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Periodic event-triggered control (PETC) is a control strategy consisting of event-triggered

control (ETC) and conventional periodic sampled-data control. By using event-triggering

mechanisms (ETM) to periodically verify whether or not to transmit and compute the

measured output, communication and computational datum are significantly reduced

while still retaining a satisfactory performance. This paper investigates the PETC scheme

of robust H∞ filtering for a class of uncertain discrete-time Takagi-Sugeno (T-S) fuzzy

systems, where the sample time is assumed to be a constant. To analyze the filtering

problems of the PETC strategy, we present two frameworks based on perturbed linear

and piecewise linear systems, to model filtering error systems. Sufficient conditions for

the existence of a robust H∞ filter are derived in the form of matrix inequalities (LMIs)

under these two frameworks, respectively. Finally, a simulation example is used to testify

to the effectiveness of the proposed approach.

Keywords: discrete-time Takagi-Sugeno (T-S) fuzzy systems, H∞ filtering, periodic event-triggered, robust

control, perturbed and piecewise linear system approach

1. INTRODUCTION

T-S fuzzy models use a set of IF-THEN fuzzy rules to approximate complex nonlinear systems in
terms of a set of local linear models that are connected smoothly by fuzzy membership functions
at any preciseness (Sugeno, 1985; Tanaka and Wang, 2001). In other words, it can combine the
merits of both the fuzzy logic theory and the linear system theory, and brings a 2-fold advantage:
(i) any nonlinear systems can be approximately represented by the fuzzy dynamic models; (ii)
the controller itself can be designed by utilizing the concept of parallel distributed compensation
(PDC). Since a set of local linear models with T-S fuzzy rules can be used to represent a nonlinear
system, it is a natural approach to design a local controller for each local model, respectively.
In addition, digital fuzzy logic controllers (FLC) are successfully implemented in embedded
microprocessors because of the availability of low-cost and high-speed computers, and are widely
applied in a variety of engineering fields. Consequently, it becomes important to study problems of
control for T-S fuzzy discrete-time systems, and there are some results on T-S fuzzy discrete-time
systems in the open literature (Gao et al., 2005; Feng, 2006; Qiu et al., 2009; Wu et al., 2011; Zhong
et al., 2013, 2019).

Inmany digital implementations of control systems, the embeddedmicroprocessors forming the
computational core of the control system are required to execute a variety of tasks, which consist
of sampling the output of the plant, computing the input of the controller, and implementing
the output of the controller. Under the execution of control tasks, two main schemes exist:
time-triggered control and event-triggered control. The event-triggered control decides whether
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or not to execute the control task in terms of a given threshold,
rather than a time-triggered control, in which the control task
is carried out in a periodic manner. When compared to time-
triggered control, the advantages of event-triggered control are 2-
fold: a reduction in the data transmission and the computational
cost of the controller. Over the past few years, there has been
an increasing interest in event-triggered control, (see Hristu-
Varsakelis and Kumar, 2002; Tabuada and Wang, 2006; Wang
and Lemmon, 2011; Heemels and Donkers, 2013; Zhong and
Zhu, 2017; Zhong, 2018, and references therein). The scheme
of event-based control has appeared under several names, such
as and periodic event-triggered control (PETC) (Heemels and
Donkers, 2013; Zhong and Zhu, 2017), event-triggered feedback
(Zhong, 2018), interrupt-based feedback Hristu-Varsakelis and
Kumar (2002), self-triggered feedback Wang and Lemmon
(2011), and state-triggered feedback Tabuada and Wang (2006).

Recently, an event-triggered scheme was studied for T-S fuzzy
systems, and some results were reported in Guan et al. (2013);
Jia et al. (2014), and He et al. (2013). It was noted that the
controller designed in He et al. (2013) is based on the assumption
that the premise variables between the fuzzy systems and the
fuzzy controller are synchronous all the time. Alternatively, the
condition that the premise variables between the fuzzy system
and the controller are asynchronous is considered in Guan et al.
(2013), Jia et al. (2014). In fact, it is worth pointing out that
the premise variables of the controller decide whether or not to
update, under the event-triggered strategy. In other words, if the
difference between the current measured output and the most
recently transmitted output value exceeds a specified threshold,
then the premise variables of the controller are updated to
the premise variables of the system. In this way, both the
premise variables between the fuzzy system and the controller
are synchronous. If the triggered condition is not satisfied, they
are asynchronous. More recently, the premise variables with the
PETC scheme was considered in Zhong and Zhu (2017, 2018),
Zhong et al. (2018). More specifically, the work of Zhong et al.
(2018) proposed a decentralized event-triggered mechanism for
a class of large-scale networked fuzzy systems. The work in Zhong
and Zhu (2018) introduced the asynchronous distributed event-
triggered output-feedback controller to stabilize large-scale fuzzy
systems. A distributed event-triggered controller was designed in
Zhong and Zhu (2017) under a two-channel network.

On the other hand, the Kalman and H∞ filtering are the
two main approaches among various filtering schemes. The H∞
filtering method minimizes the signal estimation error for the
bounded disturbances and noise of the worst case, and does
not require the exact knowledge of the statistics of the external
noise signals. These two advantages render the H∞ filtering
method very appropriate to practical applications. Most recently,
some researchers have paid attention to state estimation/filtering
problems for nonlinear systems (Yin et al., 2016, 2018; Lin
et al., 2017; Yin and Liu, 2017; Zhu et al., 2018a,b). More
specifically, the work of Yin and Liu (2017) focused on the
distributed moving horizon estimation (DMHE) for a class of
two-time-scale nonlinear systems described in the framework
of singularly perturbed systems. The work in Yin et al. (2018)
designed a distributed estimator for linear systems, deployed

over sensor networks within a multiple communication channels
(MCCs) framework. The HMM-based H∞ filtering problem
for discrete-time markov jump LPV systems was studied via
unreliable communication channels Zhu et al. (2018b). State
and input simultaneous estimation for discrete-time switched
singular delay systems were investigated under the missing
measurements Lin et al. (2017). The H∞ estimation for a class
of networked non-linear systems was considered in Yin et al.
(2016). The problem of stability and stabilization for discrete-
time switched PWA systems was studied by using a descriptor
system approach in Zhu et al. (2018a).

Moreover, to the authors’ best knowledge, few attempts have
been researched on the H∞ filtering of T-S fuzzy systems under
a PETC strategy, and the H∞ filtering of T-S fuzzy systems in
the PETC strategy still remain open, which has motivated us to
conduct this study.

In this paper, we will study the robust H∞ filtering design
for a class of uncertain discrete-time T-S fuzzy systems under a
PETC communication scheme, which is introduced to reduce the
systematic resource, while preserving the desired performance.
In this PETC scheme, the sample time is assumed to be a
constant, and the measurement output and the premise variables
of the filter are verified periodically on whether or not to
update. Two frameworks based on perturbed linear and piecewise
linear systems are presented to model the filtering error systems,
respectively. By introducing a fuzzy-basis-dependent Lyapunov
functional combined with Finsler lemma, sufficient conditions
for the robust filtering PETC design of these two frameworks are
derived, while satisfying a given H∞ performance index, and the
filter gains can be obtained by solving a set of LMIs. Finally, an
example is exploited in order to illustrate the effectiveness of the
proposed results.

