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Abstract

Mounting lines of evidence suggest the significant computational ability of a single neuron empowered by active dendritic
dynamics. This motivates us to study what functionality can be acquired by a network of such neurons. The present paper
studies how such rich single-neuron dendritic dynamics affects the network dynamics, a question which has scarcely been
specifically studied to date. We simulate neurons with active dendrites networked locally like cortical pyramidal neurons,
and find that naturally arising localized activity – called a bump – can be in two distinct modes, mobile or immobile. The
mode can be switched back and forth by transient input to the cortical network. Interestingly, this functionality arises only if
each neuron is equipped with the observed slow dendritic dynamics and with in vivo-like noisy background input. If the
bump activity is considered to indicate a point of attention in the sensory areas or to indicate a representation of memory in
the storage areas of the cortex, this would imply that the flexible mode switching would be of great potential use for the
brain as an information processing device. We derive these conclusions using a natural extension of the conventional field
model, which is defined by combining two distinct fields, one representing the somatic population and the other
representing the dendritic population. With this tool, we analyze the spatial distribution of the degree of after-spike
adaptation and explain how we can understand the presence of the two distinct modes and switching between the modes.
We also discuss the possible functional impact of this mode-switching ability.
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Introduction

A dendrite of a pyramidal neuron has been observed in vitro to

evoke localized large depolarization in response to a strong

synaptic drive [1,2]. This localized depolarization is called a

dendritic spike. The observation of a dendritic spike has been

becoming common [3–15], and most recently in vivo evidence has

been found suggesting the presence of the dendritic spike in

response to a sensory stimulus [16]. The widespread observations

motivate serious computational study of its functional significance

in the information processing in the brain. Poirazi et al. (2003)

pointed out that a single pyramidal neuron with active dendrites

behaves as a two-layer neural network [17,18]. A collection of

dendritic branches is regarded to work as the first layer since each

branch performs local summation and produces near-digitized

output. The soma works as the second layer, which sums output from

all the dendritic branches and produces the digitized output.

There are several other studies in which a single neuron with

active dendrites is regarded as a two- or multi-layered processor

[19–24], like the model of Poirazi et al. (2003).

When a single neuron can work as a multi-layered processor,

what elaborate function can we expect if such neurons are

networked? Several authors have explored possible function

exerted by a network of neurons with dendritic degrees of freedom

[25–28]. Our study is in line with such exploration. We focus on

the slow dendritic dynamics, called the dendritic plateau potential

[6,7,9–11,13–15], using the so-called neural field model [29,30].

Among a variety of functions arising at the network level, the

spatial working memory has been extensively studied without the

role of active dendrites taken into account. Here we investigate the

role of an active dendrite on localized activity, called a bump

[30,31] which has been considered to explain the spatial working

memory. The spatial position of a bump in the network can be

considered to represent the memory of a spatial position [32,33]. A

bump has also been proposed to be a mechanism for visual feature

selectivity [34,35] and a head direction control [36–38]. A bump

may correspond to the localized cortical activity observed in

various areas of the cortex [39–42]. The bump activity was

extensively studied first with a rate model on a one-dimensional

field model [29,43]. It was later also studied with a spiking neuron

network [44,45]. With spiking of neuron was taken into account,

the bump activity was shown to be intact as far as neurons within a

bump fired a spike asynchronously. A bump was shown to be

destabilized through partial synchronization. We discuss relations

between their studies and the present study in Discussion. Laing

and Longtin (2001) made an interesting contribution to the long-

lasting debate whether or not a moving bump can be immobilized

[46]. Using a one-dimensional simplified network model without
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dendritic dynamics, they showed that in vivo-like noisy input could

immobilize a bump. The immobilized bump can be interpreted to

memorize a particular position [32,33]. However, the bump they

examined was either permanently mobile or immobile for a given

noise strength, and lacked flexibility. It would be even better if we

could switch a bump between mobile and immobile modes as we

like.

Here we consider a locally connected two-dimensional field

model with active dendritic dynamics. Specifically, we simulated a

two-dimensional network of 14,400 model neurons, each endowed

with active dendritic dynamics imitating the dendritic plateau

potential, localized large depolarization lasting tens or hundreds of

milliseconds as observed in [6,7,9–11,13–15]. The plateau

potential is considered to be mediated by voltage-dependent

Ca2z channels (VDCC) [7,9] and/or N-methyl-D-aspartate

(NMDA) receptor channels [6,11,14,15]. The neurons were

locally coupled in a manner observed in the cortical layer 2/3

pyramidal neurons [47,48], and were intended to represent

neurons in 3mm|3mm of the cortical area, which corresponds

with the size of the rat primary visual cortex [49]. We find that

only when the active dendrites have slow dynamics can a bump be

both mobilized and immobilized in the same in vivo-like noisy

condition. The coexistence of the mobile and immobile modes in

the same condition shows clear contrast to the previous result [46]

obtained without the dendritic dynamics taken into account.

Importantly, we show that we can switch a bump from one mode

to the other with a physiologically achievable transient signal.

The swift switching of a bump mode implies different functional

advantages, depending on the cortical areas. In the visual cortex, a

bump at a particular cortical position is considered to bias the

information flow from a particular retinotopically corresponding

position in the visual field (see [50]). A moving bump, thus,

performs a visual exploration to locate any interesting or

dangerous objects worth attending to. If an object of interest is

found, a bump can switch to the immobile mode to keep attending

to the particular object in the visual field. In an area responsible

for memory storage, a mobile mode can be useful as a memory

searching tool. Once the memory being sought is found, the bump

switches to an immobile bump that corresponds to the retrieved

memory.

First, we specify a computational model for our simulations and

show that our network exhibits a bump solution consistent with

previous studies. We then show that a bump is effectively

immobilized by noise. The mechanisms of mobilized and

immobilized bumps are discussed. Next, the coexistence of the

mobile and immobile modes and the switching between them in

the in vivo-like noisy condition are demonstrated. The last two

sections are devoted to discussion and a detailed description of our

methods.

Results

Two-field model using Izhikevich and Morris-Lecar
dynamics

Our network represents a population of cortical pyramidal

neurons with their massive intralaminar connections (Figure 1A).

The pyramidal neuron, Pyr1, of which the soma is at x (2-dim

position), extends its axon to y with probability, Paxon(x; y).
Another pyramidal neuron, Pyr2, of which the soma is at z, has its

dendritic branch at y with probability, Pdend(y; z). Thus, Pyr1 is

connected to Pyr2 via a synapse at y with probability,

Paxon(x; y)Pdend(y; z). These connection probabilities decrease

with the two-point distance. We describe this here with the

Gaussian function to mimic observed connectivity between

pyramidal neurons in the cortex, layer 2/3 [47,48]. The whole

network consists of a two-dimensional array of somatic units and a

two-dimensional array of dendritic units, which in this paper we

call the somatic field and dendritic field, respectively. We have

Nsoma~14,400(~1202) (Ndend~90,000(~3002)) somatic (den-

dritic) units on the somatic (dendritic) field. At a given position on

the dendritic field, multiple neurons’ somata have their dendritic

branches in common. According to the strategy of field modeling

[29], those dendritic branches belonging to different neurons but

occupying the same spatial position are assumed to have the same

activation level and are represented collectively by a single

dendritic unit. This field-model assumption is considered to work

as long as the synaptic inputs are approximately continuous in

space and the position is the principal determinant of the

activation level. The signal transduction in our model is thus

completed in two steps: a spike generated in a somatic unit at x
elicits a local excitatory postsynaptic potential (EPSP) in a

dendritic unit at y, then the local EPSP propagates to a somatic

unit at z to elicit a somatic EPSP there.

To describe the dynamics of the somatic membrane potential,

we employ the model proposed by Izhikevich [51], which involves

an auxiliary variable to account for the effect of adaptation. To

describe the dynamics of the local dendritic potential, we employ

the Morris-Lecar model [52], which nicely elicits the voltage

trajectories of the experimentally observed dendritic plateau [53]

(Figure 1B and C). The time constant, td , of this dynamics is the

principal determinant of the duration of the dendritic plateau. The

duration is not, however, equal to td . To clarify the role of the

dendritic plateau in our simulations shown later, we used values of

td ranging from td~6:7 ms to td~200 ms. A clear effect of the

dendritic plateau potential is expected for large values of td .

In addition to the excitatory synaptic drive explained above, we

need an inhibitory synaptic drive to prevent the neural activity

from unlimited growth. Here, we used a global inhibition scheme

in which one representative inhibitory neuron driven by the total

activity of the network gave feedback inhibitory input globally to

the all of the excitatory neurons. Details of our modeling are

explained in Methods.

