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A B S T R A C T   

Methamphetamine (MA) abuse is associated with the development of pulmonary arterial hypertension (PAH) 
and subsequent right ventricular failure. A recent clinical study demonstrated that female sex is a major risk 
factor for MA-induced PAH. The mechanisms associated with increased prevalence and severity of MA-induced 
PAH in females are still unclear. We hypothesized that MA may promote changes in gene expression in the right 
ventricle contributing to the development and/or worsening of PAH in females. Male and female C57BL/6 mice 
were treated with either MA or vehicle. Right and left ventricular systolic pressures (RVSP and LVSP, respec-
tively) were assessed and tissue samples were collected for gene expression and histology. LVSP and RVSP were 
not affected by MA in either males or females. Right ventricular hypertrophy was significantly increased by MA 
in females but it was not affected by MA in males. In the female mice, MA-induced right ventricular hypertrophy 
was associated with increased expression of brain natriuretic peptide gene and members of the TGF-β receptor 
signaling pathway such as TGF-β receptor-1, smad3 and smad7. In male mice, there were no changes in right 
ventricular gene expression. Our results suggest that MA caused right ventricular hypertrophy in female mice, 
but not in males and that this was associated with an increase in hypertrophic genes. The right ventricular 
hypertrophy was not dependent on increased RVSP suggesting a direct effect of MA on the right ventricle. If this 
translates to PAH patients, it might explain the poor outcome observed in MA-associated female PAH patients.   

1. Introduction 

Methamphetamine (MA) is a highly addictive psychostimulant drug 
and can be detrimental psychologically, medically and socially. Abusers 
of MA are more likely to develop neurological diseases such as depres-
sion, schizophrenia and psychosis (Yang et al., 2018). In addition to 
these neurological effects, MA use is associated with cardiovascular 
complications including cardiac arrhythmias, stroke, cardiomyopathy 
and pulmonary arterial hypertension (PAH) (Ho et al., 2009; Huang 
et al., 2016; Lappin et al., 2017; Wijetunga et al., 2003; Zamanian et al., 
2018; Zhao et al., 2018). PAH is a life-threatening disease characterized 
by remodeling of small pulmonary arteries, increased pulmonary artery 
pressure and pulmonary vascular resistance, leading to hypertrophy and 
eventual fatal failure of the right ventricle (RV). Chin et al. reported that 
MA abuse significantly increases the risk of developing PAH. Recent 
retrospective studies and a prospective cohort studies have also reported 
that MA-induced PAH (MA-PAH) is severe and progressive with poor 
outcomes (Zamanian et al., 2018; Zhao et al., 2018). It was suggested by 

the WHO that MA should be upgraded from a “likely” risk factor for PAH 
to a “definite” risk factor (Ramirez et al., 2018; Simonneau and Hum-
bert, 2018). Interestingly, in their retrospective analysis of MA users, 
Zhao et al. reported that female sex was the only risk factor associated 
with MA-PAH (Zhao et al., 2018). This is consistent with the prevalence 
of PAH being higher in females (Franco et al., 2019; Zhao et al., 2018). 
Experimentally, mice treated with MA exposed to hypoxia exhibit pul-
monary artery remodeling associated with mitochondrial dysfunction 
and DNA damage (Chen et al., 2017a). Unfortunately, only male rodents 
have been used to study potential mechanisms that may contribute to 
MA-associated PAH, despite up to 4-fold more women developing PAH 
(Frost et al., 2011). Furthermore, Rodent studies (Milesi-Halle et al., 
2007; Ohia-Nwoko et al., 2017; Schindler et al., 2002) and a recently 
published human study (Mayo et al., 2019) demonstrate that females are 
more sensitive to psychomotor-activating effects of MA than male, and 
that sex should be considered when assessing behavioral responses to 
MA. MA also exerts cardiac toxicity and dysfunction by modulating 
cardiomyocyte cellular signaling (i.e. increased calcium entry and 
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apoptosis) (Chen et al., 2016; Liang et al., 2010; Sugimoto et al., 2009). 
Interestingly, recent studies have shown that prenatal and adult expo-
sure to MA resulted in a larger infarct size in response to 
ischemia-reperfusion in female rats, with no effect on male hearts, 
suggesting a hypersensitivity of female heart to ischemic injury (Ror-
abaugh et al., 2016, 2017). In light of the evidence, our hypothesis was 
that MA may promote changes in gene expression in the heart and the 
lung contributing to the development and/or worsening of PAH in fe-
males when compared in males. In the present study, we examined 
expression of genes which are known to influence the pathogenesis of 
PAH such as genes associated with fibrosis, hypertrophy and vascular 
remodeling. 