There are two main contributions in this paper. (i) Based on
a PETC scheme, we study the robust H∞ filtering design for a
class of uncertain discrete-time T-S fuzzy systems. To the best of
our knowledge, relatively few theoretical results exist that study
the PETC problem of robust H∞ filtering design for uncertain
T-S fuzzy systems. (ii) In previous work on PETC approaches, the
controller gains must be given a priori. In this paper, based on a
fuzzy-basis-dependent Lyapunov functional and Finsler’s lemma,
the fuzzy H∞ filters for the filtering error systems, applying
perturbed linear (PL) and the piecewise linear (PWL) system
approaches, can be obtained by solving a set of linear matrix
inequalities (LMIs).

Notations. The notations used throughout this paper are
standard. Rn and R

n×m represent the n-dimensional Euclidean
space and n × m real matrices. For a vector x ∈ R

n, we denote

by ‖x‖ : =
√
xTx its 2-norm. The notation P > 0 (≥ 0) means

that the matrix P is positive (semi-positive) definite. For a matrix
A ∈ R

n×n, A−1 and AT are the inverse and transpose of the
matrix A, respectively, and A−T denotes (A−1)T. Sym{A} is the
shorthand notation for A + AT. In denotes an identity matrix
with dimension n. The symbol “∗” in a matrix stands for the
transposed elements in the symmetric positions. l2[0,∞) refers
to the space of square-integrable vector functions over [0,∞).
If not explicitly stated, matrices are assumed to have compatible
dimensions for algebraic operations.
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2. MODEL DESCRIPTION AND PROBLEM
FORMULATION

Similar to Sugeno (1985), Tanaka and Wang (2001), Gao et al.
(2005), Qiu et al. (2009), and Wu et al. (2011), a discrete-time
T-S fuzzy dynamic model with parametric uncertainties can be
described as follows:

Plant Rule Ri: IF ζ1(k) is F
i
1 and ζ2(k) is F

i
2 and . . . and ζg(k)

is F
i
g , THEN







x
(

k+ 1
)

= (Ai + 1Ai) x
(

k
)

+ (Bi + 1Bi) ω
(

k
)

,

y(k) = (Ci + 1Ci) x
(

k
)

+ (Di + 1Di) ω
(

k
)

,

z
(

k
)

= (Li + 1Li) x
(

k
)

+ (Fi + 1Fi) ω
(

k
)

, i ∈ L : = {1, 2, · · ·, r} ,
(1)

where Ri denotes the ith fuzzy inference rule, r is the
number of inference rules, F

i
j

(

j = 1, 2, · · ·, g
)

are fuzzy sets,

x(k) ∈ R
nx denotes the system state, ω(k) ∈ R

nω is the
bounded external disturbance, y(k) ∈ R

ny is the measurement
output, z(k) ∈ R

nz is the signal to be regulated, ζ (k) : =
[ζ1(k), ζ2(k), · · · ζg(k)] are some measurable variables of the
system, (Ai,Bi,Ci,Di, Li, Fi) denotes the ith local model of the
system, (1Ai,1Bi,1Ci,1Di,1Li,1Fi) denotes the uncertainty
terms of the ith local model in the form of





1Ai 1Bi
1Ci 1Di

1Li 1Fi



 =





M1i

M2i

M3i



 1(k)
[

N1i N2i

]

, i ∈ L , (2)

where M1i,M2i,M3i,N1i, and N2i are known matrices,
and 1(k) ∈ R

ns2×s1 denotes the unknown time-varying
matrix satisfying

1T(k)1(k) ≤ Is1 . (3)

Let hi
[

ζ (k)
]

be the normalized fuzzy-basic-dependent function

of the inferred fuzzy set F
i, where F

i
:=

∏φ
φ=1F

i
φ , and

hi
[

ζ (k)
]

: =
∏φ

φ=1uiφ(ζφ(k))
∑r

ς=1

∏φ
φ=1uςφ(ζφ(k))

≥ 0,

r
∑

i=1

hi
[

ζ (k)
]

= 1,

(4)
where uiφ(ζφ(k)) is the grade of membership of ζφ(k) in F

i
φ .

By using a center-average defuzzifier, product fuzzy inference,
and a singleton fuzzifier, the following global T-S fuzzy dynamic
model can be obtained:







x
(

k+ 1
)

= (Ai + 1Ai) x
(

k
)

+ (Bi + 1Bi) ω
(

k
)

,

y
(

k
)

= (Ci + 1Ci) x
(

k
)

+ (Di + 1Di) ω
(

k
)

,

z
(

k
)

= (Li + 1Li) x
(

k
)

+ (Fi + 1Fi) ω
(

k
)

, (5)

where





Ai 1Ai Bi 1Bi

Ci 1Ci Di 1Di

Li 1Li Fi 1Fi



 =
r

∑

i=1

hi
[

ζ (k)
]





Ai 1Ai Bi 1Bi
Ci 1Ci Di 1Di

Li 1Li Fi 1Fi



 .

(6)

FIGURE 1 | A PETC strategy with ETM in filtering system.

2.1. A PETC Strategy
For the filtering design, the traditional approach continually
executing the filtering task may be undesirable in many
situations. It leads to a conservative design (over-provisioning of
the system hardware). In order to reduce the unnecessary waste
of resources, we consider the PETC strategy outlined below:

ŷ
(

k
)

=
{

y
(

k
)

, when
∥

∥y
(

k
)

− ŷ
(

k− 1
)
∥

∥ > δ
∥

∥y
(

k
)
∥

∥ ,

ŷ
(

k− 1
)

, when
∥

∥y
(

k
)

− ŷ
(

k− 1
)∥

∥ ≤ δ
∥

∥y
(

k
)∥

∥ ,

(7)
where ŷ

(

k
)

denotes the measurement output transmitting into
the filtering system, δ ≥ 0 is a suitably chosen design parameter.

In practical implementations of the PETC strategy (7), we
propose two different cases, see Figures 1, 2.

In Figure 1, two buffers located in the filtering system save
the last measurement output transmitted to the filter and the last
estimated signal, respectively. In every sample period, the event-
triggering mechanism (ETM), based on the difference between
the new measurement output and the last measurement output
reserved in the buffer, determines whether or not to update ŷ (k).
Both ŷ

(

k
)

and the fuzzy premise variables of the filter are updated
when the difference exceeds a preselected threshold, and ŷ (k)
will be executed by the filtering system. If not, the last estimated
signal reserved in the other buffer is transmitted again and no
date is executed in the filtering system. It should be noted that in
this PETC strategy, the filter, the ETM, the buffers, and the fuzzy
rule generator are designed in the filtering system, avoiding a long
communication burden among them for the implementation of
the filtering system. Thus, the PETC strategy is easy to implement
in an inexpensive manner. However, it is impossible to reduce
the transmitted datum. We will next present another PETC
strategy which ensures a significant reduction in the number
of transmission.