Bump activity arises and moves on the network with
noiseless background input

In the conventional field model based on point neurons,

localized activity called a bump arises spontaneously with the

architecture of the local excitation and widespread inhibition

[29,31]. Such bump activity is known to move in the noiseless

condition as far as the dynamics involves some form of delayed

adaptation or refractoriness [46], which typically exists in

biologically realistic neuron models. Here, let us outline how a

bump keeps wandering with a self-regenerative mechanism.

Detailed explanations will be given later. We suppose here that

a bump starts to move in a certain direction. Then the area trailed

by the moving bump is in the middle of the refractory period,

while the area ahead of the moving bump is yet to be in the

refractory period. The refractoriness keeps trimming the trailing

edge of the bump, while at the heading edge the bump keeps

expanding. As a result, the bump continues to move in the

direction which it has been moving. In other words, a moving

bump keeps a gradient of refractoriness along the moving axis,

which in turn keeps the bump moving, forming a self-regenerative

loop.

This self-regenerative loop, originally proposed for the mech-

anism of moving bumps in networks of point neurons, works for

our network involving dendritic dynamics. Our simulations

showed that a bump was spontaneously born (Figure 2A) and

Dendritic Plateau and Network
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moved around (Figure 2B) in the noiseless condition, in which the

constant and uniform background inputs were given to all of the

somata during the simulation.

We first examine how the time scale of the dendritic dynamics,

td , affects the moving bump. For simulations with all the values of

td tested, a bump arises and moves. To measure the speed of the

moving bump, a simple way is to measure the speed of its center of

gravity, as shown by the dashed line in (Figure 2D). However,

there are cases where a bump splits into two or more. Therefore,

in the present paper we use a more robust way of estimating the

speed of a moving bump, which is based on the similarity between

the spatial pattern of activity at time t and that at time tzT . We

measure the similarity as the inner product between the spatial

patterns. The inner product depends on the time lag, T . We

therefore call it a time lag-dependent inner product, or simply

inner product, of which the decay with the time lag reflects the

movement of a bump in some cases including the present case, or

the destruction of a bump in other cases. The inner product is

always normalized such that the difference between the peak value

at the zero time lag and the baseline is unity. For more detail, see

Methods.

The inner product calculated from the simulations in the

noiseless condition reveals a speedy and monotonic loss of the

pattern of network activity (Figure 2C). The decay time constant,

tdecay, of the inner product determined by the single-exponential

fitting gives a good measure of the speed of a bump. Indeed, the

result of this is consistent with the result obtained by the speed

measured with the center-of-gravity of a bump (Figure 2D). We

found that as td increases, tdecay increases only linearly in a

noiseless case (Figure 2D). Therefore, even with the slowest

dendritic dynamics (td~200 ms), the original position of the

bump is forgotten rapidly, in a matter of several tens of

milliseconds.

The quantification of the immobility of the network activity

with the inner product is also good in its wide applicability.

Although in the present paper, we are focusing mainly on bump

activity, more distributed types of network activity can also convey

some significant information. The decay time constant of the inner

product quantifies the degree of information retention for such

cases too.

Dendritic plateau enables a bump to be immobilized
with noisy background

When the background input to the network was not a constant

but fluctuating current or noise, as in the cortex in vivo, Figure 3A

shows that the situation changed dramatically. With the long-

lasting dendritic plateau (td~200 ms), a bump was spontaneously

born as in the noiseless condition, but the bump no longer moved

around rapidly. It stayed in the same position for at least 500 ms.

In fact, the immobility of the bump increased nonlinearly with the

level of the noise, as we can see in Figure 3B (left) that the decay of

the inner product gets abruptly slowed at around snoise~15:0 pA.

Correspondingly, tdecay in Figure 3B (right) jumped up. It then

went down with too strong a level of noise. Note that tdecay reflects

not only the slowness of the bump motion, but also the stability of

the bump existence against destruction by noise, then tdecay totally

Figure 1. Two-field model. (A) A schematic introduction to the two-field model. The somatic (lower) and dendritic (upper) fields consist of two-
dimensional arrays of somatic and dendritic units, respectively. The numbers of units in somatic and dendritic fields are 14,400(~1202) and
90,000(~3002), respectively. A somatic unit of the pyramidal neuron Pyr1 that is located at x (left magenta dot), extends the axonal arbors to a
dendritic unit that is located at y (yellow dot) according to probability Paxon(x; y). A somatic unit of the pyramidal neuron Pyr2 that is located at z
(right magenta dot), extends the dendritic branches to a dendritic unit that is located at y according to probability Pdend(y; z). There are no direct
connections between the units within each field. Global feedback inhibitory inputs are assumed. (B) Trajectories of the dendritic membrane potential
with small td (6:7 ms ; left) and large td (200 ms ; right). Current pulses, of which the intensity ranges between 1 and 20 pA, were injected for 4 ms.
Abrupt jumps in the amplitudes were observed. (C) The trajectory of the dendritic membrane potential changes depending on the dendritic time
constant, td , of which the values are 6:7,40,80,120,160 and 200 ms (lower to upper). The intensity and the duration of stimulation current pulses were
20 pA and 4 ms, respectively.
doi:10.1371/journal.pone.0024007.g001
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Figure 2. Spontaneous arising and moving of bump activity with noiseless background input. (A and B) The activity of the two-field
model with noiseless background input (noiseless condition). Each panel is an overlaid view of the activity of somatic and dendritic fields. Heat-color
at each location represents the value of the dendritic potential of the dendritic unit sitting at the corresponding location. The crosses indicate where
somatic spikes occur at that time. Throughout the paper, panels of this type always represent 3mm|3mm of the dendritic/somatic fields. The
dendritic time constant was td~200 ms. The intensity of the noiseless background current was set to mconst~5:0 pA. (A) Spontaneously arising of
small bumps. First at t~15 ms the neural activity was sparse (left), then the neural activity was spontaneously clustered and some small bumps were
born by t~50 ms (right), which were later combined into a sizable bump by t~1500 ms as in (B). (B) Spontaneous moving of a bump. The bump
sitting near the center of the field (left panel) moves to the lower right (right panel). In the right panel, ‘X’ marks the center of the bump shown in the
left panel, the black dot marks the center of the bump at 2000 ms, and black line represents the trajectory of the bump. No crosses appeared at
1500 ms accidentally. (C) The inner product of somatic activity patterns showing rapid decay with a time lag for all of the values of td . The curves
were obtained by temporal and trial average of the inner products (denoted by SS:TT). (D) The decay constant increased almost linearly with td . The
decay constant was obtained from exponential fitting of the inner products in C (solid line). The overlaid dashed line indicates the inverse of the
velocity of the center-of-gravity of the bump.
doi:10.1371/journal.pone.0024007.g002
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quantifies the invariability of the bump. Therefore, the observed

decrease of tdecay with too strong noise (snoisew24:0 pA) means

that the noise destroys structured activity, whereas the observed

increase of tdecay with moderately strong noise (snoisev24:0 pA)

means that the noise immobilizes a bump. The immobilization of

the bump with the noisy background sounds similar to what was

found in Laing and Longtin (2001) [46]. Our result is different

however, in that a bump in our network can exist both in

immobile and mobile modes under the same noisy condition, as

we will see later.

With the small size of the dendritic plateau (td~6:7 ms), the

noise never resulted in an immobilized bump. The noise just broke

up the bump (Figure 4). In other words, the long-lasting dendritic

plateau protects a bump from breaking up and enables us to see

the noise-induced immobilization. To see how this protection

effect depends on td , we plot in Figure S1B tdecay versus td for

snoise~20:1 pA. We note that small values of tdecay (v100ms)

under this noisy condition mean that a bump is broken apart as in

Figure 4B, while the large values (w200ms) mean that a bump

exists as in Figure 3A. Note that a plot of the same quantities,

tdecay versus td , under the noiseless condition (Figure 2D)

indicated a slowdown of a bump speed because a bump was

always formed there.

Fitting of the curve of the inner product versus time with a

single exponential function does not look reasonable in some cases

(e.g. Figure 3B). We therefore tried the quantification of the

decaying speed with more intuitive measure, the time by which the

60% reduction of the initial value of the inner products occurs

(Figure S2). We found that the results were consistent with what

were found with the exponential fitting.

A technical note: in the forthcoming Figures 5, 6, 7 and 8 we

used a smaller and supposedly more realistic value of EPSP

compared to that used in Figures 2, 3 and 4, which was necessary

for comparison among diverse values of the dendritic time

constant, td . We confirmed that the use of smaller EPSP size

did not affect the important observations (see Simplifying assumption

in Discussion and Figure S3AB).

