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Abstract: Semaphorin-3E (Sema-3E) is a member of a large family of proteins originally identified as
axon guidance cues in neural development. It is expressed in different cell types, such as immune cells,
cancer cells, neural cells, and epithelial cells. Subsequently, dys-regulation of Sema-3E expression has
been reported in various biological processes that range from cancers to autoimmune and allergic
diseases. Recent work in our laboratories revealed a critical immunoregulatory role of Sema-3E
in experimental allergic asthma. We further speculate possible immune modulatory function(s) of
Sema-3E on natural killer (NK) cells.
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1. The Semaphorin Family: Classification and Structure

Semaphorins were first discovered as axon guidance molecules in the nervous system [1,2].
Currently, they represent a large family of proteins that are classified into eight classes (1–7 and V).
Classes 1 and 2 are found in invertebrates. Classes 3–7 exist in vertebrates, whereas Class V is
unique to viruses [3]. The differences between these classes are related to their sequences and
structures. A signature domain, however, called the semaphorin (Sema) domain, is conserved among
all members of the semaphorins family. The extracellular Sema domain consists of 500 amino acids
and is a cysteine-rich sequence that is crucial for receptor binding specificity and protein functions
(Figure 1) [4–7]. Semaphorin molecules can be membrane-bound (Classes 1, 3, 4, 5, and 6) [8,9],
secreted proteins (Classes 2, 3, 4, and V) [10,11], or glycosyl–phosphatidyl–inositol (GPI)-linked
proteins (Class 7) [8].

The plexin receptors are large 200 kDa transmembrane proteins that have been identified in
vertebrates (Plexins A1–A4, B1–B3, C1, and D1) and two in invertebrates (Plexins A and B) [3].
The extracellular part of the plexin receptors contains a Sema domain, followed by three PSI
(plexin–semaphorin–integrin) domains and three IPT (immunoglobulin, plexin, and transcription
factors) domains [12]. The PSI domain is a small cysteine-rich domain that is crucial for protein–protein
interactions [13]. The IPT domain is required for proper ligand binding to the plexin receptors.
The intracellular domain or cytoplasmic tail of the Plexin molecule is highly conserved and plays
a crucial role in transmitting the signals following ligand binding. It contains a putative tyrosine
phosphorylation sites, a GTPase-binding domain, and a segmented GTPase-activating protein (GAP)
domain [14–16]. Neuropilins (NRP) receptors, NRP1 and NRP2, are single-pass transmembrane
proteins that contain short cytoplasmic tails. The extracellular portion of NRPs contains two repeat
complement-binding (CUB) domains (a1 and a2 domains), two coagulation factor-like domains
(b1 and b2 domains), and a juxta-membrane meprin/A5/mu-phosphatase (MAM) homology domain
(c domain) [17].
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Figure 1. Classes and structures of semaphorins. Semaphorins are represented in their classification 
into eighth classes. Class 1 and 2 semaphorins are found in invertebrates. Class 3–7 semaphorins are 
found in vertebrates. The Sema domains characterize both semaphorins and plexins. Additional 
domains present in semaphorins and plexins include PSI domains (plexin, semaphorin, and integrin) 
and immunoglobulin (Ig)-like domains. Class 7 semaphorin (Sema-7) contains a 
membrane-associated GPI moiety at its carboxyl terminus. Class V (Sema-8) semaphorins are highly 
similar to the Class 7 semaphorins and are found in DNA viruses. Semaphorins can be either 
secreted or membrane-bound proteins. Note: Some members of the Class 4 semaphorins can be 
found in secreted form. Some members of the Class 3 proteins can be found on cell surfaces. 