In this solution, a smart sensor system is proposed in
Figure 2. The sensor system consists of a buffer stored at the last
measurement output, and an ETM that determines whether or
not to transmit the measurement output to the filtering system.
The other buffer is to save the last estimated signal. Therefore,
in every sample period the measurement output is transmitted
to the filter and is executed only when the difference between
the newly measurement output and the last measurement output
transmitted to the filtering system exceeds a given threshold.
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FIGURE 2 | A PETC strategy with ETM in sensor system.

Otherwise, the last estimated signal reserved in the other buffer
will be transmitted again. In this way, this PETC strategy is
capable of significantly reducing the number of filtering task
transmission and executions, leading to a high cost and placing
a long communication burden on the filter, the ETM, the buffers,
and the fuzzy rule generator. This PETC strategy is also described
by (7).

Now, given the fuzzy system (1) and the PETM strategy
(7), a fuzzy filter for the estimation of z(k) with the structure
described by

{

xF
(

k+ 1
)

= AFsxF
(

k
)

+ BFsŷ(k),

zF
(

k
)

= CFsxF
(

k
)

+DFsŷ(k), (8)

where xF
(

k
)

∈ R
nf is the filter state, nf denotes the order of the

fuzzy filter (nf = nx for the full-order filter and 1 ≤ nf < nx for

the reduced-order filter), zF
(

k
)

∈ R
nz an estimation of z(k), and

AFi,BFi,CFi, and DFi are appropriately dimensioned filter gains
with the following form:















[

AFs BFs

CFs DFs

]

=
r

∑

s=1
ĥs[ζ̂ (k)]

[

AFs BFs
CFs DFs

]

,

ĥs

[

ζ̂ (k)
]

: =
∏φ

φ=1usφ (ζφ (k))
∑r

ς=1

∏φ
φ=1uςφ (ζφ (k))

≥ 0,
r

∑

s=1
ĥs

[

ζ̂ (k)
]

= 1,
(9)

and

ζ̂ (k) =
{

ζ (k), when
∥

∥y
(

k
)

− ŷ
(

k− 1
)
∥

∥ > δ
∥

∥y
(

k
)
∥

∥ ,

ζ̂ (k− 1), when
∥

∥y
(

k
)

− ŷ
(

k− 1
)
∥

∥ ≤ δ
∥

∥y
(

k
)
∥

∥ .
(10)

For convenience, define

hi = hi
[

ζ (k)
]

, h+i = hi
[

ζ (k+ 1)
]

, ĥi = ĥi[ζ̂ (k)], i ∈ L . (11)

Remark 1. It should be noted that the synchronous premise
variables between T-S fuzzy systems and controllers are
considered in He et al. (2013), and the asynchronous ones are
considered in Guan et al. (2013), Jia et al. (2014). In fact, for
the PECT strategy (7), the premise variables of the filter (8) are
determined to decide whether or not to update by an ETM. In
other words, the premise variables of the filter (8) are updated
to the premise variables of the fuzzy system (5) when the newly
measured output is transmitted to the filter. In this way, the
premise variables between the filter (8) and the fuzzy system (5)
are synchronous. Otherwise, they become asynchronous.

2.2. Closed-Loop System
2.2.1. Perturbed Linear System
In order to apply a perturbed linear system approach proposed in
Heemels et al. (2013), Zhong and Zhu (2017), we define

e
(

k
)

= ŷ
(

k
)

− y
(

k
)

, (12)

and based on (7), yields

0 ≤ e
(

k
)

≤ δ
∥

∥y
(

k
)
∥

∥ , (13)

where δ is a positive scalar.
By defining x̄

(

k
)

= [xT
(

k
)

xTF
(

k
)

]T, z̄
(

k
)

= z
(

k
)

− zF
(

k
)

,
and augmenting the model (5) and the filter (8), together with the
consideration of (12), we obtained the filtering error system:

{

x̄
(

k+ 1
)

=
(

Āis + 1Āis

)

x̄
(

k
)

+
(

B̄is + 1B̄is

)

ω
(

k
)

+ D̄ise
(

k
)

,

z̄
(

k
)

=
(

C̄is + 1C̄is
)

x̄
(

k
)

+
(

Ēis + 1Ēis
)

ω
(

k
)

−DFse
(

k
)

,

(14)
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where



































Āis =
[

Ai 0
BFsCi AFs

]

,1Āis =
[

1Ai 0
BFs1Ci 0

]

,

B̄is =
[

Bi

BFsDi

]

,1B̄is =
[

1Bi

BFs1Di

]

, D̄is =
[

0
BFs

]

,

C̄is =
[

Li −DFsCi −CFs
]

,1C̄is =
[

1Li −DFs1Ci 0
]

,

Ēis = Fi −DFsDi,1Ēis = 1Fi −DFs1Di. (15)

2.2.2. Piecewise Linear System
By defining x̃

(

k
)

= [xT
(

k
)

xTF
(

k
)

ŷT
(

k− 1
)

]T, and augmenting
the model (5) and the filter (8), we obtain the following closed-
loop system:

{

x̃
(

k+ 1
)

=
(

Ã1
is + 1Ã1

is

)

x̃
(

k
)

+
(

B̃1
is + 1B̃1

is

)

ω
(

k
)

,

z̄
(

k
)

=
(

C̃1is + 1C̃1is

)

x̄
(

k
)

+
(

Ẽ1
is + 1Ẽ1

is

)

ω
(

k
)

, (16)

for
∥

∥y
(

k
)

− ŷ
(

k− 1
)∥

∥ > δ
∥

∥y
(

k
)∥

∥ , and

{

x̃
(

k+ 1
)

=
(

Ã2
is + 1Ã2

is

)

x̃
(

k
)

+
(

B̃2
is + 1B̃2

is

)

ω
(

k
)

,

z̄
(

k
)

=
(

C̃2is + 1C̃2is

)

x̄
(

k
)

+ (Fi + 1Fi) ω
(

k
)

, (17)

for
∥

∥y
(

k
)

− ŷ
(

k− 1
)∥

∥ > δ
∥

∥y
(

k
)∥

∥ , and















































Ã1
is =





Ai 0 0
BFsCi AFs 0
Ci 0 0



 , B̃1
is =





Bi

BFsDi

Di



 ,

1Ã1
is =





1Ai 0 0
BFs1Ci 0 0

1Ci 0 0



 ,1B̃1
is =





1Bi

BFs1Di

1Di



 ,

C̃1is =
[

Li −DFsCi −CFs 0
]

,1C̃1is =
[

1Li −DFs1Ci 0 0
]