2. Materials and methods 

2.1. Animals 

All experimental procedures were carried out in accordance with the 
United Kingdom Animal Procedures Act (1986) and with the “Guide for 
the Care and Use of Laboratory Animals” published by the US National 
Institutes of Health (NIH publication No. 85–23, revised 1996), and 
ethical approval was also granted by the University of Glasgow and 
University of Strathclyde Ethics Committees. All procedures were per-
formed under the UK Home Office establishment licence number 
X56B4FB08 awarded to The University of Strathclyde. 

Mice: 9–10 weeks old C57BL/6 female and male mice (Envigo, UK) 
were treated twice a day, 5 days/week for 3 weeks with either 0.5 mg/kg 
Methamphetamine (Sigma-Aldrich, UK) or vehicle (0.2–0.3% methanol 
in PBS). Mice were weighted before injections. Mice were housed in a 
12-h light dark cycle with access to food and water ad libitum. 

2.2. In vivo assessment of pulmonary hypertension 

For all in vivo procedures, mice were anesthetized with inhaled 
isoflurane (3% in O2, induction; 1–1.5% in O2, maintenance), the level 
of anesthesia was assessed by absence of pedal reflex to toe pinch. In 
vivo pressure–volume loop relation measurements were performed to 
assess hemodynamic alterations in anesthetized mice after 3 weeks of 
treatment with MA or vehicle. A pressure catheter (Millar Instruments, 
Houston, TX) was inserted into the left ventricle (LV) via the carotid 
artery and to the right ventricle (RV) via the right jugular vein. After 
stabilization, steady-state measurements were recorded. LV and RV 
systolic pressure (LVSP and RVSP respectively), heart rate (HR) and 
ventricular contractility were evaluated. At the end of the procedure, 
mice were killed by exsanguination under terminal anesthesia (5% 
isoflurane), and lung and RV were collected for gene expression. 

2.3. Measurement of right ventricular hypertrophy 

Right ventricular hypertrophy (RVH) or Fulton index was assessed as 
the weight of the RV free wall/the weight of the left ventricle with the 
septum (Fulton Index = RVH = RV/(LV + septum)). 

2.4. Gene expression 

Lung and RV tissue were isolated from vehicle and MA-treated male 
and female mice and were stored at − 80 ◦C until RNA isolation was 
performed. Lung and RV tissues were lysed using a TissueLyser (Qiagen). 
Total RNA from lung and RV mouse tissues were extracted using the 
QIAGEN miRNeasy mini-kit (Qiagen, Manchester, UK) following the 
manufacturer’s instructions. Treatment with DNAse 1 (Qiagen) elimi-
nated genomic DNA contamination prior to quantification using a 
NanoDrop ND-1000 Spectrophotometer (Nano-Drop Technologies, 
Wilmington, DE, USA). RNA was then reverse transcribed to cDNA using 
the TaqMan Reverse Transcription kits (Life technologies, Paisley, UK). 
The mRNA expression was assessed using TaqMan Gene Expression 