Selective binding and signaling of individual Semaphorin members is thought to be determined 
by the receptor complexes that can exist either as homomeric or heteromeric complexes [5]. Most 
semaphorin molecules mediate their effector functions by direct binding and signaling of plexins 
and neuropilins (NRPs) receptors [15]. For example, Sema-4A has 4 types of receptors: the Plexin-D 
family, the Plexin-B family, Tim-2 (T-cell, immunoglobulin, and mucin domain protein 2), and 
NRP-1. In most cases, members of the Plexin-A family require neuropilins as ligand-binding 
partners, whereas members of the other plexin families are directly activated by semaphorins [18]. 
Binding of Semaphorin-3 family members to neuropilin (NRP) receptors depends on their 
N-terminus Sema sequences, and whether the 70-amino acid stretch within these sequences will 
determine binding specificity [6,19]. NRP receptors may lack intrinsic signaling capabilities due to 
their short cytoplasmic tails [20]; however, both NRP1 and NRP2 were found to be essential for 
semaphorin-3-induced signal transduction [21,22]. Blocking of NRP1 (receptor of Sema-3a) using 
anti-NRP1 antibodies resulted in ablation of the axon repulsion of mouse cortical neurons [23]. 
Knock-out of the NRP-1 gene expression caused semaphorin-3a insensitivity in embryonic DRG 
neurons [24]. NRP-2 is an essential component for semaphorin-3f function. Blocking of the NRP-2 
receptor abolished the semaphorin-3f-induced growth cone collapse of embryonic rat sympathetic 
neurons, and axon repulsion in neonatal mouse cortical neurons [21]. The development of 
dopaminergic neurons in the meso-diencephalon was impaired in mice that were deficient in NRP2 
[25]. It is therefore unclear what signal transducers are involved in the downstream signaling of the 
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Figure 1. Classes and structures of semaphorins. Semaphorins are represented in their classification
into eighth classes. Class 1 and 2 semaphorins are found in invertebrates. Class 3–7 semaphorins
are found in vertebrates. The Sema domains characterize both semaphorins and plexins. Additional
domains present in semaphorins and plexins include PSI domains (plexin, semaphorin, and integrin)
and immunoglobulin (Ig)-like domains. Class 7 semaphorin (Sema-7) contains a membrane-associated
GPI moiety at its carboxyl terminus. Class V (Sema-8) semaphorins are highly similar to the Class 7
semaphorins and are found in DNA viruses. Semaphorins can be either secreted or membrane-bound
proteins. Note: Some members of the Class 4 semaphorins can be found in secreted form. Some
members of the Class 3 proteins can be found on cell surfaces.

Selective binding and signaling of individual Semaphorin members is thought to be determined
by the receptor complexes that can exist either as homomeric or heteromeric complexes [5].
Most semaphorin molecules mediate their effector functions by direct binding and signaling of
plexins and neuropilins (NRPs) receptors [15]. For example, Sema-4A has 4 types of receptors:
the Plexin-D family, the Plexin-B family, Tim-2 (T-cell, immunoglobulin, and mucin domain protein 2),
and NRP-1. In most cases, members of the Plexin-A family require neuropilins as ligand-binding
partners, whereas members of the other plexin families are directly activated by semaphorins [18].
Binding of Semaphorin-3 family members to neuropilin (NRP) receptors depends on their N-terminus
Sema sequences, and whether the 70-amino acid stretch within these sequences will determine binding
specificity [6,19]. NRP receptors may lack intrinsic signaling capabilities due to their short cytoplasmic
tails [20]; however, both NRP1 and NRP2 were found to be essential for semaphorin-3-induced signal
transduction [21,22]. Blocking of NRP1 (receptor of Sema-3a) using anti-NRP1 antibodies resulted in
ablation of the axon repulsion of mouse cortical neurons [23]. Knock-out of the NRP-1 gene expression
caused semaphorin-3a insensitivity in embryonic DRG neurons [24]. NRP-2 is an essential component
for semaphorin-3f function. Blocking of the NRP-2 receptor abolished the semaphorin-3f-induced
growth cone collapse of embryonic rat sympathetic neurons, and axon repulsion in neonatal mouse
cortical neurons [21]. The development of dopaminergic neurons in the meso-diencephalon was
impaired in mice that were deficient in NRP2 [25]. It is therefore unclear what signal transducers
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are involved in the downstream signaling of the NRP receptors. Depending on the cell type, other
membrane-associated proteins such as vascular endothelial growth factor receptor (VEGF) or CD72
could act as co-receptors for specific semaphorin members to mediate its effector functions [13].
For examples, Class 6 semaphorins bind to Class A plexin receptors and carry out different biological
activities depending on its VEGF co-receptor [13].