,

Ẽ1
is = Fi −DFsDi,1Ẽ1

is = 1Fi −DFs1Di, (18)

and











































Ã2
is =





Ai 0 0
0 AFs BFs

0 0 I



 , B̃2
is =





Bi

0
0



 ,

1Ã2
is =





1Ai 0 0
0 0 0
0 0 0



 ,1B̃2
is =





1Bi

0
0



 ,

C̃2is =
[

Li −CFs −DFs

]

,1C̃2is =
[

1Li 0 0
]

. (19)

Then the robust H∞ filtering design problem with the PETC
strategy (7) is stated as follows:

Given the fuzzy discrete-time system (5), a fuzzy PETC
filter (8) is designed to satisfy the following two requirement
simultaneously:

(a) The filtering error system (14) based on the PL system
approach (the filtering error system (16) and (17) based on the
PWL system approach) with ω(k) = 0 is asymptotically stable;

(b) The induced l2 norm of the operator fromω to the filtering
error z̄ is less than γ under zero initial conditions

H
z̄ω
∞ : = sup

‖z̄‖2
‖ω‖2

< γ , (20)

for any nonzero ω ∈ l2 [0∞) and all admissible uncertainties.
Before ending this section, the following lemmas are

introduced to prove our main results.
Lemma 1. Xie (1996) Given constant matrices X,Y, and Z

with X = XT and 0 < Y = YT, then X + ZTY−1Z < 0 if and
only if

[

X ZT

Z −Y

]

< 0 or

[

−Y Z

ZT X

]

< 0.

Lemma 2. Xie (1996) Suppose that 1(k) is given by (2) and (3),
with matrices M = MT and S and N of appropriate dimensions;
then, the inequality

M + Sym
{

S1(k)N
}

< 0,

holds if, and only if, for some positive scalar ǫ > 0

M +
[

ǫ−1NT ǫS
]

[

I −J

−JT I

] [

ǫ−1N

ǫST

]

< 0.

Lemma 3. de Oliveira and Skelton (2001) Let X ∈ R
n,P = P

T ∈
R
n×n,and H ∈ R

m×n such that rank (H) = r < n. The following
statements are equivalent:

1) XT
PX < 0 ∀HX = 0, X 6= 0

2)
(

H
⊥)T

P
(

H
⊥)

< 0,
3) ∃N ∈ R

n×m
:P+ Sym{NH} < 0,

4) ∃λ ∈ R :P− λHT
H < 0.

3. ROBUST H∞ FILTERING ANALYSIS AND
DESIGN

This section will carry out the filtering analysis and design with
the PETC strategies by using the PL and PWL system approaches.

3.1. Perturbed Linear System
Theorem 1. Consider the fuzzy system (1) and the
fuzzy filter (8) with the PETC strategy (7), the filtering
error system (14) is robust asymptotically stabilization
with H∞ performance γ if there exist sets of matrices

0 < Pi = PTi ∈ R

(

nx+nf
)

×
(

nx+nf
)

, i ∈ L ,G1s

∈ R
nx×nx ,G2s ∈ R

nf×nf ,G3s ∈ R
nf×nx ,G4s ∈ R

nz×nx ,G5s ∈
R
nz×nz ,Ui ∈ R

(

nx+nf+nw
)

×nx , ĀFs ∈ R
nf×nf , B̄Fs ∈ R

nf×ny , C̄Fs ∈
R
nz×nf , D̄Fs ∈ R

nz×ny , s ∈ L , and some positive scalars δ, εisj,
(

i, s, j
)

∈ L , such that for all j ∈ L , the following LMIs hold





6iij εiijE
T
i Wii

∗ −εiijIs1 0
∗ ∗ −εiijIs1



 < 0, i ∈ L ,

(21)

and













6isj + 6sij εisjE
T
i Wis εisjE

T
s Wsi

∗ −εisjIs1 0 0 0

∗ ∗ −εisjIs1 0 0

∗ ∗ ∗ −εisjIs1 0

∗ ∗ ∗ ∗ −εisjIs1













< 0, 1 ≤ i < s ≤ r,

(22)
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where































































































































6isj =
[

2ij + Sym{4is} δ5T
i

∗ −Iny

]

,

5i =
[

0ny×(nx+nf+nz) Ci 0ny×nf Di 0ny×ny

]

,

4is =









−G1s −KG2s 0 414
is KĀFs 416

is KB̄Fs
−G3s −G2s 0 424

is ĀFs 426
is B̄Fs

−G4s 0 −G5s 434
is −C̄Fs 436

is −D̄Fs

−Us 0 0 UsAi 0 UsBi 0









,

414
is = G1sAi + KB̄FsCi,4

16
is = G1sBi + KB̄FsDi,

424
is = G3sAi + B̄FsCi,4

26
is = G3sBi + B̄FsDi,

434
is = G4sAi + G5sLi − D̄FsCi,4

36
is = G4sBi + G5sFi − D̄FsDi,

Wis =













G1sM1i + KB̄FsM2i

G3sM1i + B̄FsM2i

G4sM1i + G5sM3i − D̄FsM2i

UsM1i

M2i













,K =
[

Inf 0nf×(nx−nf )

]T
,

Ei =
[

0s1×(nx+nf+nz) N1i 0nf N2i 0ny

]

,

(23)
and 2il is defined in (36).
Moreover, the proposed fuzzy filter in the form of (8) is given by

AFs = G−1
2s ĀFs,BFs = G−1

2s B̄Fs,CFs = G−1
5s C̄Fs,DFs

= G−1
5s D̄Fs, s ∈ L . (24)

Proof. Consider a fuzzy-basis-dependent Lyapunov functional
(Zhong et al., 2015):

V(k) = x̄T
(

k
)

Pix̄
(

k
)

, (25)

where Pi = PT
i > 0,Pi =

r
∑

i=1
hiPi.

Define 1V(k) = V(k+ 1)−V(k), and along the trajectory of the
PL closed-loop system (14), yields

1V(k) = x̄T
(

k+ 1
)

Pjx̄
(

k+ 1
)

− x̄T
(

k
)

Pix̄
(

k
)

. (26)

It is well known that under zero initial conditions for any nonzero
ω ∈ l2 [0∞) and all admissible uncertainties in the filtering error
system in (14) is asymptotically stable with H∞ performance, if
the following inequality satisfies

1V(k)+ z̄T
(

k
)

z̄
(

k
)

− γ 2ωT
(

k
)

ω
(

k
)

< 0. (27)

To facilitate the filtering design for the system (14), it has from
(13) that

1V(k)+z̄T
(

k
)

z̄
(

k
)

−γ 2ωT
(

k
)

ω
(

k
)

< eT(k)e(k)−δ2yT
(

k
)

y
(

k
)

,
(28)

which implies (27).
Now, we directly specify the slack matrix variables Gs with the

following form:

Gs =









G1s KG2s 0nx×nz

G3s G2s 0nf×nz

G4s 0nz×nf G5s

Us 0(

nx+nf+nw+ny
)

×nf
0(

nx+nf+nw+ny
)

×nz









=
r

∑

s=1

ĥs









G1s KG2s 0nx×nz

G3s G2s 0nf×nz

G4s 0nz×nf G5s

Us 0(

nx+nf+nw+ny
)

×nf
0(

nx+nf+nw+ny
)

×nz









.