probes (Life Technologies, Paisley, UK) by quantitative real-time poly-
merase chain reaction (qRT-PCR) and normalized to a housekeeper. For 
gene expression, β-actin and β-2-microglobulin (B2M) were used for 
lung and RV samples, respectively. TaqMan assay ID are presented in 
Table 1. In the present studies we looked at the expression of genes 
which change of expression contribute to the pathogenesis of PAH (such 
as bone morphogenetic protein receptor, type II (BMPR2), 5-hydroxy-
tryptamene receptor 1B (HTR1B) and cytochrome P450 A1 and B1 
(CYP1B1, CYP1A1), and markers of fibrosis (such as collagen type I and 
III. (cola1a1 and col3a1) and fibronectin (FN1)) in the lung, as well as the 
right ventricular hypertrophy and fibrosis markers (natriuretic peptide 
A and B (ANP and BNP) and transforming growth factor-β (TGF-β) 
signaling pathway). 

2.5. Pulmonary artery remodeling and immunohistochemistry 

Remodeling: 5 μm lung sagittal sections were stained with elastin/ 
Picro Sirius red for identification of vascular remodeling. Pulmonary 
arteries (<100 μm in diameter) were microscopically assessed for degree 
of muscularisation in a blinded fashion. Remodeled arteries were 
confirmed by the presence of double-elastic laminae, and percentage 
remodeling (percent of remodeled vessels) was defined for each animal 
by the number of remodeled vessels divided by the total number of 
vessels observed in the lung (>80 vessels). One slide per mouse was 
visualized and analyzed. All vessels in a visual field were counted using a 
40X objective. Images were captured using a Zeiss Axio Imager M1. 

Immunohistochemistry: 5 μm sections of mouse lung were dewaxed 
and rehydrated through an ethanol gradient before antigen retrieval in 
citric acid buffer. Non-specific blocking was achieved using normal 
horse serum (2.5%) at room temperature. Proliferating cell nuclear an-
tigen (PCNA) is a marker of proliferation. Sections were incubated with 
rabbit polyclonal PCNA (Abcam 1:3000 dilution) for 2 h at room tem-
perature or alpha smooth muscle actin (Abcam 1:500 dilution) over-
night at 4 ◦C. Anti-rabbit alkaline phosphatase polymer conjugated 
secondary antibody (Vector Labs mp-5401) was used and immuno- 
localization was visualized with a vector red substrate kit and counter-
stained with haematoxylin. Immunostaining was examined in at least n 
= 5 animals, and for each animal lung, measurements were repeated 2–3 
times in different sections. For each animal, a total of 12–18 measure-
ments were made. PCNA analysis was carried out using Image J Fiji 

Table 1 
TaqMan® gene expression assays IDs used for the gene expression experiments.  

Gene name Assay ID 

Actb (beta actin) Mm00607939_s1 
Col1a1 (collagen, type I, alpha 1) Mm00801666_g1 
Cyp1b1 (cytochrome P450, family 1, subfamily b, polypeptide 

1) 
Mm00487229_m1 

B2m (beta-2 microglobulin) Mm00437762_m1 
NPPA (natriuretic peptide type A) Mm01255747_g1 
NPPB (natriuretic peptide type B) Mm01255770_g1 
Eng (endoglin) Mm00468256_m1 
Smurf 1 (SMAD specific E3 ubiquitin protein ligase 1) Mm00547102_m1 
Smurf 2 (SMAD specific E3 ubiquitin protein ligase 2) Mm03024086_m1 
Smad 2 (SMAD family member 2) Mm00487530_m1 
Smad 3 (SMAD family member 3) Mm01170760_m1 
Smad 7 (SMAD family member 7) Mm00484742_m1 
GPER (G protein-coupled estrogen receptor 1) Mm02620446_s1 
ESR 1 [estrogen receptor 1 (alpha)] Mm00433149_m1 
ESR 2 [estrogen receptor 1 (beta)] Mm00599821_m1 
Tgfbr1 (transforming growth factor, beta receptor I) Mm00436964_m1 
Htr1b (5-hydroxytryptamine (serotonin) receptor 1B) Mm00439377_s1 
Bmpr2 [bone morphogenetic protein receptor, type II (serine/ 

threonine kinase)] 
Mm00432134_m1 

Cyp1a1 (cytochrome P450, family 1, subfamily a, polypeptide 
1) 

Mm00487218_m1 

Fn1 (fibronectin 1) Mm01256744_m1 
Col3a1 (collagen, type III, alpha 1) Mm01254476_m1 
Tgfb1 (transforming growth factor, beta 1) Mm01178820_m1  
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software (v 2.1). Smooth muscle actin analysis was carried out using Zen 
2 software (v 2.5). 

