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Leptospirosis is an important zoonosis and has a worldwide impact on public health. This paper will discuss both the role
of immunogenic and pathogenic molecules during leptospirosis infection and possible new targets for immunotherapy against
leptospira components. Leptospira, possess a wide variety of mechanisms that allow them to evade the host immune system and
cause infection. Many molecules contribute to the ability of Leptospira to adhere, invade, and colonize. The recent sequencing
of the Leptospira genome has increased our knowledge about this pathogen. Although the virulence factors, molecular targets,
mechanisms of inflammation, and signaling pathways triggered by leptospiral antigens have been studied, some questions are still
unanswered. Toll-like receptors (TLRs) are the primary sensors of invading pathogens. TLRs recognize conserved microbial pattern
molecules and activate signaling pathways that are pivotal to innate and adaptive immune responses. Recently, a new molecular
target has emerged—the Na/K-ATPase—which may contribute to inflammatory and metabolic alteration in this syndrome. Na/K-
ATPase is a target for specific fatty acids of host origin and for bacterial components such as the glycolipoprotein fraction (GLP)
that may lead to inflammasome activation. We propose that in addition to TLRs, Na/K-ATPase may play a role in the innate
response to leptospirosis infection.

1. Introduction

Leptospirosis is a zoonosis of global importance caused
by several species and more than 200 different serovars of
pathogenic Leptospira spp. The disease affects both animals
and humans and has veterinary, economic, and medical
relevance [1, 2]. Leptospirosis is still a major public health
problem in tropical countries, with epidemic outbreaks
occurring in the rainy season and after floods [3–5]. The
annual incidence of this disease is estimated at 10–100
per 100,000 in tropical regions and 0.1–1.0 per 100,000 in
temperate areas [6]. In recent years, leptospirosis outbreaks
have occurred all over the world; thus, an adequate disease
notification system would be useful to create surveillance
networks [7]. Leptospirosis is transmitted to humans pri-
marily by water contaminated with the urine of either wild
or domestic mammals that have been chronically colonized

by Leptospira spp [8]. It has recently been reported that
Leptospira can persist in certain organs, indicating that
people themselves can act as hosts [9].

In developed countries, the transmission mechanism
is mainly associated with occupational and recreational
activities [10–14]. The infection may be nonsymptomatic
or may result in different clinical conditions ranging from
a mild “flu-like” disease to a severe form known as Weil’s
disease [15–19]. Icterohemorrhagic syndrome is a severe
form of leptospirosis in which symptoms comprise hepatitis,
hemorrhage, acute lung injury, and renal failure [3, 18, 20,
21].

The leptospiral genome is greater than that of other
spirochetes such as Treponema sp, which may explain the
ability of Leptospira to live in several different environments
and hosts [22, 23]. Leptospira species were recently grouped
according to their genetic homology [24, 25], and studies
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aimed at the development of an efficacious vaccine are
underway [26, 27].

After reaching the blood stream, spirochetes prefer-
entially colonize the liver and kidney [28]. These organs
can offer a large lipid supply because fatty acids are an
essential requirement for leptospiral growth [29, 30]. There
is evidence that leptospiras form a biofilm during kidney
colonization in the proximal renal tubule lumen of rabbit
novergicus [31]. Leptospiras can, however, also be found in
other organs such as the lung and central nervous system
[29, 30].

2. Pathogenesis

Toxin production and/or the host immune response seem
to be the main pathogenic mechanisms in leptospirosis.
Like other spirochetes, leptospiras have a distinctive double
membrane architecture that shares characteristics of both
Gram-positive and Gram-negative bacteria [32].

A large proportion of the structural and functional outer
membrane proteins (OMPs) is either lipoproteins such as
LipL 32, LipL 21, and LipL 41 [33] or integral membrane
proteins such as the porin OmpL1 [34]. In particular, OMPs
may play key roles in pathogenesis by acting as adhesion
or antigenic targets for bactericidal antibodies, receptors for
various host molecules, and/or porins. Recent studies using
five independent experimental methods have identified four
novel surface-exposed and membrane-integrated leptospiral
proteins (OmpL36, OmpL37, OmpL47, and OmpL54),
although no functional roles have been described for them
[35]. OmpA70 was identified in L. interrogans serovar
Copenhageni [36] and the Lsa66 is a novel OmpA-like
protein with dual activity that may promote the attachment
of Leptospira to host tissues and may contribute to leptospiral
invasion [37], indicating that OmpA-like proteins may have
a role in leptospirosis pathogenesis.