(29)

In addition, it follows from (14) that

A (i, s,1) ξ1(k) = 0, (30)

where











A (i, s,1) =
[

−I(nx+nf ) 0 Āis + 1Āis B̄is + 1B̄is D̄is

0 −Inz C̄is + 1C̄is Ēis + 1Ēis −D̄Fis

]

,

ξ1(k) =
[

x̄T
(

k+ 1
)

z̄T
(

k
)

x̄T
(

k
)

ωT
(

k
)

eT
(

k
) ]T

, ξ1(k) 6= 0.

(31)
Then, based on Finsler’s lemma (Lemma 3), substituting the
matrix Gs defined in (29) into (30), and together with (28), yields

ξT1 (k)
[

2(i, j)+ δ2i 5
T (i,1)5 (i,1) + Sym{4 (i, s,1)}

]

ξ1(k) < 0,

(32)
where







































































































































2(i, j) =













Pj 0 0 0 0

∗ Inz 0 0 0

∗ 0 −Pi 0 0

∗ ∗ ∗ −γ 2Inw 0

∗ ∗ ∗ ∗ −Iny













,

5 (i,1) =
[

0ny×(nx+nf+nz) Ci + 1Ci 0ny×nf Di + 1Di 0ny×ny

]

,

4 (i, s,1) =









−G1s −KG2s 0 414 (i, s,1)

−G3s −G2s 0 424 (i, s,1)

−G4s 0 −G5s 434 (i, s,1)

−Us 0 0 Us (Ai + 1Ai)

G2sAFs G1s (Bi + 1Bi) + KG2sBFs (Di + 1Di) KG2sBFs

G2sAFs G3s (Bi + 1Bi) + G2sBFs (Di + 1Di) G2sBFs

−G5sCFs 436 (i, s,1) −G5sDFs

0 Us (Bi + 1Bi) 0









,

414 (i, s,1) = G1s (Ai + 1Ai) + KG2sBFs (Ci + 1Ci) ,

424 (i, s,1) = G3s (Ai + 1Ai) + G2sBFs (Ci + 1Ci) ,

434 (i, s,1) = G4s (Ai + 1Ai) + G5s (Li + 1Li) − G5sDFs (Ci + 1Ci) ,

436 (i, s,1) = G4s (Bi + 1Bi) + G5s (Fi + 1Fi) − G5sDFs (Di + 1Di) .

(33)
By applying the Schur complement lemma (Lemmas 1), it is clear
that the following inequality implies (32):

6(i, , s, l,1) =
[

2(i, l)+ Sym{4(i, s,1)} δ5T (i,1)

∗ −Iny

]

< 0.

(34)
According to (6, 9, 11) and (15, 34) can be easily rewritten as

6(i, , s, j,1) =
r

∑

j=1

h+j

r
∑

i=1

hiĥi6iij(1)+
r

∑

j=1

h+j

r−1
∑

i=1

r
∑

s=i+1

hiĥs
{

6isj(1)

+6sij(1)
}

< 0, (35)
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where























































































































































6isj(1) =
[

2ij + Sym{4is(1)} δ5T
i (1)

∗ −Iny

]

,

2ij =













Pj 0 0 0 0

∗ Inz 0 0 0

∗ ∗ −Pi 0 0

∗ ∗ ∗ −γ 2Inw 0

∗ ∗ ∗ ∗ 0ny×ny













,

5i(1) =
[

0ny×(nx+nf+nz) Ci + 1Ci 0ny×nf Di + 1Di 0ny×ny

]

,

4is(1) =









−G1s −KG2s 0 414
is (1)

−G3s −G2s 0 424
is (1)

−G4s 0 −G5s 434
is (1)

−Us 0 0 Us (Ai + 1Ai)

KG2sAFs G1s (Bi + 1Bi) + KG2sBFi (Di + 1Di) KG2iBFs
G2sAFs G3i (Bi + 1Bi) + G2iBFi (Di + 1Di) G2sBFs
−G5sCFs 436

is (1) −G5sDFs

0 Us (Bi + 1Bi) 0









,

414
is (1) = G1s (Ai + 1Ai) + KG2sBFs (Ci + 1Ci) ,

424
is (1) = G3s (Ai + 1Ai) + G2sBFs (Ci + 1Ci) ,

434
is (1) = G4s (Ai + 1Ai) + G5s (Li + 1Li) − G5sDFs (Ci + 1Ci) ,

436
is (1) = G4s (Bi + 1Bi) + G5s (Fi + 1Fi) − G5sDFs (Di + 1Di) .

(36)

Since hi
[

ζ (k)
]

≥ 0,
r

∑

l=1

hi
[

ζ (k)
]

= 1, and ĥs[ζ̂ (k)] ≥

0,
r

∑

s=1
ĥs[ζ̂ (k)] = 1, so that the following inequalities imply (34):

6iij(1) < 0, i ∈ L , (37)

and

6isj(1)+ 6sij(1) < 0, 1 ≤ i < s ≤ r. (38)

On the other hand, using relations (2–3), one has

6isj(1) = 6isj + Sym
{

Wis1(k)Ei
}

, (39)

where 6isj,Wis, and Ei are defined in (22).
By introducing

ĀFs = G2sAFs, B̄Fs = G2sBFs, C̄Fs = G5sCFs, D̄Fs = G5sDFs, s ∈ L ,
(40)

and by applying the Schur complement and S-procedure
(Lemmas 1 and 2) to (43), it is clear that (25) and (26) are
obtained, respectively. The proof is therefore completed.

3.2. Piecewise Linear System
Based on the PWL closed-loop system given by (16, 17), we will
present the filtering design as follows:

Theorem 2. Given the fuzzy system (1), and an admissible
fuzzy filter (8) with the PETC strategy (7), the filtering error
system given by (16) and (17) is robust asymptotically, stabilized
with H∞ performance γ if there exist sets of matrices 0 < Pmi =
(

Pmi
)T ∈ R

(

nx+nf+ny
)

×
(

nx+nf+ny
)

,

(i,m) ∈ L ;Ym
11s ∈ R

nx×nx ,Y2s ∈ R
nf×nf ,Ym

13s ∈ R
nx×ny ,Ym

21s ∈
R
nf×nx ,Ym

23s ∈ R
nf×ny ,Ym

31s ∈ R
nz×nx , Ym

33s ∈ R
nz×ny ,Ym

41s ∈
R
ny×nx ,Ym

43s ∈ R
ny×ny ,Y5s ∈ R

nz×nz ,Qm
1i ∈ R

(

nx+nf+ny+nw
)

×nx ,

Qm
2i ∈ R

(

nx+nf+ny+nw
)