2.6. Statistical analysis 

Data were analyzed using Student’s t-test for significance to compare 
treatment groups to vehicle controls. Data are expressed as means ± S.E. 
M. (n), where ‘n’ is the number of mice. Values of P < 0.05 were 
considered statistically significant. 

3. Results 

3.1. Effect of MA treatment on physiological parameters 

Compared to age- and weight-matched vehicle-treated female mice, 
MA-treated female mice exhibited RV hypertrophy which was evident 
by increased RV weight, and RV index (Fulton index). Body weight, 
heart weight and left ventricular weight were not significantly affected 
by MA treatment (Table 2). In male mice, no difference was observed in 
physiological parameters between the vehicle and the MA-treated mice 
(Table 3). 

3.2. Effect of MA treatment on RVSP 

In female mice, no significant differences were observed in RVSP 
(Fig. 1A) and HR (Fig. 1B) between the vehicle and MA groups. In 
addition, MA treatment had no effect on right ventricular contractility; 
max dp/dt (Fig. 1C) and min dp/dt (Fig. 1D). Similarly, in the male mice, 
no significant differences were observed in RVSP (Fig. 2A), HR (Fig. 2B) 
and right ventricular contractility (Fig. 2C and D). 

Table 2 
Changes in physiological parameters in response to Methamphetamine (MA) 
treatment in female mice: MA-treated mice exhibit right ventricular (RV) hy-
pertrophy compared to vehicle-treated female mice. RV (right ventricle), LV + S 
(left ventricle + septum). Results are expressed as mean ± standard error of the 
mean (S.E.M).a P < 0.05 vs. vehicle group.   

Vehicle (n = 6) MA (n = 6) 

Body weight, g 20.52 ± 0.49 20.77 ± 0.68 
Heart weight, mg 97.70 ± 2.91 102 ± 2.31 
Tibia length, mm 19 ± 0.34 18.08 ± 0.58 
RV, mg 16.48 ± 0.68 19.90 ± 1.16a 

LV + S, mg 81.22 ± 2.41 82.08 ± 2.11 
RV/LV + S 0.20 ± 0.01 0.24 ± 0.02a 

RV/tibia length, mg.mm− 1 0.87 ± 0.03 1.10 ± 0.07a 

LV + S/tibia length, mg.mm− 1 4.28 ± 0.14 4.56 ± 0.20  

Table 3 
Changes in physiological parameters in response to Methamphetamine (MA) 
treatment in male mice: no difference was observed between the vehicle and the 
MA-treated male mice. RV (right ventricle), LV + S (left ventricle + septum). 
Results are expressed as mean ± standard error of the mean (S.E.M).   

Vehicle (n = 8) MA (n = 8) 

Body weight, g 28.04 ± 0.63 26.49 ± 0.98 
Heart weight, mg 136.2 ± 9.87 121.6 ± 5.78 
Tibia length, mm 17.88 ± 0.23 17.69 ± 0.19 
RV, mg 25.85 ± 1.27 23.84 ± 1.25 
LV + S, mg 110.3 ± 8.66 97.74 ± 4.65 
RV/LV + S 0.24 ± 0.01 0.24 ± 0.01 
RV/tibia length, mg.mm− 1 1.45 ± 0.06 1.35 ± 0.06 
LV + S/tibia length, mg.mm− 1 6.15 ± 0.44 5.52 ± 0.24  

Fig. 1. Methamphetamine (MA) or vehicle treatment in female mice had no effect on right ventricular systolic pressure (A) Heart rate (B) or right heart contractility 
(C and D). Results are expressed as mean ± standard error of the mean (S.E.M) (n = 5–6). 
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3.3. Effect of MA treatment on LVSP 

In female mice, MA treatment did not have an effect on LVSP 
(Fig. 3A), HR (Fig. 3B), and left ventricular contractility; max dp/dt 
(Fig. 3C) and min dp/dt (Fig. 3D). In male mice, MA treatment did not 
affect LVSP (Fig. 4A), HR (Fig. 4B), nor left ventricular contractility 
(Fig. 4C and D). 