Virulence, characterized by mobility and the ability to
invade tissues, may be associated with some lipopolysaccha-
rides and adhesins [38–40]. Bacterial mobility likely plays
a major role in the disease process of multiple spirochetes
[41]. The ability to move rapidly in a sticky environment
could contribute to the ability of the spirochete to cross
through epithelial cells [38]. In vitro, pathogenic leptospiras
penetrate the intercellular junction of endothelial cells while
saprophytic L. biflexa do not [39]. The ability of leptospiras
to penetrate and disseminate in mammalian tissue also
depends on their ability to attach to cells and to the
extracellular matrix. In vitro, L. interrogans binds to a variety
of cell lines including fibroblasts, endothelial cells, and
kidney epithelial cells [42].

Some proteins are potential virulence factors and have
a role in bacterial adhesion to host tissues, such as
the Lig protein and the leptospiral endostatin-like (Len)
outer membrane proteins [43, 44]. Pathogenic leptospiras
also express surface-exposed proteins that possess bacterial
immunoglobulin-like domains such as LigA, LigB, and LigC,
which are adhesin candidates [45]. Recent work has shown
that LigB binds fibrinogen and inhibits fibrin formation
[46]. Several groups have reported that immunization with

the LigA-unique region conferred protection from lethal
infection in both a mouse model [47] and a hamster model
[48, 49] of leptospirosis. In addition, resistance in hamsters
seems to depend on an immunity against a conformational
epitope of Lig A that includes domains 11 and 12 and a
third flanking domain (either 10 or 13) that may be required
for proper conformational folding [50]. Moreover, the
endostatin-like protein A (Len A) was shown to bind to the
host component laminin [51] and to human plasminogen
[52].

Comparative studies of different serovar genomes have
suggested that other components such as integrin alpha-
like protein (also an adhesin candidate), lipopolysaccharides,
cell surface capsular polysaccharides, and exopolysaccharides
may also play a role in bacterial survival in specific host
organs [22]. The OmpA-like protein Loa22 was reported to
be essential for leptospiral virulence [53] and to promote
inflammatory responses in cultured rat renal cells [54]. The
virulence factor Loa22 is a highly conserved lipoprotein
with a peptidoglycan-binding motif similar to OmpA that is
upregulated during acute leptospira infection [19]. Hemoxy-
genase, FliY (flagellar motor switch protein), and LPS are
other recognized virulence factors [32].

Other molecules that could play a part in leptospira
infection include potential toxins such as the hemolysin
SphH, a pore-forming protein without sphingomyelinase
or phospholipase activities [55], and the enzyme catalase
(KatE), which is produced only by pathogenic strains and is
involved in resistance to oxidative killing [22, 56].

3. Leptospira Metabolism and Endotoxins

Leptospiras are strictly aerobic spirochetes. In their culture
medium, they require ammonia as the nitrogen source
[57] and long chain fatty acids as the sole carbon and
fuel sources [58], and they obtain energy through the
fatty acid β-oxidation pathway [29]. The most commonly
used culture medium is Ellinghausen-McCullough/Johnson-
Harris medium, which contains oleic acid, bovine serum-
albumin, and polysorbate [19].

The biological activity of the lipopolysaccharide-like
substance (LLS) extracted from the L. interrogans serovar
canicola was weaker than the lipopolysaccharide (LPS)
obtained from other gram-negative bacteria [59]. Lipid A is
the active component of LPS and is responsible for its toxic
activity. The lipid A of leptospiral LPS has an unusual fatty
acid composition and, more strikingly, a unique methylated
phosphate residue [60]. Leptospiral lipid A is structurally
and functionally different than the lipid A of E. coli [61].
The glycolipoprotein fraction (GLP) is another leptospiral
component that has cytotoxic activity [62].

Due to their peculiar metabolism, leptospiras are able
to store lipids such as fatty acids [62, 63]. Some lipids are
stored associated with GLP (palmitovacenic, linoleic, and
oleic acids) [62], while others are stored associated with LPS
and LLS (hydroxylauric, palmitic, and oleic acids) [64, 65].
These reports indicate that leptospiras are able to store and
associate fatty acids with their endotoxins (LPS and GLP).
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This ability may have important pathophysiological conse-
quences.