×ny , ÃFs ∈ R
nf×nf , B̃Fs ∈ R

nf×ny , C̃Fs ∈

R
nz×nf , D̃Fs ∈ R

nz×ny , (m, s) ∈ L ; and some positive scalars
δ, km, εisj,

(

m, i, s, j
)

∈ L , such that for all j ∈ L , the following
LMIs hold







2̃nm
ij + Sym

{

4̃m
ii

}

−εmiijẼi W̃m
ii

∗ −εmiijIns1 0

∗ ∗ −εmiijIns1






< 0,

(41)

for i ∈ L , (n,m) = {1, 2}, and
















2̃nm
ij + 2̃nm

ji + Sym
{

4̃m
is + 4̃m

si

}

−εmisjẼi W̃m
is −εmisjẼs W̃m

si

∗ −εmisjIns1 0 0 0

∗ ∗ −εmisjIns1 0 0

∗ ∗ ∗ −εmisjIns1 0

∗ ∗ ∗ ∗ −εmisjIns1

















< 0,

(42)
for 1 ≤ i < s ≤ r, (n,m) = {1, 2}, and



























2̃nm
ij =









Pnj 0 0 0

∗ Inz 0 0
∗ 0 −Pmi 0
∗ ∗ ∗ −γ 2Inw









,

Ẽi =
[

0s1×(nx+nf+ny+nz) N1i 0s1×nf 0s1×ny N2i

]

, (43)

and



































































































4̃1
is =













−Y1
11s −KY2s −Y1

13s 0 4̃1
15is KÃFs 0

−Y1
21s −Y2j −Y1

23s 0 4̃1
25is ÃFs 0

−Y1
31s 0 −Y1

33s 0 Y1
31sAi + Y1

33sCi 0 0

−Y1
41s 0 −Y1

43s −Y5j 4̃1
45is −C̃Fs 0

−Q1
1s 0 −Q1

2s 0 Q1
1sAi + Q1

2sCi 0 0

4̃1
18is

4̃1
28is

Y1
31sBi + Y1

33sDi

4̃1
48is

Q1
1sBi + Q1

2sDi













, W̃1
is =













Y1
11sM1i +

(

KY2sBFs + Y1
13s

)

M2i

Y1
21sM1i +

(

Y2sBFs + Y1
23s

)

M2i

Y1
31sM1i + Y1

33sM2i

Y1
41sM1i +

(

Y1
43s − D̃Fs

)

M2i + Y5sM3i

Q1
1sM1i + Q1

2sM2i













,

4̃1
15is = Y1

11sAi + KB̃FsCi + Y1
13sCi, 4̃

1
18is = Y1

11sBi + KB̃FsDi + Y1
13sDi,

4̃1
25is = Y1

21sAi + B̃FsCi + Y1
23sCi, 4̃

1
28is = Y1

21sBi + B̃FsDi + Y1
23sDi

4̃1
45is = Y1

41sAi + Y1
43sCi + Y5sLi − D̃FsCi,

4̃1
48is = Y1

41sBi + Y1
43sDi + Y5sFi − D̃FsDi,

(44)
and































































4̃2
is =













−Y2
11s −KY2s −Y2

13s 0 Y2
11sAi

−Y2
21s −Y2s −Y2

23s 0 Y2
21sAi

−Y2
31s 0 −Y2

33s 0 Y2
31sAi

−Y2
41s 0 −Y2

43s −Y5s Y2
41sAi + Y5sLi

Q2
1s 0 Q2

2s 0 Q2
1sAi

KÃFs KB̃Fs + Y2
13s Y2

11sBi
KÃFs B̃Fs + Y2

23s Y2
21sBi

0 Y2
23s Y2

31sBi
−C̃Fs Y2

43s − D̃Fs Y2
41sBi + Y5sFi

0 Q2
2s Q2

1sBi













, W̃2
is =













Y2
11sM1i

Y2
21sM1i

Y2
31sM1i

Y2
41sM1i + Y5sM3i

Q2
1sM1i













.

(45)
Moreover, an admissible fuzzy filter in the form of (8) is given by

AFs = Y−1
2s ÃFs,BFs = Y−1

2s B̃Fs,CFs = Y−1
5s C̃Fs,DFs

= Y−1
5s D̃Fs, s ∈ L . (46)
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Proof. Consider a piecewise quadratic Lyapunov functional
Zhong and Zhu (2018):

V(k) = x̄T
(

k
)

P
m
i x̄

(

k
)

, (47)

where Pm
i =

(

Pm
i

)T
> 0,Pm

i =
r

∑

i=1
hiP

m
i ,m = {1, 2}.

Along the trajectory of two subsystems given by (16, 17), yields

1V(k) = x̄T
(

k+ 1
)

P
n
j x̄

(

k+ 1
)

− x̄T
(

k
)

P
m
i x̄

(

k
)

. (48)

It follows from (7, 27), that

1V(k)+ z̄T
(

k
)

z̄
(

k
)

− γ 2ω̄T
(

k
)

ω̄
(

k
)

< (−1)mηm
{

[

y
(

k
)

− ŷ
(

k− 1
)]T

(⋆)− δ2yT
(

k
)

y
(

k
)

}

, (49)

where ηm ≥ 0, and the inequality (49) implies

1V(k)+ z̄T
(

k
)

z̄
(

k
)

− γ 2ω̄T
(

k
)

ω̄
(

k
)

< 0. (50)

It is noted that the even-triggered information is particularly
useful to reduce the conservatism of the systems with an event-
triggered strategy. For the systems with parameter uncertainties
involved in the matrices Ci and Di, the terms yT

(

k
)

y
(

k
)

and
[

y
(

k
)

− ŷ
(

k− 1
)]T

(⋆) can be separated by applying the Schur
complement and S-procedure lemma. However, it is easy to see
that it will lead to a infeasible solution in (49). As a result, (49)
is only suitable for the case of the matrices Ci and Di without
uncertainties. Otherwise, (50) should be used.

Based on (50), and similar to (29–31), the following results can
be obtained

ξT2 (k)
[

2̃(n, j,m, i)+ Sym{Ym(s)A m(i, s,1)}
]

ξ2(k) < 0, (51)

where (m, n) = {1, 2}, and


































































A
1(i, j,1) =

[

−I 0 Ã1
is + 1Ã1

is B̃1
is + 1B̃1

is

0 −I C̃1is + 1C̃1is Ẽ1
is + 1Ẽ1

is

]

,

A
2(i, s,1) =

[

−I 0 Ã2
is + 1Ã2

is B̃2
is + 1B̃2

is

0 −I C̃2is + 1C̃2is Fi + 1Fi

]

,

2̃(n, j,m, i) =









Pn
j 0 0 0

∗ Inz 0 0
∗ 0 −Pm

i 0
∗ ∗ ∗ −γ 2Inw









,

ξ2(k) =
[

x̃T
(

k+ 1
)

z̄T
(

k
)

x̃T
(

k
)

ωT
(

k
) ]T

, ξ2(k) 6= 0.