In the neuronal system, semaphorins can mediate repulsive axon guidance, cell migration,
invasive growth, and growth cone collapse by several post-translational modifications [26] and
oligomerization [27]. The importance of semaphorins in regulating cellular events beyond the nervous
system is emerging. Members of the semaphorin family are reported to play important roles in
immune, respiratory, and cardiovascular systems, in physiological processes such as angiogenesis,
embryogenesis, and in pathological conditions such as airway diseases and tumor formation [28–33].
This review focuses on the recent advances in our understanding of the semaphorin-3E (Sema-3E)
member of the family in these processes, and its emerging roles in regulating immune responses.

2. Receptors and Signaling of the Semaphorin-3E

The Sema-3E gene is located on Chromosome 7 and encodes a 85–90 kDa protein. Unlike the other
Semaphorin-3 members, Sema-3E can bind to the Plexin-D1 receptor with high affinity, independent
of the NRP [4,33–35]. Intracellular tail of Plexin-D1 contains two highly conserved intracellular
domains—the SEX-PLEXIN domain and the SEMA/PLEXIN domain. The SEMA/PLEXIN domain
of Plexin-D1 includes two C region RasGAP domains. Each RasGAP domain includes a short motif
of (GTPase)-activating proteins (GAPs) and monomeric GTPases of the R-Ras subfamily (Figure 2).
A monomeric Rho GTPase binding domain (RBD) is found within the two C regions. Plexin-D1 acts
as a RasGAP to antagonize both an integrin-mediated cell extracellular matrix (ECM) adhesion and
PI3K, a modulator of cell survival, growth, and migration signaling. Rho family GTPase 2 (Rnd2) is
required for the activation of the RasGAP activity of Plexin-D1. Upon Sema-3E Plexin-D1 stimulation,
pre-existing Plexin-D1-Rnd2/RLG (resistance-nodulation division/Release Guard signal) complexes
undergo Rnd2/RLG-dependent intracellular conformational changes that translate the concentration
and distribution of extracellular Sema-3 cues into an intracellular gradient of distinct Plexin-D1
activities [20,36]. Multifaceted functions of semaphorins may also be mediated by other signaling
pathways, such as mitogen-activated protein kinase or phosphatidylinositol 3-kinases. The mechanism
underlying how the binding of semaphorins induces a network of downstream signaling has not been
fully deciphered.
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Figure 2. The Sema-3E/Plexin-D1 receptor signaling. Sema3E binds its receptor, Plexin-D1. This 
interaction leads to the activation of the intracellular Plexin-D1 RasGAP (Ras GTPase activating 
protein) domain and subsequently reduces R-Ras activity [37]. Semaphorin-3E can regulate integrin 
functions and cytoskeletal dynamics via the intrinsic R-Ras GAP activity of plexins and the 
recruitment of regulatory molecules, and can thereby affect cell adhesion and migration. These 
effects can sometimes result in opposing functional responses, depending on the 
activation/inhibition of PI3K (phosphoinositide 3-kinase), in a cell-type-specific manner. The role of 
NRP-1 remains unclear. It could function to inhibit repulsive signaling by Plexin-D1, thereby 
facilitating attractive/growth-promoting responses. (+) Activation; (−) Inhibition; (?) Unknown. 

3. Semaphorin-3E in the Nervous System 

Sema-3E proteins are present in the neural scar and influence a wide range of molecules and cell 
types in and surrounding the injured tissue [38]. The Sema-3E–Plexin-D1 axis has a dual function in 
axonal growth depending on the presence of NRP1. For certain subpopulations of corticofugal and 
striatonigral neurons that express Plexin-D1 but not NRP1, Sema-3E acts as a repellent. In contrast, 
in subiculo-mammillary neurons, the presence of receptor complexes of NRP1 in addition to 
Plexin-D1 switches the Sema-3E signal from repulsion to attraction and/or stimulation of axonal 
growth [39]. Recently, Sema-3E–Plexin-D1 signaling is involved in synaptic recognition in the spinal 
cord and striatum. In the spinal cord, Sema-3E–Plexin-D1 plays a role in the specificity of 
monosynaptic sensory-motor connections [40]. Therefore, in the spinal cord post-synaptic neurons 
releasing guidance cue, Sema-3E, and repel incoming axons that express Plexin-D1 to prevent 
inappropriate synapse formation [41]. Ding et al. reported that Sema-3E was secreted by incoming 
thalamic axons and that Plexin-D1 expressed by one subtype of post-synaptic neuron could specify 