3.4. Effect of MA treatment on gene expression in mouse lung 

Gene expression of receptors and signaling pathway previously 
shown to contribute to PAH in female was assessed using qPCR. In fe-
male mouse lung tissue, except for an increase in estrogen receptor α 
gene expression (ESR1), MA treatment did not affect gene expression of 
receptors shown to contribute to PAH such as BMPR2 and HTR1B. No 
changes were observed in gene associated with estrogen metabolism 
(CYP1A1 and CYP1B1), as well as genes associated with remodeling and 
fibrosis (TGFβR1, cola1a1, col3a1 and FN1) (Fig. 5A). In the lung tissue 
isolated from male mice, no significant difference was observed in lung 
gene expression except for CYP1B1 and Collagen I gene expression, 
which were significantly decreased in the male mice treated with MA 
(Fig. 5B). 

3.5. Effect of MA treatment on gene expression in mouse RV 

In RV tissue isolated from female mice, MA treatment significantly 
increased the marker of right ventricular dysfunction, BNP. ANP gene 
expression tend to increase in RV from MA treated female mice, how-
ever, it was not significant. The expression of transforming growth factor 
beta receptor I (TGFβR1) and its downstream signaling genes (Smad3 
and Smad7) were significantly increased in RV isolated from MA-treated 
female mice. Gene expression of BMPR2, HTR1B and markers of fibrosis 

were not affected by MA (Fig. 6A). MA did not affect gene expression in 
RV isolated from male mice (Fig. 6B). 

3.6. Effect of MA treatment on pulmonary vascular remodeling 

In both males and females, no significant pulmonary vascular 
remodeling was observed in lungs from MA-treated mice when 
compared to their corresponding vehicle-treated mice. In females, the 
percent of remodeled vessels was 3.68 ± 1.37% in vehicle vs. 4.24 ±
2.31% in MA group (P > 0.05), whilst in males it was 9.22 ± 4.07% in 
vehicle vs. 2.72 ± 0.73% in MA group (P > 0.05). Consistent with the 
absence of vascular remodeling, the expression of vascular PCNA was 
not affected by MA (Fig. 7A). In addition, MA had no effect on expression 
alpha-smooth muscle actin (Fig. 7B). 

4. Discussion 

The primary finding of this study is that, in female mice only, MA 
induces RVH associated with gene expression changes in the RV which 
may predispose development of experimental pulmonary hypertension 
in female mice. Those changes were not observed in male mice treated 
with MA. Clinically, females are more susceptible to PAH (Shapiro et al., 
2012), and a recent clinical study demonstrated that the main factor 
associated with MA-induced PAH was female sex (Zhao et al., 2018). 
Furthermore, studies have reported that females have increased sensi-
tivity to some behavioral effects of MA when compared to males. These 
include increased locomotor activity, highly likelihood of 
self-administer MA given free access to the drug, as well as higher 
vulnerability to relapse after period of forced abstinence (Ohia-Nwoko 
et al., 2017; Roth and Carroll, 2004; Ruda-Kucerova et al., 2015). Fe-
male rat hearts have increased sensitivity to ischemic injury after MA 
treatment compared to male rat hearts, suggesting a sex-dependent 

Fig. 2. Methamphetamine or vehicle treatment in male mice had no effect on right ventricular systolic pressure (A) Heart rate (B) or right heart contractility (C and 
D). Results are expressed as mean ± standard error of the mean (S.E.M) (n = 8 each). 
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Fig. 3. Methamphetamine or vehicle treatment in female mice did not affect left ventricular systolic pressure (A) Heart rate (B) or left heart contractility (C and D). 
Results are expressed as mean ± standard error of the mean (S.E.M) (n = 4–6). 