Mechanism
In this section, we consider how the noise-induced immobili-

zation happens. On a network of point neurons involving delayed

refractoriness, bump activity is known to move around in a

noiseless condition [46]. We first examined whether the same

mechanism worked in our model involving dendritic dynamics. In

our model, both somatic and dendritic membrane potential

dynamics involve the delayed refractory mechanism. These are

mediated respectively by currents us,m of the somatic dynamics

(Eqs. (1–2)) and nd,n of the dendritic dynamics (Eqs. (3–7))(see

Methods). Since these currents play functionally the same

refractory role as the potassium currents in real neurons, in this

paper we call these currents somatic and dendritic Kz currents.

If we consider a moving axis (white arrow) of the bump in

Figure 5A, upper, somatic spikes (black crosses) are concentrated

at some point on the axis. In reference to the spiking position, the

somatic Kz currents are distributed in a spatially biased manner

along the axis, while the dendritic Kz currents are distributed in

an almost spatially unbiased manner. Such spatially biased

(unbiased) somatic (dendritic) Kz currents are illustrated more

clearly in Figure 5D, where the current distributions along the

moving axis are depicted. The somatic spikes in the bump in

Figure 3. Bump remains immobile in noisy background condition with slow dendritic dynamics. (A) Snapshots at t~1500 ms (leftmost)
and 2000 ms (center) and the trajectory of bump from 1500 ms to 2000 ms (rightmost) in noisy background inputs (snoise~22:4 pA) with slow
dendritic dynamics (td~200 ms). The bump is practically immobile. (B) The decay of the inner product with time lag depends on the noise intensity,
snoise. The left panel shows the decay curves of the inner product with a time lag for various values of snoise . The curves were obtained by temporal
and trial average of the time lag-dependent inner products expressed by SS:TT. The right panel shows the dependence of the decay time constant
calculated by curves of the inner product on snoise . td~200 ms.
doi:10.1371/journal.pone.0024007.g003
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Figure 5A, upper, deliver driving currents isotropically due to its

symmetric innervation (see Figure 1A). However, the currents

delivered in the tail direction cannot elicit spikes because the long

tail of the somatic Kz current distribution inhibits it. On the other

hand, the currents delivered in the head direction can easily elicit

new somatic spikes because there is a fresh field free from

refractory currents at the head. Thus elicited new spikes drive the

bump in the direction in which it has been moving. Importantly,

the movement keeps the somatic Kz current distribution spatially

biased, while the spatial bias keeps the bump moving, resulting in a

self-regenerative loop (Figure 5E). Thus, once it has started

moving, the bump keeps moving. This observation corresponds

well to what happens in the point neuron model [46], and in this

bump movement, the delayed refractoriness of somatic but not

dendritic Kz currents plays a major role.

In contrast, strong noise (snoise~28:0 pA) was able to disrupt

the generation of the self-regenerative loop (Figure 5A, lower).

Strong noise elicited spontaneous firing everywhere, leading to

after-spike Kz currents appearing ubiquitously on the field, as

shown in Figure 5A, lower, and also in Figure 5B and C, where the

magnitudes of spatial ubiquitousness of Kz currents are quantified

for varying strengths of background noise. In such a situation,

somatic Kz current no longer showed a clear spatial bias of

distribution. The bump, therefore, had no tendency of moving to a

particular direction. Therefore, the bump did not ignite the self-

regenerative loop. Taken together, a bump could keep moving if it

was born and existed in a noiseless clean environment, while a

bump remained immobile if it was born and existed in a noisy

environment.

Next we examined what would happen if a bump was born in a

noiseless background and started moving, and the background

input current was later changed to a noisy one. Actually, the bump

could not be immobilized after it had already been engaged in the

regenerative loop, as illustrated by the blue (noiseless background)

and red (noisy background) dots in Figure 6A. The movement of a

bump is restricted within a linear strip in the simulation run here,

so that the bump position is quantified with a single coordinate.

We confirmed in simulation runs without restriction that the same

phenomenon (failure of immobilization) happened (see Figure 7C,

black line). In Figure 6A, the linear part in tv1000 ms represents

the bump movement in the noiseless environment and the

subsequent linear part in 1000vtv2000 ms represents the bump

movement unaffected by the noise added later. Generally, strong

noise elicits the somatic Kz currents everywhere, as we see in

Figure 5A (lower panels), which can potentially impede and slow

down a moving bump. But even the strong noise cannot actually

immobilize the already moving bump because the self-degenera-

tive loop is robust. If we increased the noise level further, the bump

was broken up. These observations mean that a bump is bistable in

a noisy background. Depending on the history, a bump can be

either mobile or immobile in the same noisy condition. Such

robust bump movement persisting in noise is also demonstrated in

the movie, Video S1. The bump could finally be immobilized later

at t~2000 ms with a protocol explained in the next subsection.

Switching the bump mode
The simple addition of noise was shown not to immobilize an

already moving bump, as we see in the simulations with (Fig. 6A)

and without (Fig. 7C) restriction of the bump movement to a linear

domain. We were curious about how we could convert a bump

from mobile to immobile modes. To immobilize a moving bump,

we found that we needed first to apply a transient (Dt~50 ms)

Figure 4. Bump is broken in noisy background condition without slow dendritic dynamics. (A) Snapshots at t~1500 ms (leftmost) and
2000 ms (center) of noisy background inputs (snoise~22:4 pA) with fast dendritic dynamics (td~6:7 ms). No bump was observed. (B) The decay of
the inner product with the time lag depends on the noise intensity, snoise. The left panel shows the decay curves of the inner product with the time
lag for various values of snoise. The curves presented are obtained with the temporal and trial average of the time lag-dependent inner products
expressed by SS:TT. The right panel shows the dependence of the decay time constant calculated by curves of the inner product on snoise . Inset: a
close-up view. In this case, the inner products decay very rapidly in large values of snoise and any immobilization is not observed. td~6:7 ms.
doi:10.1371/journal.pone.0024007.g004
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Figure 5. Mechanism for the moving and immobilization of a bump. (A) Each panel color-codes somatic (left) and dendritic (right) Kz

currents. Crosses depicting somatic spikes are overlaid on each panel. The Kz currents were us,m and nd,n described in Methods. The crosses indicate
where somatic spikes occur at the present time. The dendritic time constant was set to td~200 ms. In a weakly noisy condition (upper row;
snoise~15:7 pA), somatic Kz current is distributed in a spatially biased manner with its long-tail (left), whereas dendritic Kz current is distributed in
a relatively unbiased manner without a clear tail (right). In a strongly noisy condition (lower row; snoise~28:0 pA), the bump is widely spread and Kz

currents appear ubiquitously on the field. (B and C) Spatial clustering of Kz
soma and Kz

dend depends on noise intensities, snoise. Both activities of Kz
soma

(B) and Kz
dend (C) are clustered in weakly noisy background inputs, and become distributed with an increase in the noise intensity. (D) Spatially biased

distribution of somatic Kz activity (left) and unbiased distribution of dendritic Kz (right) activity along the direction of the bump movement
indicated by the white arrow in a weakly noisy background. snoise~15:7 pA. The inset shows the one dimensional distributions of the Kz current by
the white arrows. The skewness values calculated from the one dimensional distributions are shown at ten different points in time. In somatic Kz

activity, spatially biased distributions are clearly found. (E) A schematic diagram showing the self-regenerative loop. In the noisy condition, the bump
is immobile because generation of the loop is obstructed by the noise.
doi:10.1371/journal.pone.0024007.g005
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strong global inhibition to the somata before starting the noisy

current injection. The duration of inhibition was meant to match

the decaying time constant of the somatic Kz current, tu&50 ms.

Figure 7A illustrates how a moving bump actually reacted to this

combined stimulus, and Figure 7B illustrates the time courses of

maximum dendritic potential and maximum somatic Kz

conductance over the field for each instant of time. In this

simulation run, the bump was born and was moving in the

noiseless background until t~600 ms. The inhibitory input

starting at t~600 ms suppressed the somatic spikes, reducing

the somatic Kz currents as shown in Figure 7A (around

t~650 ms). By the time the transient inhibition ended, somatic

Kz conductance had been so largely lost (see Figure 7B, right)

that somatic Kz could no longer determine where new spikes

should preferably occur. Therefore, the soma started firing in an

unbiased manner, as illustrated in Figure 7A (upper row at

t~750 ms). The bump thus ‘‘forgot’’ the direction in which it had

been moving. However, the bump still ‘‘remembered’’ where it

had been located, as the dendritic potential still kept its activity

because of its slow dynamics (see Figure 7B). Thus, the moving

bump was immobilized at the location where the bump was just

before starting the inhibition. For this reason, the separation of

time scales between dendritic dynamics and somatic Kz dynamics

(tdwwtu) is essential for the conversion.