4. Toll-Like Receptors and Immune
Response in Leptospirosis

The innate immune response is based on the recognition of
pathogen-associated molecular patterns (PAMPs) [66, 67].
Immune cells express proteins called pathogen recognition
receptors (PRRs) that allow them to recognize conserved
microbial motifs such as peptidoglycans and LPS [68–70].

TLR4 was the first PRR to be described and was identified
in 1997 [71]. TLR4 shows a highly orchestrated usage of
coreceptors to discriminate between ligands. This receptor
signals the presence of LPS in association with the CD14
[72] and MD-2 proteins [73]. This multifaceted receptor
system additionally plays a role in triggering several signal
transduction pathways [74]. For example, LPS binding to
TLR4 activates transcription factors such as the nuclear
factor NF-κB, which induces the production of inflammatory
interleukins (IL-1β, IL-6, IL-8) and tumor necrosis factor
(TNF) [69].

Another TLR, TLR2, is essential for the recognition
of Gram-positive bacterium components such as the macro-
phage-activating lipopeptide 2 (MALP-2) and lipoarabino-
mannan, the main glycolipid of Mycobacterium tuberculosis
[75]. In association with another TLR (TLR6), TLR2 triggers
intracellular signaling through the mitogen-activated protein
kinases (MAPKs) and NF-κB [70].

During leptospirosis, bacterial recognition by host is
under disclosure, but Leptospira presence may be sensed
through TLR4 and TLR2 receptors [76].

It is well known that LPS from Gram-negative bacteria
activates the TLR4 signaling cascade. Paradoxically, L. inter-
rogans LPS binds both CD14 and TLR2 but does not generate
intracellular signaling through TLR4 activation [77]. The
lipid A from Leptospira LPS apparently stimulates mouse
cells through the TLR4-MD2 complex but does not induce
signaling in human cells [61], indicating that there are
species-specific aspects of LPS signaling that differ between
mouse and human cells.

In recent years, considerable research has been conducted
on the outer membrane proteins expressed by Leptospira
spp. during infection. LipL32 is the major leptospiral outer
membrane lipoprotein expressed during infection and is the
immune-dominant antigen recognized in humoral responses
against leptospirosis in humans [78, 79]. This lipoprotein
is highly conserved among pathogenic Leptospira species
[79] and signals through TLR2 [77], as recently confirmed
by data showing the LipL32 binding to TLR2 in renal
cells [80]. However, LipL32 was not required either for the
development of acute leptospirosis in hamsters or for renal
colonization in a rat model [81]. LipL21, the second major
outer membrane protein of the Leptospira interrogans serovar
Lai, exhibits potent immunogenic activity [82].

It has been reported that the Leptospira santarosai
serovar Shermani activates the production of proinflamma-
tory chemokines induced by p38 MAPK phosphorylation

through TLR2 activation in proximal tubule epithelial cells
in mice [83]. These same investigators also observed that
OMPs and LipL32 increased TLR2 expression in human
embryonic kidney cells (HEK 293). In addition, LipL32
augmented iNOS and CCL2/MCP1 mRNA expression and
protein secretion via TLR2 binding [84].

The infection of guinea pigs with the L. interrogans
serovar Icterohemorrhagiae increased the levels of IL-6 and
TNFα mRNA in the lungs [85], and uveitis of leptospiral
origin was associated with an increased production of the
cytokines IL-6 and IL-8 [86]. An increase in cytokine pro-
duction was also linked to a lethal outcome in leptospirosis
patients [87].

C3H/HeJ mice have deficient LPS signaling and only
respond to high doses of LPS [88]. Animals unable to detect
LPS appropriately are susceptible to infection by Gram-
negative bacteria [66]. When C3H/HeJ mice were infected
with the Leptospira interrogans serovar icterohemorrhagiae,
they presented with a lethal infection with morphological
changes in the kidney and lungs [89] as well as sustained
expression of CCL2/MCP-1 and CXCL1/KC in the lungs,
which were correlated to the severity and progression of
disease [90]. Another strain of mice, C57BL/10ScCr, carries
a null TLR4 mutation, does not express TLR4 protein, and
is resistant to high doses of LPS [88]. These animals do
not express the receptor to IL-12p40. Both C3H/HeJ and
C3H/SCID mice presented with a lethal outcome when
infected with the Leptospira interrogans serovar Copenhageni
[91]. The C3H/HeJ animals died after an intraperitoneal
injection of Leptospira interrogans serovar icterohemorrha-
giae, presenting with liver disease and lung hemorrhage [92].