Fig. 4. Methamphetamine or vehicle treatment in male mice did not affect left ventricular systolic pressure (A) Heart rate (B) or left heart contractility (C and D). 
Results are expressed as mean ± standard error of the mean (S.E.M) (n = 4–5). 
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sensitivity to MA (Rorabaugh et al., 2016, 2017). Together, our results 
may suggest that the effects of MA on genes known to be associated with 
the development of PAH may play a role in MA-induced PAH in females 
(Zhao et al., 2018). In the present study, MA did not affect RVSP and 
LVSP in either male or female mice. In addition, the MA had no effect on 
pulmonary vascular remodeling or the expression of the markers of 
proliferation, PCNA and alpha smooth muscle actin. Our results agreed 
with previous studies showing that RV pressure is unaffected by MA in 
rats and mice (Chen et al., 2017a; Liu et al., 2013; Wang et al., 2013). 
While MA is among risk factors for pulmonary hypertension, it may act 
as a “second hit” to an underlying genetic (i.e. mutations) or non-genetic 
(i.e. Human Immunodeficiency Virus (HIV)) conditions (Ayala et al., 
2012; Orcholski et al., 2017, 2018). 

Our understanding of the mechanisms behind MA-associated hy-
pertension is still lacking. In the vasculature, acute MA treatment has 
been shown to induce vasoconstriction in cerebral arterioles and cause 
blood brain barrier dysfunction (Kousik et al., 2011; Polesskaya et al., 
2011; Seo et al., 2016). While the mechanisms of MA induced vaso-
constriction are not well understood, studies have suggested the 
involvement of endothelin-1 or vascular trace amino acid receptor 1 
(TAAR1) (Kevil et al., 2019). In a recent human study, chronic use of MA 
was associated with a decrease in endothelial-independent vasodilation 
in response to nitroglycerine, a nitric oxide donor (Nabaei et al., 2016). 
In the heart, MA use was shown to cause arrhythmia and cardiomyop-
athy. Most of studies focused on the effect of MA of the left ventricle, 
however, investigating the effect of MA on the cardiopulmonary system, 

Fig. 5. Expression of genes associated with PAH and fibrosis in lung tissue isolated from A) vehicle- (white) and methamphetamine- (black) treated female mice and 
B) vehicle- (white) and methamphetamine- (black) treated male mice. BMPR2 (Bone Morphogenetic Protein Receptor Type II), HTR1B (5-Hydroxytryptamine 
(Serotonin) Receptor 1B), TGFβR1 (Transforming Growth Factor Beta Receptor I), ESR 1 (Estrogen Receptor Alpha), ESR 2 (Estrogen Receptor Beta), GPER (G 
Protein-Coupled Estrogen Receptor 1), TGFβ1 (Transforming Growth Factor Beta 1), CYP1A1 (Cytochrome P450 Family 1 Subfamily A polypeptide 1),CYP1B1 
(Cytochrome P450 Family 1 Subfamily B, Polypeptide 1), Col1a1 (collagen type I), Col3a1 (collagen type III), FN1 (fibronectin 1). Results are expressed as mean ±
standard error of the mean (S.E.M) (n = 6). *P < 0.05 vs. vehicle group. 
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Fig. 6. Expression of genes associated with PAH and fibrosis in the RV tissue isolated from A) vehicle- (white) and methamphetamine- (black) treated female mice 
and B) vehicle- (white) and methamphetamine- (black) treated male mice. ANP (natriuretic peptide type A), BNP (natriuretic peptide type B), BMPR2 (Bone 
Morphogenetic Protein Receptor Type II), HTR1B (5-Hydroxytryptamine (Serotonin) Receptor 1B), TGFβR1 (Transforming Growth Factor Beta Receptor I), TGFβ1 
(Transforming Growth Factor Beta 1), Col1a1 (collagen type I), Col3a1 (collagen type III), FN1 (fibronectin 1), Smad 2 (SMAD family member 2), Smad 3 (SMAD 
family member 3), Smad 7 (SMAD family member 7), Smurf 1 (SMAD specific E3 ubiquitin protein ligase 1), Smurf 2 (SMAD specific E3 ubiquitin protein ligase 2). 
Results are expressed as mean ± standard error of the mean (S.E.M) (n = 6). *P < 0.05 vs. vehicle group. 
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especially the RV, becomes a necessity, since MA is now considered as 
definite risk factor for PAH. 