In this condition, the inhibition period Dtinhibition must be

comparable to or longer than the time scale of the somatic Kz

and be shorter than the time scale of the dendritic dynamics

(tdƒDtinhibitionvtu). The most effective duration transpired to be

Dtinhibition~tu&50 ms (Figure 7C, left, red line) in our simulation

setting, as shown in Figure 7C, right. As we mentioned above, the

simple addition of the noisy background inputs did not effectively

immobilize the bump (Figure 7C, left, black line), while too long

an inhibition erased locational information of the bump

(Figure 7C, left, blue line).

To clearly illustrate such noise-induced immobilization assisted by

the inhibition, again we ran the simulation where the bump

movement was restricted to a linear domain, as in the last part of

the last subsection. As shown in Figure 6A and Video S1, the bump

Figure 6. Bidirectional switching of bump mode in the noisy background condition. (A, B) The positions of the bumps in a linear strip
(periodic boundary condition) are plotted versus time. Constant, td , was set to 200 ms. (A) A simulation run started out in the noiseless background
condition and remained in the condition until t~1000 ms (blue dots), and the noisy background condition (snoise~23:5 pA) started and continued
until t~2000 ms (red dots). Finally, a transient strong inhibition was applied globally from 2000 ms to 2050 ms, and the bump was immobilized
(magenta dots). (B) A simulation run started out in the noisy background condition (snoise~23:5 pA) (magenta dots), and at 2010 ms, a transient
strong excitatory input lasting 50 ms was applied on a thin vertical line at the center of the bump. Immediately following the excitatory input,
another excitatory input was applied for 10 ms on a thin vertical line adjacent to the previously applied position. This combined excitation (black
dots) switched a bump mode from an immobile one (magenta dots) to a moving one (red dots). (C) Schematic figure explaining how an immobile
bump starts moving after the combined excitation is applied. Each panel from C1 to C5 show each stage of a process of starting for the bump to
move. Somatic activity is depicted with the black curve. The influence of inhibitory effects due to somatic Kz currents and the feedback inhibitory
synaptic currents collectively is depicted with the gray curve. Arrows indicate the external application of the first (in C2 and 3) and the second (in C4)
excitatory inputs. For more detail, see main text.
doi:10.1371/journal.pone.0024007.g006
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switched from mobile to immobile modes around t~2000 ms when

the inhibition was input. Note that in this simulation, the inhibitory

period was sandwiched by the same noisy background periods,

expressed by red and magenta dots in Figure 6A.

The inhibitory input was given to the somata here because in

the living brain, the inhibition is largely provided by the basket

cells, which are known to target mainly soma or proximal

dendrites as the switching stimulus used above [54].

Figure 7. Determinant of inhibitory period for switching a bump from moving to immobile modes. The simulation runs where
background inputs changed from noiseless to noisy currents via the varying length of the inhibitory period. The noiseless current is defined solely by
the constant part mconst~7:0 pA, while the noisy current is defined solely by the noisy part snoise~22:7 pA. td~200 ms. (A) Snapshots for dendritic
potential (upper) and somatic Kz activity (lower) in the noiseless condition (400 ms), at the switching point between the noiseless condition and
inhibition period (600 ms), at the switching point between the inhibition period and the noisy condition (650 ms), and in the noisy condition
(750 ms). The meaning of the symbol and color are same as the previous figures. (B) The time courses of maximum values of the dendritic potential
(left) and the somatic Kz activity (right) in the simulation run the same as (A). The gray bar indicates the inhibition period. Whereas the somatic Kz

activity substantially drops, the dendritic potential and Kz activity are kept at large values. (C) (left) The inner products between the activity at the
switching point from the noiseless to inhibitory period (600 ms) and the subsequent activities. The durations of inhibitory periods are 0 ms (black),
50 ms (red) and 100 ms (blue). The rapid decline in the black line means that the change from the noiseless to noisy condition without an inhibitory
period did not immobilize the bump. The high values maintained in the red line mean that the inhibitory period successfully immobilized the bump,
which did not work well when the inhibitory period was too long (blue). Note that each of the curves were obtained by the trial, but not the temporal
average of the time lag-dependent inner products, which are denoted by S:T. (right) Dependence of the decay time constant of the inner product on
the duration of the inhibitory period.
doi:10.1371/journal.pone.0024007.g007
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Next we tried to find a protocol for the reverse conversion: from

an immobile mode to a mobile mode in a noisy background. After

our search, we found that a transient excitatory input

(Dt~150 ms) on the immobile bump followed by a flash

(Dt~10 ms) of another excitatory input to the position adjacent

to the initial excited zone ignited the bump movement (Figure 6B

and Video S2). This combination of inputs can cause the spatially

biased Kz current distribution that drives the bump movement,

which is shown schematically in Figure 6C. First, the bump is

immobile (Figure 6C1). Upon the external application of the first

excitatory input, the activity level increases while the inhibitory

effect is yet to increase because it takes some time for the inhibitory

effects to go up (Figure 6C2). The inhibitory effects go up later

(Figure 6C3). When the first excitatory input has finished and the

second excitatory input at the adjacent position is given, the

activity level at the new position goes up and that at the old

position is lost, which shifts the position of bump activity to the

right. However, the inhibitory effect at around the old position still

remains because of the slow dynamics of the Kz current

(Figure 6C4). A little later, the slow Kz current seen in

(Figure 6C4) is a little decayed but still remains in (Figure 6C5),

and combined with the additional Kz current resulting from the

bump activity in (Figure 6C4) (the higher peak) causes a spatially

biased distribution of the Kz current, which means that the

rightward movement continues.

In summary, we found that we were able to convert a moving

bump to an immobile bump by transient (Dt~50 ms) global

inhibition, and were able to convert an immobile bump to a

moving bump by a transient (Dt~150 ms) targeted excitation

followed by the flash (Dt~10 ms) of another targeted excitation in

noisy background inputs.

Discussion

In the present paper, we have studied the effect of the dendritic

plateau on network dynamics. We first confirmed in the noiseless

condition that the localized activity of a bump arose spontaneously

and moved on our network model involving dendritic dynamics.

With the noise added, an unexpected observation was made for a

model with slow dendritic dynamics. In a model with slow

dendritic dynamics (td~200 ms), a bump that moved around for

smaller noise levels no longer moved around for larger noise levels.

For still greater noise levels, the bump just broke up. Therefore,

there exists an appropriate noise level at which a bump is

immobile. This mechanism did not work for a model without slow

dendritic dynamics. In a model with fast dendritic dynamics

(td~6:7 ms), for example, a bump broke up before it could

possibly be immobilized by the noise. Interestingly, we could also

observe a moving bump with the dendritic time constant, td , and

noise level, snoise, with which we observed a immobile bump,

meaning the presence of the coexistence of immobile and mobile

modes. Moreover, a bump could switch between mobile and

immobile modes with physiologically feasible stimuli. How such

switching stimulation actually occurs in the brain is among our

important future works. The coexistence of the two modes

distinguishes our study from the previous study [46], which

demonstrated a moving bump in the noiseless condition and an

immobile bump in the noisy condition, but not both modes

coexisting in the same condition. Our new observations represent

an interesting, unexpected role played by the slow dendritic

dynamics in the network activity of neurons. We give a table

summarizing our observations in Table S1.

Among a family of models with varying values of td , a particular

version specified by the fastest dendritic dynamics (td~6:7 ms) is

considered closest to the model of [46], which we call a point-like

version. With the point-like version, we could not immobilize a

bump. Meanwhile Laing and Longtin (2001) [46] did find an

appropriate noise level for immobilization with one but not all of

the models they studied. We therefore consider that whether a

network of neurons with fast (tdv10 ms) dendritic dynamics can

immobilize a bump or not depends on fine details of the model

specification. In contrast, a network of neurons with slow dendritic

dynamics showed a robust immobilization under the noisy

condition. From our repeated simulation runs with a varying level

of noise, we could easily find a range of noise levels that

immobilized a bump. We therefore consider that slow dendritic

dynamics may have widened the parameter range of the noise

intensity resulting in the bump immobilization.

Functional significance
As a possible functional role of the bump activity, several

different possibilities have been proposed to date [32–38,43]. With

our new observation of the coexistence of the two distinct bump

modes, additional possibilities arise, as we describe below.