(52)

We directly specify the slack matrix variables:

Ym(s) =















Ym
11s KY2s Ym

13s 0nx×nz

Ym
21s Y2s Ym

23s 0nf×nz

Ym
31s 0ny×nf Ym

33s 0ny×nz

Ym
41s 0nz×nf Ym

43s Y5s

Qm
1s 0(

nx+nf+ny+nw
)

×nf
Qm

2s 0(

nx+nf+ny+nw
)

×nz















=
r

∑

s=1

ĥs















Ym
11s KY2s Ym

13s 0nx×nz

Ym
21s Y2s Ym

23s 0nf×nz

Ym
31s 0ny×nf Ym

33s 0ny×nz

Ym
41s 0nz×nf Ym

43s Y5s

Qm
1s 0(

nx+nf+ny+nw
)

×nf
Qm
2s 0(

nx+nf+ny+nw
)

×nz















.

(53)

According to (2, 6, 9) and (24), the following inequality
implies (12):

6̃nm(i, s, j,1) =
r

∑

j=1

h+j

r
∑

i=1

hiĥi6̃
nm
iij (1)+

r
∑

j=1

h+j

r−1
∑

i=1

r
∑

s=i+1

hiĥs

{

6̃nm
isj (1)+ 6̃nm

sij (1)
}

< 0, (54)

where

6̃m
isj(1) = 2̃nm

ij +Sym{4̃m
is (1)}, 2̃nm

ij =









Pnj 0 0 0

∗ Inz 0 0
∗ 0 −Pmi 0
∗ ∗ ∗ −γ 2Inw









,

(55)
and



































































































































































4̃1
is(1) =















−Y1
11s −KY2s −Y1

13s 0 4̃1
15is(1) KY2sAFs 0

−Y1
21s −Y2j −Y1

23s 0 4̃1
25is(1) Y2sAFs 0

−Y1
31s 0 −Y1

33s 0 4̃1
35is(1) 0 0

−Y1
41s 0 −Y1

43s −Y5j 4̃1
45is(1) −Y5sCFs 0

−Q1
1s 0 −Q1

2s 0 4̃1
55is(1) 0 0

Y1
11s (Bi + 1Bi) + KY2sBFs (Di + 1Di) + Y1

13s (Di + 1Di)

Y1
21s (Bi + 1Bi) + Y2sBFs (Di + 1Di) + Y1

23s (Di + 1Di)

Y1
31s (Bi + 1Bi) + Y1

33s (Di + 1Di)

4̃1
48is(1)

Q1
1s (Bi + 1Bi) + Q1

2s (Di + 1Di)















,

4̃1
15is(1) = Y1

11s (Ai + 1Ai) + KY2sBFs (Ci + 1Ci)+
+Y1

13s (Ci + 1Ci) ,

4̃1
25is(1) = Y1

21s (Ai + 1Ai) + Y2sBFs (Ci + 1Ci)

+Y1
23s (Ci + 1Ci) ,

4̃1
35is(1) = Y1

31s (Ai + 1Ai) + Y1
33s (Ci + 1Ci) ,

4̃1
45is(1) = Y1

41s (Ai + 1Ai) + Y1
43s (Ci + 1Ci)

+Y5s (Li + 1Li) − Y5sDFs (Ci + 1Ci) ,

4̃1
55is(1) = Q1

1s (Ai + 1Ai) + Q1
2s (Ci + 1Ci) ,

4̃1
48is(1) = Y1

41s (Bi + 1Bi) + Y1
43s (Di + 1Di)

+Y5s (Fi + 1Fi) − Y5sDFs (Di + 1Di) ,

(56)
and














































































4̃2
is(1) =















−Y2
11s −KY2s −Y2

13s 0 Y2
11s (Ai + 1Ai)

−Y2
21s −Y2s −Y2

23s 0 Y2
21s (Ai + 1Ai)

−Y2
31s 0nf×nz −Y2

33s 0 Y2
31s (Ai + 1Ai)

−Y2
41s 0nz×nf −Y2

43s −Y5s 4̃2
45is(1)

Q2
1s 0(

nx+nf+nw+ny
)

×nf
Q2
2s 0 Q2

1s (Ai + 1Ai)

KY2sAFs KY2sBFs + Y2
13s Y2

11s (Bi + 1Bi)

KY2sAFs Y2sBFs + Y2
23s Y2

21s (Bi + 1Bi)

0 Y2
23s Y2

31s (Bi + 1Bi)

−Y5sCFs Y2
43s − Y5sDFs Y2

41s (Bi + 1Bi) + Y5s (Fi + 1Fi)

0 Q2
2s Q2

1s (Bi + 1Bi)















,

4̃2
45is(1) = Y2

41s (Ai + 1Ai) + Y5s (Li + 1Li) .

(57)
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The following proof is similar to the proof of Theorem 1 and is,
therefore, omitted.

It is worth pointing out that for the case of the matrices Ci

and Di without uncertainties, the event-triggered information
can be used to reduce the conservatism. The corresponding H∞
filtering design result can be readily obtained from Theorem
2 by including the event-triggered information. The result is
summarized in the following corollary.

Corollary 3. Consider the fuzzy system (1) and the fuzzy
filter (8) with the PETC strategy (7), the filtering error system
given by (16, 17) is robust asymptotically stabilized with H∞
performance γ if there exist sets of matrices 0 < Pmi =

(

Pmi
)T ∈

R

(

nx+nf+ny
)

×
(

nx+nf+ny
)

, (i,m) ∈ L ;Ym
11s ∈ R

nx×nx ,Y2s ∈
R
nf×nf ,Ym

13s ∈ R
nx×ny ,Ym

21s ∈ R
nf×nx ,Ym

23s ∈ R
nf×ny ,Ym

31s ∈
R
nz×nx , Ym

33s ∈ R
nz×ny ,Ym

41s ∈ R
ny×nx ,Ym

43s ∈ R
ny×ny ,Y5s ∈

R
nz×nz ,Qm

1i ∈ R

(

nx+nf+ny+nw
)

×nx ,

Qm
2i ∈ R

(

nx+nf+ny+nw
)

×ny , ÃFs ∈ R
nf×nf , B̃Fs ∈ R

nf×ny , C̃Fs ∈
R
nz×nf , D̃Fs ∈ R

nz×ny , (m, s) ∈ L ; and some positive scalars
δ, km, εisj,

(

m, i, s, j
)