Developing animal models of MA-induced PAH to mimic the human 
condition is difficult, due to the difference in rodent metabolism, as well 
as the frequency and the duration of MA use, as it takes years to develop 
PAH in MA abusers (Chen et al., 2017a). Despite these limitations 
however, even in the absence of increased RVSP, the female mice treated 
with MA exhibited an increase in RV hypertrophy (higher RV weight and 
Fulton index). This suggests that the RV changes are not secondary to 
increased pulmonary pressures but due to a direct effect of MA. Our 
results corroborate previous in vitro studies demonstrating increased 
cell size of rat cardiomyocytes in response to MA treatment (Maeno 
et al., 2000a, 2000b). This RV hypertrophy was associated with a sig-
nificant increase in gene expression of BNP, which is regarded as a 
biomarker of right ventricular hypertrophy and dysfunction (Goncalves 
et al., 2017; Haworth, 2007). Moreover, studies have shown that plasma 

levels of BNP are proportional to the extent of RV dysfunction in pul-
monary hypertension (Nagaya et al., 1998), and it was suggested that 
increased levels of BNP should be considered by cardiologists as an 
indication of a high risk of RV dysfunction (Mariano-Goulart et al., 
2003). MA also has been shown to increase endothelin, angiotensin, 
serotonin and adrenergic signaling systems (Jiang et al., 2018; Liu et al., 
2013; Seo et al., 2016; Sulzer et al., 2005; Wang et al., 2013), which are 
known vasoconstrictors and have been shown to contribute to the pro-
gression and pathogenesis of PAH (Iyinikkel and Murray, 2018). BNP is a 
vasodilator and is crucial in preventing myocardial hypertrophy and 
fibrosis (Haworth, 2007; Tamura et al., 2000), so the increased BNP may 
act as a compensatory and adaptive mechanism to counteract the effects 
of these vasoconstrictors and to reduce ventricular hypertrophy. Inter-
estingly, while RV TGF-β transcript level was not affected by MA, gene 
expression of its receptor TGF-βR1 and its downstream mediator smad3 
were significantly increased in RV isolated from MA-treated female 

Fig. 7. Pulmonary vascular immunostaining for A) the proliferation marker; proliferating cell nuclear antigen (PCNA) (n = 5–6), and for B) α-smooth muscle actin 
(α-SMA) (n = 6 each group). Results are expressed as mean ± standard error of the mean (S.E.M). Scale bars indicate 20 μm. 
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mice. TGF-β signaling has been shown to contribute to hypertrophy, 
apoptosis and fibrosis in cardiomyocytes, which can lead to myocardial 
infarction (Dobaczewski et al., 2011; Euler, 2015). The Smad ubiquitin 
regulatory factors 1 and 2 (Smurf1 and smurf2), which negatively 
regulate TGF-β signaling by inducing TGF-β receptor degradation 
(Huang and Chen, 2012; Koganti et al., 2018), were not affected by MA. 
RV Smad7 gene expression was also increased by MA in the female mice. 
Smad7 is a negative regulator of TGF-β signaling and so this may be a 
compensatory mechanism. Indeed, TGF-β has been shown to induce 
Smad7 gene expression (Afrakhte et al., 1998; Quezada et al., 2012; 
Zhao et al., 2000). Together, our data suggest that TGF-β may have 
induced increase in Smad7 expression, which could act as a negative 
feedback mechanism to counteract the increased TGF-βR1 signaling in 
the hypertrophic RV. The expression of receptors associated with pul-
monary hypertension and RV remodeling such as receptor (HTR1B), 
BMPR2 and endoglin (Gore et al., 2014; Hautefort et al., 2019; Hood 
et al., 2017; Keegan et al., 2001; Wallace et al., 2015) were not affected 
by MA. Additionally, we did not see an effect of MA on expression of 
fibrosis genes such as col1a1, col3a1 and FN1. In male mice, there were 
no RV changes in RV gene expression after MA treatment consistent with 
the absence of MA-induced RV structural changes in male mice. Our data 
suggest that, in females, MA induces early changes in gene expression in 
the RV that precedes any cardiac dysfunction. 