The dual mode in the bump activity is expected to play a

functionally significant role, differently in different areas of the

brain. The bump activity we observed in the modeled cortical

network is analogous to what was found in the rat primary visual

cortex (V1) with voltage sensitive dye [42]. The neurons

constituting the bump activity are hyperactive, so they tend to

respond to a visual stimulus more easily than the neurons outside

the bump do. In this sense, the bump works as a gate that

selectively lets through the visual information mapped to the

position of the bump. Analogous gating of sensory information by

the ongoing activity has been suggested by in vivo recordings from

the visual cortex [50]. The whole 1100|600 of the right visual field

Figure 8. Searching and fixation by the present mechanism.
First, a bump moves on the cortical field under noisy condition
(snoise~19:0 pA). Its two-dimensional trajectory is indicated by the
black line starting at ‘X’. This movement corresponds to the search in
the retinotopically corresponding visual field if the visual cortex is
considered. When something worth attending to (of which the retinal
image is in the black square) is found, the transient global inhibition
whose duration is 50 ms as in Figure 6A, immobilizes the bump around
the region of interest, which corresponds to the fixation of visual
attention. The two-dimensional trajectory after this transient input for
2500 ms shows its immobile nature (gray line). Note that the
trajectories going outside from one sides of the field expressed by
the outward arrows come in at the other sides expressed by the inward
arrows of same color because of periodic boundary condition. In this
simulation, Aaxon~Adend~0:03, s2

axon~(100mm)2 , s2
dend~(80mm)2.

doi:10.1371/journal.pone.0024007.g008
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of rats is retinotopically mapped to the left V1 cortex [49], and a

bump on the cortex corresponds to a particular position in the rats’

visual field.

The main interest of carnivorous animals is to hunt others, and

so they have a small but highly resolved visual field. In contrast,

the main interest of herbivores and certain omnivorous animals,

such as rats, is to provide the best risk surveillance by means of a

less resolved but very wide visual field. With the wide visual field,

they do not need to move their eyes as frequently as hunting

animals whose high-acuity visual field is very small. Although there

is little need of moving their eyes, we considered that they could

and would still set the focus of attention by putting a bias to

information coming from a particular part of their wide visual

field. Such an attentional function with a software mechanism

instead of a hardware mechanism like the saccade would be

beneficial. Once rats find an object that is worth attending to for

their safety or their diet, they need to fixate the point of attention.

As we have demonstrated, a moving bump in our network can

switch to the immobile mode with physiologically feasible stimulus,

so that would provide a mechanism to fixate an important object

in the wide area of their visual field (Figure 8 and Video S3).

If we consider that our model describes cortical or hippocampal

areas where memory traces are stored in a spatially confined

manner, we can regard the moving bump activity as an effortful or

effortless search for memory, and regard the conversion to an

immobile bump as memory recall. Specifically, we assume that

memory traces are stored in different places within an area for

storage of information, and that activation of a certain place

implies the recall of the corresponding memory trace. On this

assumption, a bump moving in a storage area is interpreted as a

series of the retrieval of various memory traces. It is like browsing

through stored information. With the mechanism proposed here,

when the information sought is found, a bump is supposed to be

immobilized at the corresponding position and the corresponding

memory trace is kept activated.

Thus, two distinct kinds of function of the switchable bump can

be considered. Although we considered Gaussian probabilistic

connectivity between neurons in our simulations, we could also

consider more structured connectivity to suppress or enhance

stochasticity of bump movement and to give the network some

functionality. The possible benefit of such connectivity is worth

studying in the future.

Related computational studies
A bump arising in a network model with local coupling has a

long history of study dating back to [29,43]. For its mathematical

tractability and its functional interest concerning spatial working

memory, there is a long list of interesting studies. Please refer to

[30] and the references therein. Most of these studies work in a

one-dimensional setting. Our study is new in that we have added

active dendritic dynamics to this line of studies in a two-

dimensional setting in the noisy condition. We then found that

mobile and immobile modes coexist.

Our network is based on a spiking neuron model unlike many

other network studies which based on a rate neuron model. Laing

and Chow (2001) studied a bump solution. Their study was also

based on a spiking neuron model [44]. It is therefore instructive to

see similarities and differences between this study and the present

study. Laing and Chow (2001) used the local inhibition to model

inhibitory synapses and did not consider the adaptation currents

or the dendritic effects, while we adopted the global inhibition and

explicitly modeled the adaptation Kz currents and the dendritic

dynamics. They asked how the time constant of the synaptic

current affect a bump movement and found that three different

modes of a bump motion appear depending on the time constant:

stationary, wandering and traveling bumps. When the synaptic

transmission was slow, the bump did not move which was called

‘stationary’. As the synaptic time constant decreases, the bump

changed from a stationary mode to a ‘traveling’ mode via

‘wandering’ mode characterized by a Brownian motion. They

observed that the speed of a traveling bump became faster as the

synaptic time constant decreases. Chow and Coombes (2006)

studied these phenomena with a network of a simpler phase

neuron model [45], giving an analytical insights. Despite structural

differences between those models and the present model, we

observed some similarities in a bump behavior. Specifically, our

observation under the noiseless condition that the faster dendritic

dynamics implied the faster movement of a bump (Figure 2D) is

similar to the observation in those models that faster synaptic

kinetics implied a faster bump movement if we equate the

dendritic time scale and synaptic time scale. This similarity is

however found limited if we compare the details. In fact, even at

slowest time scale, our bump looked still ‘traveling’ and we never

observed a ‘stationary’ or ‘wandering’ bump in the noiseless

condition.

As for the types of a bump, it seems that our mobile bumps are

categorized as a traveling bump. The movement of a bump we

observed either under noisy condition or noiseless condition on the

linear strip looked very much like constant-speed motion, and it

appears to be a traveling bump as is seen in the simulations

(Figure 6AB and Video S1 and S2) unless a bump was in the

immobile mode (the pink trajectories in Figure 6AB). Such a bump

seems to be a traveling bump also in that a bump was never

observed to switch moving direction. Observed directional

motions resulted from the adaptation Kz currents, suggested in

Figure 5. Since exactly the same mechanism should work

irrespective of the dimensionality of the field, we believe that

bump motion on the non-restricted 2D field (Figure 2B) is also in a

traveling mode. Because there are many more moving directions

are allowed on the non-restricted 2D field than on the linear strip

field, the bump in the non-restricted 2D field tends to be wiggling

(Figure 2B). This larger freedom of motion together with

stochasticity coming from the finite size effect and noise makes a

bump motion look like wandering on the 2D field. However, the

motion is not purely Brownian because there is always a

prohibited direction, which makes our mobile bump different

from the wandering one.

The immobile bump in our simulations (Figure 3A) is a single

notable exception. We think that this bump is regarded as a

wandering bump. First of all, there was no spatially biased

distribution of adaptation currents observed for an immobile

bump, so that the bump can not be a traveling one. Since the

immobile bump in our model exists only under the noisy

condition, it cannot be a stationary bump, either. Taken together,

we think that our immobile bump appearing under the noisy

condition with slow dendritic dynamics is regarded as a wandering

bump and the mobile bumps are regarded as a traveling bump.

To shed light on the computational roles of the nonlinear

dendritic dynamics, several theoretical studies have been per-

formed at cellular or network levels. As mentioned in the

Introduction, several authors have emphasized that active

dendritic branches would enhance the computational power

[17–24]. Larkum et al. (2004) focused on the computational role

of layer 5 pyramidal neurons that extend their dendrites up to

layer 1, the locus which the top down attention signals target [55].

They focused on the experimental observation that dendritic

Ca2z spikes in the distal apical dendrites activated by back-

propagating action potentials result in gain modulation of the layer
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5 pyramidal neurons. They argued that the observation implies an

association between top-down and bottom-up inputs. Remme

et al. (2009) showed that dendritic branches can be regarded as

oscillators weakly coupled and phase-locked with each other [56].

Following this, Remme et al. (2010) showed that the phase-locking

affects the dendritic independence and the interaction between

dendritic oscillation and somatic activity, which disrupt grid field

formation [57].

Functional implications of a network of neurons with active

dendrites have been proposed by several authors, as referred to in

Introduction [25–28]. Koulakov et al. (2002) and Goldman et al.

(2003) studied the role of active dendrites on the so-called

parametric working memory based on the neural integrator

[25,26]. The originally proposed mechanism requiring the fine

tuning of parameters was replaced by a much more robust

mechanism proposed by them, which was based on the bistability

of the dendritic membrane potential caused by an active dendrite.

Goldman et al. (2003) further showed that multiple bistability

among different dendrites would reproduce an observed integra-

tion property. Morita (2008) pointed out that the local dendritic

integration is beneficial in improving accuracy of the encoding

stimulus because inevitable noise arising in every dendrite can be

cleaned at each dendrite locally because of the non-linear

dynamics and the local noise is prevented from spreading globally

[27]. In contrast to our study focusing on a possible role of slow

dendritic dynamics in the network activity, Memmesheimer (2010)

studied a possible role of fast dendritic dynamics in the network

activity [28]. His results indicated that each dendrite works as a

coincidence detector. The coincidence detected in dendrites

promotes somatic spikes with high temporal accuracy, leading to

a highly synchronous network activity. Since such network activity

is occasionally shut down by refractoriness or inhibitory inputs, he

argued that this mechanism could explain the observed sharp

wave ripple.

