LRP1 mRNA expression and patient survival was observed
in bladder urothelial carcinoma. At the same time, the LRP1
protein can regulate the immune function by regulating the
movement and adhesion of T cells (Gonias et al., 2017;
Panezai et al., 2017). STAP2 maintains the cytotoxicity of
functional memory CD8+ T cells by controlling cytokine
signaling inhibitor 3 (Muraoka et al., 2017). SEMA6D act as a
modulator in the late stage of the primary immune response
(O’Connor et al., 2008).

Although the risk signature based on eight DEIGs
embodies a powerful predictive function in selecting
patients with good response to atezolizumab, its accuracy
and effectiveness should be further verified in a prospective
cohort study receiving immunotherapy. In addition,
the molecular mechanism of the protein encoded by
DEIGs in UC still needs to be explored in vitro and
in vivo.

The risk signature is a stable biomarker that can be used
to predict immunotherapy efficacy and immunophenotype
determination, and it can be used as a supplement to TMB.
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