MA did not affect the expression of fibrotic genes in the female mouse 
lung. Our laboratory and others have extensively investigated the role 
and the contribution of estrogen, estrogen receptors and estrogen- 
metabolizing enzymes to the pathogenesis and progression of PAH 
(Chen et al., 2017b; Dean et al., 2018; Hood et al., 2017; Johansen et al., 
2016; Mair et al., 2014; Wallace et al., 2015; White et al., 2012; Wright 
et al., 2015). MA did not affect the estrogen-metabolizing enzymes 
CYP1A1 and CYP1B1 in lungs from female mice. However, MA induced 
an increase in estrogen receptor α (ESR1) gene expression, but not gene 
expression of estrogen receptor β (ESR2) or the G-protein coupled es-
trogen receptor (GPER). Previous studies have shown that ERα gene 
expression is increased in the lung and pulmonary artery smooth muscle 
cells isolated from PAH patients (Rajkumar et al., 2010; Wright et al., 
2015), suggesting that MA may contribute to PAH at an early stage by 
increasing estrogen signaling through ERα upregulation. MA did not 
affect gene expression in male lungs except for a decrease in both 
CYP1B1 and Col1a1 genes. We can only speculate that these changes in 
CYP1B1 and Col1a1 genes may act as mechanisms to offset the negative 
effect of MA on the lung. In fact, we have previously shown that genetic 
deletion of CYP1B1 in mice attenuates hypoxia-mediated increased 
RVSP in male but not in female mice, suggesting that PAH-associated 
mechanisms differ between males and females (White et al., 2012). 

Recent studies have suggested that MA can induce pulmonary 
vascular remodeling (Chen et al., 2017a; Liu et al., 2013; Wang et al., 
2013). However, in the present study, we did not see a significant 
remodeling of pulmonary vessels in both male and female mice. This 
may be a result of different experimental protocols, for example using a 
lower MA dose (0.5 mg/kg vs. 10 mg/kg), the length of the study (3 
weeks vs. 5 weeks) or the experimental design (use of MA injection alone 
vs. MA injection in combination with hypoxia). 

5. Conclusion 

To our knowledge, this study is the first to investigate the effect of 
MA in female mice. We demonstrate effects of MA on the lung and the 
RV in female mice, which we did not observe when investigating the 
effect of MA in male mice. The increased hypertrophy and TGF-β re-
ceptor signaling in the RV and increased ERα signaling in the lung may 
increase the susceptibility of the female mice to development of PAH. 
MA-associated PAH was shown to be a severe and progressive form of 
PAH with a poor outcome (Zamanian et al., 2018). Our study is 
consistent with others showing that MA induces gene expression 
changes and structural changes (RV hypertrophy and vascular 

remodeling) in the heart and the lung. This may explain the increased 
susceptibility of female MA abuser to develop PAH as well as the poor 
outcome of MA-associated PAH compared to idiopathic PAH. 

Although our study suggests potential mechanisms that may lead to 
more progressive form of PAH and worst clinical outcome in MA- 
associated PAH, there are limitations to the use of mouse as the mouse 
experimental models of pulmonary hypertension demonstrate only 
moderate pulmonary hypertension. 
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