∈ L , such that for all j ∈ L , the following
LMIs hold







2̃nm
ij + Sym

{

4̃m
is

}

−εmiijẼ
m
i W̃m

is

∗ −εmiijIns1 0

∗ ∗ −εmiijIns1






< 0,

(58)

for i ∈ L , (n,m) = {1, 2}, and














2̃nm
ij + 2̃nm

sj + Sym
{

4̃m
is + 4̃m

si

}

−εmisjẼ
m
i W̃m

is −εmisjẼ
m
s W̃m

si

∗ −εmisjIns1 0 0 0

∗ ∗ −εmisjIns1 0 0

∗ ∗ ∗ −εmisjIns1 0

∗ ∗ ∗ ∗ −εmisjIns1















< 0,

(59)
for 1 ≤ i < s ≤ r, (n,m) = {1, 2}, and 4̃m

is and Ẽi are defined in
(42), and























































































2̃nm
ij =









Pnj 0 0 0

∗ Inz 0 0
∗ 0 −Pmi 0
∗ ∗ ∗ −γ 2Inw









+ (−1)m+1ηm









0(

nx+nf+ny+nz
)

×ny

CT
i

−Iny
DT
i









(⋆)

+(−1)mηm









0(

nx+nf+ny+nz
)

×ny

δCT
i

0ny×ny

δDT
i









(⋆) ,

W̃1
is =











Y1
11sM1i

Y1
21sM1i

Y1
31sM1i

Y1
41sM1i + Y5sM3i

Q1
1sM1i











, W̃2
is =











Y2
11sM1i

Y2
21sM1i

Y2
31sM1i

Y2
41sM1i + Y5sM3i

Q2
1sM1i











,

(60)
Moreover, an admissible fuzzy filter in the form of (8) is given by

AFs = Y−1
2s ÃFs,BFs = Y−1

2s B̃Fs,CFs = Y−1
5s C̃Fs,DFs

= Y−1
5s D̃Fs, s ∈ L . (61)

Note that the H∞ performance index γ described in Theorem 1,
2, and Corollary 3 can be optimized by the following algorithms:

Algorithm 1: min γ , subject to LMIs (21)-(22),
Algorithm 2: min γ , subject to LMIs (41)-(42),
Algorithm 3: min γ , subject to LMIs (58)-(59).

4. SIMULATION EXAMPLES

This section uses an example to illustrate the effectiveness of the
proposed PETC filter design approach.

Consider a tunnel diode circuit, whose modeling was done in
Assawinchaichote and Nguang (2003), that is















Cẋ1 (t) = −0.002x1 (t) − 0.01x31 (t) + x2 (t) ,
Lẋ2 (t) = −x1 (t) − Rx2 (t) + ω (t) ,

y(k) = Sx
(

k
)

+ ω
(

k
)

,

z
(

k
)

= x1 (t) , (62)

where x1(t) and x2(t) are the state variables, ω(t) is the
disturbance noise input, y(t) is the measurement, z(t) is the
controlled output, C, L,R, and S are the capacitance, the
inductance, the resistance, and S the sensor matrix, respectively.

Given C = 20mF, L = 1000mH and R = 10�, consider
the uncertainty 1R = 0.1�. With a sampling time T = 0.02 ,
the nonlinear system (62) can be approximated by the following
discrete-time T-S model:

Plant Rule Ri: IF x1
(

k
)

is Fi, THEN







x
(

k+ 1
)

= (Ai + 1A) x
(

k
)

+ Biω
(

k
)

,

y(k) = Cx
(

k
)

+ Dω
(

k
)

,

z
(

k
)

= Lx
(

k
)

, i = {1, 2} (63)

where

A1 =
[

0.9887 0.9024
−0.0180 0.8100

]

,B1 =
[

0.0093
0.0181

]

,

A2 =
[

0.9034 0.8617
−0.0172 0.8103

]

,B2 =
[

0.0091
0.0181

]

,

1A =
[

0 0
0 −0.0016

]

,C =
[

1 0
]

,D = 1, L =
[

1 0
]

.

The uncertainty 1A is assumed to satisfy the form of (2, 3), that
is

1A = M1(k)N, (64)

where 1(k) = sin(k),M =
[

0
−0.16

]

,N =
[

0 0.01
]

.

Similar to Gao et al. (2009), the membership functions are given
by

h1 =



















x1(k)+3
3 ,−3 ≤ x1

(

k
)

≤ 0,

0, x1
(

k
)

< −3,
3−x1(k)

3 , 0 ≤ x1
(

k
)

≤ 3,

0, x1
(

k
)

> 3,

h2 = 1− h1.

(65)

Firstly, the objective here is to design the PETC fuzzy filter (8)
without A task delay, such that the filtering error system (13) is
asymptotically stable with robust H∞ performance γmin. Given
δ = 0.2, and applying Algorithm 1, the filter matrices and the
minimum H∞ performance γmin are obtained as follows:









AF1 BF1
AF2 BF2
CF1 DF1

CF2 DF2









=

















0.9162 0.8160 −0.0374
−0.0338 0.7969 −0.0171

0.8337 0.6409 −0.0323
−0.0322 0.7996 −0.0171

−0.9519 0.2938 0.0252

−0.9401 0.3113 0.0232

















,
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γmin = 0.4,
for the full-order case, and








AF1 BF1
AF2 BF2
CF1 DF1

CF2 DF2









=









0.8119 −0.0917

0.7406 −0.0713

−1.0242 −0.0109

−0.9954 −0.0102









, γmin = 0.4,

for the reduced-order (nf = 1) case.
Then, we are in a position to design the PETC fuzzy filter

(14) with a task delay such that the filtering error system (18)
is asymptotically stable with the H∞ performance γmin. Given
δ = 0.2, and the task delay d(k) is assumed to satisfy (15) with
0 ≤ d(k) ≤ 5, and by applying Algorithm 2, the filter matrices
and theminimumH∞ performance γmin are obtained as follows:









AF1 BF1
AF2 BF2
CF1 DF1

CF2 DF2









=

















0.7217 1.1650 −0.1327
0.0076 0.7823 0.0132

0.5524 0.7918 −0.1212
0.0146 0.8018 0.0126

−0.8684 −0.0520 0.1858

−0.6409 0.4196 0.1677

















,

γmin = 0.86.
However, by applying Algorithm 3, the filter matrices and the

minimum H∞ performance γmin are obtained as follows:









AF1 BF1
AF2 BF2
CF1 DF1

CF2 DF2









=

















0.7596 1.2681 −0.1802
0.0018 0.7909 0.1805

0.6054 0.8413 −0.0727
0.0069 0.8092 0.0067

−0.9422 −0.0584 0.1037

−0.7221 0.4601 0.0955

















,

γmin = 0.90.

5. CONCLUSION

In this paper, we have investigated the filtering design
for a class of uncertain discrete-time T-S fuzzy systems

under a periodic event-triggered control (PETC) scheme,

where the sample time was assumed to be a constant.
These two frameworks, based on perturbed and piecewise
linear systems, were presented to model the filtering error
systems, respectively. Based on a fuzzy-basis-dependent
Lyapunov functional combined with Finsler’s lemma, sufficient
conditions for the robust filtering PETC design of these two
frameworks have been derived, respectively, and the filter
gains were obtained by solving a set of LMIs. A simulation
example was provided to demonstrate the effectiveness of the
proposed method.
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