Figure 2. The Sema-3E/Plexin-D1 receptor signaling. Sema3E binds its receptor, Plexin-D1.
This interaction leads to the activation of the intracellular Plexin-D1 RasGAP (Ras GTPase activating
protein) domain and subsequently reduces R-Ras activity [37]. Semaphorin-3E can regulate integrin
functions and cytoskeletal dynamics via the intrinsic R-Ras GAP activity of plexins and the recruitment
of regulatory molecules, and can thereby affect cell adhesion and migration. These effects can
sometimes result in opposing functional responses, depending on the activation/inhibition of PI3K
(phosphoinositide 3-kinase), in a cell-type-specific manner. The role of NRP-1 remains unclear. It could
function to inhibit repulsive signaling by Plexin-D1, thereby facilitating attractive/growth-promoting
responses. (+) Activation; (−) Inhibition; (?) Unknown.

3. Semaphorin-3E in the Nervous System

Sema-3E proteins are present in the neural scar and influence a wide range of molecules and cell
types in and surrounding the injured tissue [38]. The Sema-3E–Plexin-D1 axis has a dual function in
axonal growth depending on the presence of NRP1. For certain subpopulations of corticofugal and
striatonigral neurons that express Plexin-D1 but not NRP1, Sema-3E acts as a repellent. In contrast, in
subiculo-mammillary neurons, the presence of receptor complexes of NRP1 in addition to Plexin-D1
switches the Sema-3E signal from repulsion to attraction and/or stimulation of axonal growth [39].
Recently, Sema-3E–Plexin-D1 signaling is involved in synaptic recognition in the spinal cord and
striatum. In the spinal cord, Sema-3E–Plexin-D1 plays a role in the specificity of monosynaptic
sensory-motor connections [40]. Therefore, in the spinal cord post-synaptic neurons releasing guidance
cue, Sema-3E, and repel incoming axons that express Plexin-D1 to prevent inappropriate synapse
formation [41]. Ding et al. reported that Sema-3E was secreted by incoming thalamic axons and that
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Plexin-D1 expressed by one subtype of post-synaptic neuron could specify synaptic specificity [42].
Collectively, Sema-3E–Plexin-D1 signaling determines synaptic recognition and specificity in multiple
parts of the nervous system [34].

4. Semaphorin-3E in Cardiovascular Development

Sema-3E was discovered to play crucial roles in cardiovascular development, mainly acting
through NRP1 and Plexin-D1 [43]. Many studies have been focused on Sema-3E signaling in vascular
patterning and cardiac morphogenesis, and Sema-3E signaling impairment has been associated with
various human cardiovascular disorders, such as persistent truncus arteriosus, sinus bradycardia,
and anomalous pulmonary venous connections [44]. Sema-3E–Plexin-D1 signaling is required for
proper dorsal aortae patterning in the early embryo [45]. This signaling can repress angiogenesis by
antagonizing the proangiogenic activity of VEGF [46]. Moreover, Sema-3E affects retinal angiogenic
cell fate decisions by regulating cell responsiveness to VEGF and Notch in tip and stalk cells [47].

5. Semaphorin-3E and Cancers

High levels of expression of Sema-3E and Plexin-D1 were observed in human colon cancer, liver
metastasis, and melanoma progression [17,48]. Further functional analyses revealed that Sema-3E
could regulate invasiveness of tumor cells in a Plexin-D1-dependent manner [49,50]. In breast cancers,
expressions of Sema-3E and the Plexin-D1 receptor have been shown to be upregulated in advanced
and metastatic human breast tumors. The Sema-3E/Plexin-D1 signaling promoted survival of breast
cancer cells. Suppression of such Sema-3E/Plexin-D1 signaling pathway in human and mouse breast
cancer cells induced apoptosis in vitro and subsequently reduced metastasis in vivo [48,49,51].