Virulent leptospiras can protect themselves against com-
ponents of the host’s innate immune system, such as
phagocytic cells and the complement system. Pathogenic
leptospiras escape from phagocytosis and are resistant to
intracellular killing mechanisms [93, 94]. To establish a
successful leptospirosis infection, the leptospiras must be
able to evade the complement system. In contrast, non-
pathogenic leptospiras are killed after exposure to the human
complement system [95]. It has been shown that the acqui-
sition of factor H (FH) and other complement modulators
displayed on the Leptospira surface is crucial for bacterial
survival in serum. Leptospiras isolated from patients can
bind the complement system inhibitor FH, a regulatory
complement protein that prevents complement activation,
and can restrict the deposition of the late complement
components on their surfaces [96]. Thus, binding of this
major alternative complement pathway inhibitor is related
to serum resistance in Leptospira spirochetes. Interestingly,
FH binding was shown to be dependent upon Lig proteins
[97]. The multifunctional LigB protein also binds to C3b and
C4b and interferes with complement activation [98]. Lsa30,
a novel leptospiral adhesion protein, may help pathogenic
Leptospira to escape the immune system by interfering
with the complement cascade through interaction with the
C4bp regulator [99]. Lsa33 also bind to C4bp and may be
important in immune evasion [100]. The recently described
LcpA (leptospiral complement regulator-acquiring protein
A) also binds to C4bp [101].
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Acquired immunity that is protective against reinfection
by Leptospira does occur, but this has been shown in
animal models to be dependent on the specific Leptospira
serovar [102]. Specific antibodies to Leptospira membrane
proteins may play a role in host defense [103] in animal
vaccination models. Vaccines prepared with the LipL21
antigen protected guinea pigs from leptospiral infection
[82], but there is currently no consensus regarding which
signaling pathway is involved. Recent work showed that
murine B cells were crucial to clearing Leptospira, through
both early IgM production against LPS, which depends on
TLR4, and protective IFNγ production, which depends on
TLR2 and TLR4 activation [104]. It has also been shown that
cattle immunized with a killed Leptospira vaccine develop
protective immunity associated with CD4+ T cells and γδT
cells [105]. Nevertheless, patients who have recovered from
leptospirosis do not seem to generate memory T cells that can
be activated by in vitro stimulation with Leptospiral protein
antigens [106].

5. New Insights

When humans come in contact with contaminated water
or soil, pathogenic leptospirasenter the blood stream either
via skin lesions or by actively penetrating the mucosa and
colonizing organs such as the kidney and liver (Figure 1).
Meanwhile, the immune system induces bacterial lysis,
releasing many antigens, including the glycolipoprotein GLP
and LPS.

The hypothesis that Leptospira produces an endotoxin
released after bacterial lysis due to the host immune response
was investigated and is supported by clinical and histopatho-
logical observations [107]. Nevertheless, the severity of Weil’s
syndrome seems to be related not only to the virulence
and toxin liberation from the infective serovar but also to
the intensity and the speed of the host immune response
[3, 108]. The production of specific antibodies is essential to
protect mice from Leptospira infection because macrophages
can only efficiently phagocytose leptospiras in the presence
of a specific antibody [109]. The L. interrogans GLP is also
released by bacterial lysis and can activate inflammatory
cells, such as peripheral blood mononuclear cells (PBMC),
leading to an increased production of TNFα and IL-6 [16],
an increased expression of the adhesion molecule CD69, and
an augmented secretion of prostaglandin E2, leukotriene B4,
and nitric oxide [110].