Koulakov et al. (2002) [25] and Goldman et al. (2003) [26] in

particular studied the role of a bistable dendrite that was probably

caused by NMDA conductance, which is the main factor of the

dendritic plateau we incorporated into our present model, where

the network structure is very different from theirs. As a

consequence, we elucidated a different aspect of the functional

role of NMDA conductance on the network dynamics. At a single-

neuron level, a possible role of the dendritic bistability in the

parametric working memory was discussed in [58].

Although the present study considers moving due to the delayed

refractoriness or adaptation, a bump can move around even

without such a mechanism due to heterogeneity in the network.

Renart et al. (2003) studied the moving of a bump of this kind, and

discussed the switching of a bump from mobile to immobile mode

from a perspective different from ours [59]. They demonstrated

the switching of a bump mode occurring due to synaptic plasticity.

Therefore, the time scale of switching in their study is much

longer, typically hours to days, than our case of 50 ms.

Simplifying assumption
In our simulations that produced Figures 2, 3 and 4, we used an

EPSP size larger than that commonly considered. We used such a

size when and only when we needed to vary the size of td , because

with the large EPSP size, no parameter tuning accompanied by a

change in the td value is needed and make our compuation

inexpensive. The large EPSP size turned out not to affect the

important observations. In fact, our network simulations with the

EPSP size 7:5 times smaller than that used in the previous one

reproduced the noise-induced immobilization with the slow

dendritic dynamics (Figure S3A and B).

We note that noise generally entails the risk of breaking up a

bump before it immobilizes the bump. However in our modeling,

the immobilizing effect (Figure S3A) turned out to be strong and

the bump was immobilized without destruction, as is seen in the

inset in Figure S3A. The destructive effect quantified in Figure

S3C was mild. When we defined the destruction-corrected degree

of immobilization (Figure S3D) as a product of Figure S3A and

Figure S3C, it still showed a clear peak. Therefore we used the

small EPSP size in Figures 5, 6, 7, 8.

Consistency with physiologically known facts
For our proposed model, we made several assumptions which

required careful consideration. First, we intended our network to

represent the layer 2/3 cortical circuit. We assumed that neurons

there were highly interconnected. This assumption is supported by

the observation in [60], showing that excitatory interconnections

in layer 2/3 are much richer than are both afferents to layer 2/3

and interconnections in other layers. Second, we assumed

probabilistic connections among units described by the Gaussian

function. Some anatomical and electrophysiological studies have

implied a Gaussian connectivity between pyramidal neurons

[47,48], while other studies have implied a more structured

connectivity [61–64]. Elucidating the possible consequences of

such structured connections is an important future issue to be

addressed. Third, we assumed that inhibitory inputs targeted only

somata. We consider that this is a good first approximation

because a basket cell, which is the principal inhibitory neuron in

layer 2/3, sends 50% of its terminals to the somata or proximal

dendrites [54]. Considering also inhibitory neurons that synapse

on distal dendrites is, however, an interesting future direction.

Fourth, we let a single inhibitory unit represent the population of

inhibitory neurons by assuming that one unit received the total

neural activity and sent its inhibitory drive back to the excitatory

neurons. Therefore, the inhibitory unit is not a single inhibitory

neuron. Although this assumption was meant to simplify the

computational modeling, it may also have physiological relevance

if we consider the observed gap junctional networks of inhibitory

neurons [65]. It is still a matter of debate whether the gap

junctional network extends only locally or globally, while an

immunohistochemical study has suggested that the gap junctional

network is boundless [66]. Instead of letting a single inhibitory unit

represent the total effect, we can assume multiple inhibitory units

exert an inhibitory drive. In this case, multiple bump solutions

may be formed. This can then greatly enlarge the potential for

information processing of a network of neurons with dendritic

dynamics, and is an interesting possibility.

The final and most fundamental assumption of this study is the

existence of the dendritic plateau potential in vivo. There are lots

of in vitro reports of the dendritic plateau in the cortex and

hippocampus [6,7,9–11,13–15]. Nevertheless, direct evidence of it

through in vivo observation remains to be found because of the

experimental difficulty. Several lines of indirect evidence of other

types of dendritic action potential in vivo exist. A combination of

intracellular recordings and two-photon Ca2z imaging has

revealed spontaneous and sensory-evoked dendritic Ca2z action

potentials in apical distal dendrites of layer 5 pyramidal neurons in

vivo [67]. Some of the dendritic action potentials were probably

initiated in dendrites. In contrast, in the apical dendrites of layer

2/3 pyramidal neurons, no spontaneous or sensory-evoked

dendritic Ca2z action potentials were observed [68], although

moderate current injection into dendrites in vivo was able to

induce dendritic Ca2z action potentials [69]. We therefore expect

that moderate current injection induced in natural living

conditions of an animal can evoke dendritic Ca2z action
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potentials. Recently, the Ca2z signal of a population of dendrites

was imaged in vivo with a fiber optic mounted on a prism

embedded in the cortex. The signal is expected to originate in the

dendritic Ca2z action potentials in apical tufts, which seems to

correspond to the intensity of sensory stimulation [16]. We think

these lines of evidence together strongly support the existence of

the dendritic plateau potential existing in vivo.

Possible functional implication: extension of Integral
Time Windows

We have hitherto examined the properties of the two-field

model with the globally injected external inputs. However, since

spatio-temporally structured external input is important in

physiological information processing, we investigated the effects

of the long-lasting dendritic plateau on the integration of spatio-

temporally limited external inputs (Figure 9).

In these simulation runs, the external pulse-like inputs were

injected into dendritic units, unlike previous simulations, where the

inputs were continually injected into somatic units. The input

intensity was adjusted so that a single input elicited a single

dendritic plateau. The inputs were targeted at the disk-shaped area

located at the center of the dendritic field. The times for receipt of

the inputs were randomly distributed in a set period. We call the

radius of the disk-shaped area the input radius, and call the

duration of the period for the inputs the input duration. The

values of the input radius and duration were systematically varied,

while the number of total external inputs, which was 40, was

unchanged throughout the simulation runs. Thus the large values

of the input radius and duration came to sparse inputs. We then

asked in what condition a persistent bump appeared, which we

regarded as a sign of the spatio-temporal integration of the

external inputs. Figure 9A shows how the integration developed.

Initially, each dendritic unit received a single input pulse that

elicited a single dendritic plateau. Although such an occurrence of

a dendritic plateau alone did not elicit any somatic action

potential, the currents lasted long when the value of td was large.

The long-lasting currents gradually piled up at the soma and

finally caused the somatic action potential to form a bump.

We investigated how the formation of a bump depends on the

large values of the input radius and duration (Figure 9B).

Naturally, the larger the values of the input radius and input

duration are, the smaller the probability of the generation of a

bump is. With the large td , however, the integration could oppose

the temporal sparseness of external inputs. Note that we set the

value of td~200 ms in the interest of computational time for the

simulation, but experimental observations show that the value can

be larger [10]. Hence, this suggests that the model involving a

long-lasting dendritic plateau can integrate the external inputs on

the behavioral timescale. In contrast, with small values of td , the

time window for the integration is narrower, and the network

detects only the coherent inputs. Thus, our network model can set

a spatio-temporal time window to detect specific input signals.

As we observed previously, the noise could also immobilize a

bump generated in this simulation run (Figure 9C).

Implications for Short-Term Memory in the Visual Cortex
Ambiguous stimulus is a sensory stimulus eliciting multiple

distinct perceptual interpretations. Representative examples are

the Necker cube and Rubin’s vase and faces. Psychophysical

experiments have showed that one perceptual interpretation of

such an object tends to be preserved after a short blank period

intervening in the stimulus periods. This observation suggests the

existence of short-term memory of the interpretation [70].

Recently, O’Herron and von der Heydt approached the problem

of short-term memory of this kind by using visual stimuli involving

figure-ground ambiguity [71]. They recorded neuron activity from

area V2 of monkeys watching ambiguous figures. The firing of a

specific neuron seemed to be associated with one interpretation of

a figure. The firing of the neuron returned to the resting level

during a blank intervening period between stimulus periods.

Nevertheless, the same neuron started firing again when the same

figure reappeared, meaning that the previous interpretation was

recovered. The conceptual similarity of this phenomenon to the

recovered bump after the inhibitory period (Figure 7) suggests the

possibility that the recovered interpretation may be explained by

the long-lasting dendritic dynamics.

Methods

Two-field model
The two-field model proposed in the present study consisted of

somatic and dendritic fields, the dimension of which was

3mm|3mm. The somatic (dendritic) field was represented by

squarely arrayed somatic (dendritic) units with an inter-unit

distance of 25mm (10mm).