6. Semaphorin-3E in an Allergic Asthma Model

Emerging data suggest that semaphorins and their receptors are key regulators of allergic
inflammatory responses in the airways [32]. Of particular interest to us, we observed that expression
of Sema-3E was significantly suppressed in the airways of severe asthmatic patients [52] and in
an experimental mouse model of asthma [53]. In addition, the surface expression of the Plexin-D1
receptor was reduced in the airway smooth muscle cells from asthmatic patients, thus suggesting
the functional importance of Sema-3E/Plexin-D1 signaling in allergic asthma [54]. We reported
that Sema-3E inhibited human airway smooth muscle (ASM) cell migration and proliferation by
modulation of Rac1, ERK1/2, and Akt pathways [54]. To further examine the role of Sema-3E in the
development and maintenance of allergic asthma, we used Sema-3E-deficient mice in experimental
models of asthma. We observed that genetic ablation of Sema-3E in mice resulted in increased lung
granulocytosis, increased airway hyper-responsiveness, mucus overproduction, collagen deposition,
and Th2/Th17 lung inflammation in allergic asthma [53]. The regulatory role of Sema-3E in allergic
asthma seems to be mediated by the modulations and/recruitment of pulmonary dendritic cell (DC)
subset [53] and neutrophils [55]. Intranasal administration of recombinant Sema-3E alleviated these
pathological features of experimental allergic asthma, highlighting the importance of Sema-3E in
maintaining a homeostatic balance in the airway [56].

7. The Prospective Role of Semaphorin-3E in Regulating Natural Killer (NK) Cell Functions

NK cells are bone-marrow-derived cells that constitute 10–15% of blood lymphocytes [57].
They migrate to peripheral tissues or inflamed lymph nodes to exert their immune-surveillance
functions [58]. They are currently classified as members of the emerging family of the innate lymphoid
cells that play important roles in innate immunity and tissue remodeling [59,60]. NK-cell activation and
function can be regulated by target cell recognitions, cytokines (such as IL-2, IL-12, IL-15, IL-18) [61],
or dendritic cells (DCs) in microenvironments [62,63]. The interaction of NK and DCs (crosstalk) is
bi-directional, involving multiple cytokine signals and direct cell–cell contacts [64–67]. DC-derived
cytokine IL-12 is critical in the generation of IFN-γ-producing NK cells. Interestingly, DCs also derive
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soluble factors such as IL-1 and IL-18, which have implications in terms of the acquisition of IL-12
receptor on NK cells [68]. Mutually, NK cells promote DC maturation and activation by inducing MHC
molecule expression and by enhancing the ability to secrete IL-18, IL-12, and P70 via upregulation of
CD86 molecules and the activation of Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) and
NKp30 signaling [69,70]. As DCs can acquire different abilities to induce immunological tolerance
or to stimulate functionally distinct T cell subsets (such as Th1, Th2, and Th17) effectively [71], the
regulation of DC maturation/functions by NK cells is important in coordinating innate and adaptive
immune responses. NK–DC crosstalk therefore shapes anti-tumor and anti-microbial responses
in vivo [64,67,72–76].

Holl et al. reported that Plexin-B2 and Plexin-D1 are reciprocally expressed on plasmacytoid
and myeloid DCs. The predominant expression of the Plexin-D1 receptor on bone-marrow-derived
DCs (BMDC) can be further modulated by TLR ligands [77]. In addition, splenic DCs expressed high
levels of Sema-3E [77]. Plexin-D1-deficient and wild-type DCs exhibited comparable LPS-induced
DC maturation, T-cell stimulations, and migrations towards CXCL12/19 gradients. However, the
Plexin-D1-deficient DCs were hyper-responsive in their secretion of IL-12/IL-23 p40 (but not IL-6)
when these sorted splenic DCs were cultured in vitro at the steady state for 24 h [77]. It will be
interesting to examine how modulation of IL-12 production by Plexin-D1/Sema-3E may further
regulate NK cell activation, NK cell functions, or NK–DC crosstalk in vitro and in vivo.

Our recent work demonstrated that mouse NK cells expressed Sema-3E receptor (Plexin-D1) on
their cell surface [78]. It thus highlighted the possibilities of a direct regulatory effect of Sema-3E
on NK-cell functions. We observed also the expression of Sema-3E in bone-marrow-derived DCs
was tightly regulated in DC maturation [78]. It will be interesting to examine further, for example,
how Sema-3E production by DCs regulates NK cell functions, NK-induced DC maturation, or DC
homeostasis in NK–DC crosstalk.

8. Conclusions

Semaphorins were first identified as axon guidance cues in neural development. Recent work has
established its multi-faceted role in the cardiovascular system, airway biology, cancers, and immune
cell regulation. Future investigations of the role(s) of Sema-3E in regulating NK cells and/or NK–DC
crosstalk will provide new insights into the importance of Sema-3E in maintaining the homeostasis of
immune cells in physiological and pathological settings.
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