Acute lung injury (ALI) is characterized by cytokine
release and the loss of epithelium/endothelium integrity.
The increased permeability leads to protein extravasation
and edema. This is the hallmark of all ALI/ARDS [111].
The presence of leptospiras and leptospiral antigens in lung
endothelial cells is thought to be evidence that pulmonary
lesions are triggered by bacteria and their toxic products
[3, 112, 113]. Patients with fatal leptospirosis generally
suffer extensive pulmonary hemorrhage [114]. Leptospira
infections in monkeys mimic the features of severe human
leptospirosis, including pulmonary hemorrhage [115]. The
pulmonary hemorrhage is thought to be linked to the
deposition of immunoglobulin and complement in the

alveolar septa [116]. Pulmonary hemorrhage is a serious life-
threatening disorder and is the major cause of death due to
leptospirosis in Brazil [18].

In the lung, the enzyme adenosine triphosphatase is
activated by Na+, K+, and Mg++ (Na/K-ATPase) and removes
sodium from alveolar fluid, contributing to edema clearance
and acting as a homeostatic mechanism to maintain lung
integrity [117–119]. Inhibition of the Na/K pump in this
organ may contribute significantly to lung failure in severe
cases [120]. The kidney is another important leptospiral
target, and acute kidney injury is an early manifestation
of leptospirosis [121]. Inhibition of the Na/K pump in
the kidney leads to loss of potassium and to hypokalemia
[122]. Indeed, acute renal failure in leptospirosis is initially
characterized by hypokalemia [123, 124]. Dysfunctional Na+

transporters in the kidney and lung have already been
observed in the context of this disease [125]. Interestingly,
engulfed GLP has been detected in phagocytes in the kidney
[126] and, as we have demonstrated, is a specific Na/K-
ATPase inhibitor [127].

The liver is another organ that is affected in leptospirosis
infections. Inhibition of Na/K-ATPase in liver contributes
to liver functional disorder and causes decreased albumin
and increased nonesterified fatty acids (NEFA) and bilirubin
in the plasma [127]. We also showed that this inhibition
may be caused by nonesterified monounsaturated fatty acids
(NEUFA) such as oleic and linoleic acids, which are GLP
components and are substantially augmented in the plasma
of patients with severe leptospirosis [128]. High NEFA levels
are characteristic of patients with severe leptospirosis and
other inflammatory conditions [128]. Increased circulating
levels of NEFA also occur in some respiratory diseases,
and as NEFA are known to be immune-stimulatory agents
[129], this increase may directly contribute to systemic
inflammation and more severe disease by stimulating the
production of inflammatory mediators [130]. High levels
of circulating NEFA can either inhibit or activate TLR4,
triggering the inflammatory response [131]. Similar to LPS,
saturated fatty acids can induce inflammatory responses
in dendritic cells [132], although polyunsaturated fatty
acids negatively modulate TLR4 [133]. Fatty acids such as
lauric, palmitic, and oleic acids activate TLR4 in adipocytes
and macrophages, leading to augmented IL-6 and TNFα
production [130]. Furthermore, NEFA binding to free fatty
acid receptors stimulates intracellular responses, augmenting
the formation of inflammatory mediators [134, 135] via the
activation of NF-κB and AP-1, as demonstrated in human
endothelial cells [136].

Recently, Na/K-ATPase has been described as a receptor
for intracellular signaling cascades. In this novel role, the
enzyme functions as a receptor for nanomolar ouabain
concentrations and other cardiac glycosides and triggers
intracellular signaling cascades without changing the intra-
cellular Na+ and K+ concentrations [137, 138]. Protein
interactions with Na/K-ATPase have an important role in
membrane rafts, which are linked to calcium signaling [139],
and can be released through IP3 receptor binding [140]. In
the presence of ouabain, calcium oscillations lead to NF-
κB activation [141] and ERK/MAPK activation, which may
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Figure 1: Severe leptospirosis: from the infection to immunological target. Due to their mobility, leptospiras are able to penetrate mucosal
tissues and injured skin. Transported by the blood stream, they reach target organs, mainly the kidney and liver. The host immune response
kills the bacteria, promoting endotoxin release. The innate immune system of both human and mouse recognizes endotoxins through
specific receptors. This immune cell response is mediated by Toll-like receptors and Na/K-ATPase, which sense antigen molecules and trigger
intracellular signaling pathways driving the translocation of transcription factors, leading to increased inflammatory mediator production.
This scenario creates an inflammatory microenvironment that can lead to organ dysfunction. Another important observation in this disease
is the increased NEFA levels in the systemic circulation (mainly oleic acid). Augmented albumin unbound-NEFA may play an important
role in multiorgan dysfunction by acting on endothelium and immune cells. TLR2: Toll-like receptor 2; TLR4: Toll-like receptor 4; NKA:
Na/K-ATPase; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; NEFA: nonesterified fatty acid; LIPL32: major outer
membrane leptospiral lipoprotein; GLP: leptospiral glycolipoprotein.
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lead to the activation of the transcription factor AP-1 [142].
The ouabain effects in signal transduction occur through a
pool of Na/K-ATPase without interfering with pump activity
[143]. In this respect, it was demonstrated that ouabain
acts on lymphocytes without depolarizing the membrane,
suggesting a mechanism that is independent of classic pump
inhibition [144].