A given dendritic unit is thought to receive massive

innervation from nearby neurons. The innervation becomes

more sparse with increased distance between the dendritic

unit and the soma of a neuron (somatic unit) sending a

synaptic terminal. Assume that a somatic unit is located at x
(2-dim position) and a dendritic unit is located at y (2-dim

position). We approximated the connection probability as

the Gaussian function of somatodendritic distance,

r~Ex{yE: Paxon(r)~Paxon(x; y)~Aaxonexp({Ex{yE2=2s2
axon), with

Aaxon~0:18 and s2
axon~(40mm)2 unless otherwise stated

(Figure 1A). A given somatic unit is considered to have its

own dendritic branches densely near the soma and sparsely

far from the soma. Assume that another somatic unit is

located at z (2-dim position). We approximated the probability

of finding a dendritic branch belonging to the soma

as the Gaussian function of dendrosomatic distance,

r~Ey{zE:Pdend(r)~Pdend(y; z)~Adend exp({Ey{zE2=2s2
dend),

with Adend~0:18 and s2
dend~(30mm)2 unless otherwise stated

(Figure 1A). We determined all soma-to-dendrite and

dendrite-to-soma couplings according to this probability, and

we fixed these couplings before starting the simulation runs.

Such an assumption of the Gaussian connection probabilities

is supported by the experimental observation of the connec-

tivity between cortical layer 2/3 pyramidal neurons [47,48].

Our network model is the so-called field model [29,30].

Therefore, as we explained in the Results, each dendritic unit

is actually shared by neighboring somata. Such an assumption

is considered reasonable when the synaptic input has spatial

continuity, meaning that two dendritic branches next to each

other should obtain similar input and so their local EPSP

should be close.

As we explain in detail below, we adopted the Izhikevich model

to describe the somatic membrane dynamics because it is a

commonly used spiking neuron model due to its flexibility to

reproduce spiking patterns of real neurons with a small

computational cost. In describing the very slow dendritic plateau

dynamics, we noted that the Morris-Lecar model worked better

than the Izhikevich model for our purposes. Meanwhile, we used a

rate based non-spiking model to describe the inhibitory neurons

because the inhibitory unit represents a population of neurons and

is not supposed to exhibit spiking behavior.

The dynamics of the somatic membrane potential of the mth

somatic unit, vs,m, is described with a minimal extension (single

Dendritic Plateau and Network
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Figure 9. Expansion of the time window for spatio-temporal integration at network level. (A) The process of input integration. The history
of the input to dendrites is stored as the dendritic plateaus and sufficient occurrences of dendritic plateaus cause the generation of clustered somatic
action potentials (bump). The input duration and input area are 200 ms and 20000mm2, respectively. (B) The success rate of the integration to
generate a bump is plotted versus the input duration and input area for the non-plateau (td~6:7 ms, left) and long-lasting plateau (td~200 ms,
right) cases. The long-lasting dendritic plateau expands the time window for the integration. (C) The trajectory of the center of the bumps with long-
lasting dendritic plateau (td~200 ms). External noisy currents after the generation of bumps can immobilize the bumps (right), while the bumps
move in noiseless background conditions (left). The different colors indicate different trials.
doi:10.1371/journal.pone.0024007.g009
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auxiliary variable) of the integrate-and-fire model (Izhikevich

model) [51]:

dvs,m

dt
~0:04v2

s,mz5vs,mz140{us,m

{ginh(vs,mz70)zIdendzIext,soma,

ð1Þ

dus,m

dt
~0:02(0:2vs,m{us,m): ð2Þ

If vs,m§30:0mV , then
vs,m/{65:0,

us,m/us,mz6:0:

�

Auxiliary variable, us,m, gives an after-hyperpolarizing current to

the right hand side of the Eq. (1). Of the two input current sources

to the soma, Idend represents the current from all of its dendritic

branches, which we consider originates in the intralaminar (within

layer 2/3) recurrent synaptic connections, while the other source,

Iext,soma, is supposed to represent the extralaminar (layer 4 or

thalamus) input combined with the noisy background input.

The dynamics of the membrane potential of nth dendritic unit,

vd,n, is described by the Morris-Lecar formalism [52] with its after-

hyperpolarization truncated (explained later):

dvd,n

dt
~{0:1(vd,nz70){0:22m?(vd,n)(vd,n{110)

{0:4nd,n(vd,nz94){gsynv̂vd,nzIext,dend ,

ð3Þ

dnd,n

dt
~

1

td

nd,?(vd,n){nd,n

tn(vd,n)
, ð4Þ

If vd,nƒ{71:0, then
vd,n/{70:5,

nd,n/0:0,

�

with

m?(vd,n)~0:5 1ztanh
vd,nz11:2

18:0

� �� �
, ð5Þ

nd,?(vd,n)~0:5 1ztanh
vd,nz8:0

30:0

� �� �
, ð6Þ

tn(vd,n)~1=cosh
vd,nz8:0

60:0

� �
: ð7Þ

The rescaled dendritic potential, v̂vd,n, appearing in Eq. (3) is

defined later. A dendritic unit represents a tiny part of a dendritic

tree. Its local membrane potential is depolarized whenever an

innervating neuron fires a somatic spike. The trajectory of

{gsynv̂vd,n is determined by the first order dynamics,

tsyndgsyn=dt~{gsynz
P

k

P
nk

gsAPd(t{tsAP
nk

) with tsyn~1 ms.

Another constant, gsAP, is set to 108 (14:4) for the simulation

runs shown in Figures 2, 3, 4 and 9 (Figures 5, 6, 7, 8 and S3).

Here, tsAP
nk

denotes nk th spike time of soma k that synapses on the

dendritic unit described above. Current involving nd,n contributes

an intrinsic hyperpolarizing current that balances the excitatory

drive. Therefore, in this paper we refer to this as the dendritic Kz

conductance. Similarly, us,m plays an inhibitory role, and then we

call it somatic Kz.

A current from a dendritic branch to the soma should be

proportional to the voltage difference between the dendritic

branch and the soma. Because the current is the summation of

currents over all the dendritic branches, we have

Idend~0:1
P

n (v̂vd,n{vs,m). To moderate the effect of the dendritic

plateau, the dendritic potentials for synaptic and dendritic currents

were set to v̂vd,n~c(vd,nz70){70. The constant, c, was set to 0.73

except in Figure 9 where c~0:73 and 1:0 for td~200 and 6:67,

respectively.

Our model has a one-way signal flow from the dendritic units to

the somatic unit. A passive current flow from the soma to dendrites

is safely neglected because of the large input impedance of the

dendritic compartments compared to that of the soma. However,

the active dendritic flow carried by the backpropagating action

potential has been widely observed in vitro. An important question

is therefore whether such active dendritic currents could invalidate

our scenario in vivo. The answer to the question is presently

unavailable because of the lack of sufficient in vivo observations.

According to the in vitro observations, the backpropagating action

potential was reported to enhance the generation of dendritic

action potential [5,72]. The presence of the influence of the

backpropagating action potential itself looks inconsistent with our

simplifying assumption. However, the enhancement of the

dendritic potential generation goes well with our scenario. In

another case, a shunting inhibition caused by backpropagating

action potential was reported to be limited for the active dendritic

potential via NMDA-current [73].

Considering the current understanding, we believe the theoret-

ical argument based on the simplifying assumption to be a useful

first step toward a full understanding of the role of the active

dendritic potential in a network setting.

The Morris-Lecar model used in the present study is meant to

be a tool describing the dendritic plateau observed. The model in

fact works very well in producing the plateau-like lasting elevation

of the voltage with a clear all-or-none nature for high values of td

(Figure 1B). The model, however, also produces too deep a

hyperpolarization after the plateau, which is different from what is

observed in the dendritic dynamics [53]. To prevent such

unnecessary hyperpolarization from appearing, we set the

condition indicated by the ‘‘if’’ clause.

We consider here that a collection of inhibitory neurons, that

we model with a single unit, play a role in adjusting the total

activation level of the network in a reasonable range. Inhibitory

synaptic conductance, ginh~0:025(e0:14(vI z70){1) is assumed to

suppress the somatic activity of excitatory neurons through the

fifth term on the right-hand side of Eq. (1). The membrane

potential, vI , of the inhibitory unit is governed by conventional

first order dynamics, dvI=dt~{0:1(vIz70){gtotvI , the driving

term of which sums the network activity of pyramidal neurons

with equation, dgtot=dt~{gtotz0:0028
P

n d(t{tsAP
n ). Here

tsAP
n represents the somatic spike time of all the neurons in the

network.

All the membrane potentials in these equations are in units of

millivolts, all currents are in units of picoamperes, and all

conductances are in units of mS/mF. The units of the coefficients

in the equations are given to ensure the right dimensionality

between the left and right sides. We numerically solved the model

with the 4th order Runge-Kutta method at a temporal resolution

of 0:05 ms by Intel C++ Compiler.
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External current injection
In our model, three types of external input current were used: a

constant one, a noisy one and an inhibitory one. These input

currents were injected into the somatic unit (Iext,soma) in all the

simulations except those leading to Figure 9 where the short pulses

of constant currents were injected into the dendritic units (Iext,dend ).