Na/K-ATPase binding triggers intracellular pathways that
lead to the production of proinflammatory mediators [136,
137]. The binding of ouabain to Na/K-ATPase induces
mononuclear cells to secrete TNF-α and IL-1 [145]. In the
context of inflammatory leptospirosis, monocytes stimulated
by leptospiras and their extracts respond by activating
intracellular pathways, phosphorylating p38, activating NF-
κB, and releasing cytokines and nitric oxide [94, 146]. The
relevance of inflammatory mediators to the physiopathology
of experimental and clinical leptospirosis is well known.
Hamsters infected with L. interrogans sorovar Icterohem-
orrhagiae that exhibit lung injury had increased mRNA
levels of TNF and IL-6 [85]. Components of Leptospira are
able to induce TNF release [147]. The L. interrogans GLP,
a bacterial fraction that inhibits Na/K-ATPase [122, 127,
148], is able to induce inflammatory cell activation and
increase TNFα and IL-6 production [16]. Increased TNF
production is a predictor of poor clinical outcome in patients
with leptospirosis [149]. Furthermore, the uveitis seen in
leptospirosis is associated with a rise in IL-6, IL-8, TNF-α,
and IL-10 production [86]. Increased cytokine production
is associated with increased patient mortality during the
disease progression [87]. IL-1β and IL-18 are produced by
inflammasome activation [150]. The inflammasome consists
of several proteins, of which NLRP3 is involved in the
recognition of bacterial RNA, ATP, uric acid, and low
intracellular potassium concentrations [151]. A recent report
showed that Leptospira induces production of the cytokine
IL1β through synergy between LPS signaling via TLRs and
leptospiral GLP, which inhibits the Na/K ATPase, triggers
a decrease in intracellular potassium levels, and activates
the NLRP3 inflammasome [152]. Thus, it is possible that
the increased production of inflammatory mediators in
leptospirosis is related both to recognition mechanisms
involving TLR4 and fatty acid receptors and to a mechanism
dependent on Na/K-ATPase signaling. In this way, both
GLP and ouabain inhibit Na/K-ATPase and induce the
production of inflammatory mediators directly involved in
the pathophysiology of leptospirosis.

We cannot dismiss the hypothesis that GLP, also a specific
Na/K-ATPase inhibitor, and the increased NEFA concen-
trations observed in the plasma of leptospirosis patients,
represent a novel mechanism of triggering the inflammatory
cascade, leading to the exacerbation of the immune response
associated with the multiorgan dysfunction observed in this
disease.

6. Final Remarks

In summary, the existing data still form an incomplete
picture. TLR4 seems to be a crucial effector in the fight
against Leptospira and is directly involved in the development

of resistance to leptospiral infection. TLR2 also has an
important role in leptospiral protein and LPS recognition.
Furthermore, both TLR4 and TLR2 seem to be involved
in the protection against pathogenic Leptospira antigens.
Although TLR4 and TLR2 are directly implicated in the
immune response to this disease, other mechanisms could be
involved in the recognition of leptospiral molecular patterns.
Some candidates are now emerging.

Leptospira components that are directly released after
bacterial lysis may be involved in the pathophysiology of
this disease either by causing direct injury or by trigger-
ing inflammation. In this respect, Na/K-ATPase alterations
caused by GLP binding or by increased plasma levels of
NEFA can trigger direct or indirect damage through the
exacerbation of the inflammatory response.
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