The constant input current was defined by its amplitude, mconst.

The noisy input current was the Gaussian white noise defined by

its variance s2
noise. Such noisy current was generated numerically

in the standard manner [74]. As an inhibitory input current, we

used {gext,inh(vs,mz70:0) with gext~15:0, which was strong

enough completely to prevent the somatic action potential from

occurring.

In the simulation runs leading to Figure 2, a constant input

current was continually injected throughout the simulation run,

while in the runs leading to Figures 3, 4 and 5, noisy input current

was continually injected throughout the run. In the runs leading to

Figure 6A, constant input current was given for 1000 ms, then the

current switched to a noisy one, which lasted for 1000 ms. Finally

a transient inhibitory input current was injected between 2000 ms

and 2050 ms. In the simulation run leading to Figure 6B, noisy

currents were injected throughout the simulation run. At

t~2010 ms, transient (Dt~50 ms) excitatory input was applied

along a thin linear area over the stationary bump followed

immediately by another transient (Dt~10ms) excitatory input

along a thin linear area adjacent to the previously simulated area.

In the runs leading to Figure 7, constant input current was injected

for the first 600 ms, then the input current was switched to an

inhibitory one, which continued for several tens of milliseconds

(different durations in 0msƒDtƒ100ms were tested). Finally,

noisy input current was injected until the end of a simulation run.

In the runs leading to Figure 9B brief (Dt~0:5 ms) pulses of

constant input current were injected into the dendritic units with

their amplitudes of 3:5 or 2:0 and their td of the td~6:7 ms or

td~200 ms, respectively in the two cases displayed. Each input

was strong enough to induce a single dendritic plateau. For each

input, the input time and inputted dendritic unit were uniformly

randomly selected from the temporal period, the length of which

was described by the input duration, and the spatial region, the

shape of which was disk-like. The radius was described by the

input radius. The number of total inputs was 40.

Measure of immobility
The inner product measures how a snapshot (defined exactly

below) of the somatic spiking activity at t and that at tzT are

similar. To calculate the snapshot, we first count the number of

somatic spikes occurring within a 10 ms time window at some time

point for each soma, which gives us a representation of the somatic

spiking activity in a 1206120 matrix. To see the difference in this

matrix at different time points, the simplest way is to take an inner

product of the matrices corresponding to the different time points.

However, the disadvantage of the simple inner product is that all

the 1206120 components are treated independently in its

calculation and geometrical information, such as that the soma

at (101,50) is next to the one at (100,51), is not taken into account.

To take the information into account, we applied the spatial

Gaussian filter, exp({
1

2

d2

802
), first. We call the resultant matrix a

snapshot of the somatic spiking activity. We then calculate the

inner product of the snapshots at t and tzT and average the

products over t (sliding window) and over trials to smooth the

temporal fluctuations. The resultant number quantifies how the

somatic spiking activity is similar between time points separated by

T . The sliding-window averaging makes sense only when the

network activity is stationary. No averaging was taken for Figure 7,

where no stationarity was expected. The baseline of an inner

product is determined as the averaged inner products of the

snapshots taken from different trials in the same condition. We

subtract the baseline from the inner product. Then the inner

product peaks at the zero time lag, and we normalize the peak

value to be unity. Each inner product shown in the Figures and

used to calculate tdecay (described below) is already averaged and

normalized.

Generally, the inner product decreases with an increase in the

time lag, T . A decaying time constant of the inner product, tdecay,

serves as a good measure of the immobility of the activity (not

necessarily the bump activity). The inner product is fitted with an

exponential function to obtain the value of tdecay. Negative values

which come from tiny errors of the normalization but do not

seriously affect our results were neglected in the exponential fitting.

Clustering index of somatic action potential
The clustering index of somatic action potential measures the

degree of the spatial clustering. To calculate the clustering index,

we divided the somatic field into a square cell of four-by-four

somatic units. We then counted the number of spiking somata in

each cell in a given time bin, the width of which was 10 ms. Then

we calculated the mean and standard deviation over all the

compartments in a given time bin to obtain the coefficient of

variance (CV) by dividing the standard deviation by the mean.

Finally, we averaged the CVs over the simulation time, which

gives the clustering index. Clustering indices of somatic and

dendritic Kz conductances (Kz
soma and Kz

dend , respectively) summed

the values of us,m or nd,n for each cell consisting of eight-by-eight

somatic units or ten-by-ten dendritic units. To calculate the

clustering indices of somatic and dendritic Kz conductances

(Kz
soma and Kz

dend , respectively), we summed the values of us,m or

nd,n, unlike in the case of the clustering index of somatic action

potentials, where we counted the spiking somata for each cell

consisting of eight-by-eight somatic units or ten-by-ten dendritic

units. The remaining calculations are the same for somatic action

potentials. Before summation, we normalized all of the data to

make them range between zero and one. For the sake of

convenience, we cite a textbook for the spatial analysis [75].

Distribution of Kz current
In order to measure the potassium current distribution, we

delineated a bump in the following manner. We first smoothed the

spatial distribution of the values of us,m and nd,n to obtain a

contour with the Kriging method [75], and rescaled these

variables so that each of them ranged between zero and one.

We then removed the areas on the somatic (dendritic) field for

which us,mv0:1 (nd,nv0:2). This procedure discards areas

containing noisy potassium current fluctuations and leaves only

a significantly thick bunch of potassium currents, which we call the

core. Next, we calculated the center of gravity of the core and

calculated the two principal components of the potassium current

variance in the core. We regarded the center of gravity as the

origin of the axes of the principle components. Finally, we

calculated the skewness of the distributions of the values of us,m or

nd,n along the axes of the second principle component.

Supporting Information

Figure S1 Tolerance of a bump against noise becomes
higher as the dendritic dynamics slows. (A) The decay of

the inner product with time lag becomes slow with the increase of

the dendritic time constant, td . It means that the slow dendrite
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increases the capability of protection of the bump from breaking

up by noisy inputs. The presented curves are obtained by temporal

and trial average of the time lag-dependent inner products

expressed by SS:TT. (B) The panel shows the dependence of the

decay time constant calculated by curves of the inner product on

td . snoise~20:1 pA.

(TIF)

Figure S2 Re-quantification of the invariability of the
bumps. The invariability of the bumps were quantified by the

times for the 60% reduction of the initial values. A, B, C and D

correspond to the Figures 2D, 3B, 4B and S3A, respectively.

(TIF)

Figure S3 Simulation runs with a small value of EPSP.
Simulations with the EPSP size 7:5 time smaller than that used in

Figure 3. The time constant of dendritic dynamics is set to

td~200 ms. (A) The decay time constant obtained by the

exponential fitting of the inner products is shown in B. The

results look similar to those obtained with the larger value of EPSP

(Figure 3). (inset) The clear bump in the network activity is

observed at snoise~25:7 pA. (B) Inner products of somatic activity

patterns for different values of noise intensity, snoise. (C) The

clustering of somatic action potentials declines with the increasing

noise intensity, snoise. (D) The destruction-corrected degree of

immobilization as a product of A and C that are scaled to make

those range be unity shows the clear high-value zone, which means

that strong noise immobilizes the bump activity without breaking

up the bump.

(TIF)

Table S1 Summary of the relationship between the
observed bump modes and the noise and dendritic
conditions.
(TIF)

Video S1 Switching of a bump mode from mobile to
immobile in the noisy condition. A moving bump born in

the noiseless background (0{1000 ms) keeps moving in the noisy

background (1000{2000 ms). However, strong global inhibition

(2000{2050 ms) switches a bump to immobile mode. The bump

movement is restricted to the linear strip for the best illustration of

the phenomenon. For more detail, see main text and the caption

of Figure 6A.

(MOV)

Video S2 Switching of a bump mode from immobile to
mobile in the noisy condition. In the noisy background

condition, transient strong excitatory input along a horizontal line

the center of the bump (2010{2160 ms) followed by the

continuing short-term strong excitatory input along a horizontal

line adjacent to the previously simulated line (2160{2170 ms)

induces the bump to switch from immobile to mobile mode. The

bump movement is restricted to the linear strip for the best

illustration of the phenomenon. For more detail, see main text and

the caption of Figure 6B.

(MOV)

Video S3 Searching and fixation by the present mech-
anism. First, a bump moves under the noisy condition

(0{1500 ms). When the bump reaches the location where the

something worth is (black square), the transient global inhibition

comes (1500{1550 ms) and switches the bump to immobile

mode. For more detail, see main text and the caption of Figure 8.

(MOV)
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