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/e processing of traditional Chinese medicine (TCM) is a necessary practice and usually occurs before most herbs are prescribed.
According to Chinese medicine theory, raw (RDR) and stir-frying processed (PDR) Drynariae Rhizoma have different clinical
applications. /e purpose of this study was to establish HPLC fingerprints coupled with chemometric methods to evaluate the
differences between RDR and PDR. Multivariate chemometric methods were applied to analyze the obtained HPLC fingerprints,
including hierarchical cluster analysis (HCA), principle components analysis (PCA), and partial least squares discriminant
analysis (PLS-DA). /e results indicated that RDR and PDR samples showed a clear classification of the two groups, and seven
chemical markers having great contributions to the differentiation were screened out. /e findings suggested that 5-hydrox-
ymethyl-2-furaldehyde (5-HMF) with a variable importance in the project (VIP> 1) can be used to differentiate between RDR and
PDR. Moreover, 5-HMF, naringin, and neoeriocitrin were determined to evaluate their contents in RDR and PDR. /e che-
mometrics combined with the quantitative analysis based on HPLC fingerprint results indicated that stir-frying processing may
change the contents and types of components in Drynariae Rhizoma. /ese changes are probably responsible for the various
pharmacological effects of RDR and PDR.

1. Introduction

Gu-Sui-Bu (Drynariae Rhizoma, DR) is derived from the
dried rhizome of Drynaria fortunei (Kunze) J. Sm., which is
widely used in China and other Asian countries, for example,
Japan, Korea, and Vietnam. According to the “Ben Cao Gang
Mu,” the most complete and comprehensive medical liter-
atures concerning TCM, DR has been used in China for
thousands of years to tonify kidneys and strengthen bone
and subsequently to treat bone fracture, trauma, kidney
deficiency, low back pain, muscle weakness, tinnitus, and
deafness. Moreover, DR is also the main ingredient of many
Chinese patent medicines such as Capsule for Osteoporosis,
Pellets for Wound and Wetness, and Decoction for Enrich
Blood and Energy [1–4].

According to TCM theory, processing of Chinese
Materia Medica is an essential technique, which can im-
prove therapeutic efficacy and reduce toxicity, drastic
properties, or side effects. Crude DR products are densely
covered with scales, not easy to remove, and their textures
are hard and tough, which are not easy to crush and extract
effective ingredients. /ere are two common forms of DR
in the medicinal market, including raw DR (RDR) and stir-
frying processed DR (PDR). RDR is obtained from dried
rhizome of D. fortunei, and impurities and ashes are re-
moved. PDR is obtained by stir-frying DR with sand [4, 5].
After stir-frying processing, the drugs are expanded by
heat, the textures are crisp, and the villi are scorched and
easy to remove, so the drugs are beneficial to decoct ef-
fective ingredients.
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Chemical analysis has shown that flavonoids, phenyl-
propanoids, triterpenoids, and phenolic acids are the main
compounds isolated from rhizome of D. fortunei [6–9]. /e
total flavonoids from DR were reported to improve bone
health, maintain bone mineral density in a low-bone-mass/
osteoporosis model system, and activate cyclic AMP re-
sponse elements [10–12]. Flavonoids such as naringin and
neoeriocitrin are the major active ingredients of DR with a
wide range of biological activities. Naringin is considered the
main effective compound of DR and represents multiple
therapeutic targets in bone tissues. Different studies have
shown that naringin has a wide range of pharmacological
activities, including anti-inflammatory, anticancer activities,
as well as effects on bone regeneration, metabolic syndrome,
oxidative stress, genetic damage, and central nervous system
diseases [13–15]. Neoeriocitrin also significantly increased
proliferation of UMR 106 cells and exhibited effects on
proliferation and osteogenic cell differentiation in MC3T3-
E1 [16, 17]. Furthermore, phenolic acids in DR increased
MMP-2 activity and stimulated angiogenesis and cell mi-
gration in vivo and in vitro [18]. In addition, dry-
nachromoside A exhibited the biochemical effects on the
proliferation of MC3T3-E1 cells [19].

At present, the quality control of RDR and PDR is
mainly conducted according to Chinese Pharmacopoeia in
which only naringin is determined by the HPLC-UVmethod
[4]. Both RDR and PDR are used clinically, but different
medicinal preparations have different requirements. /e use
of naringin as the unique marker component of quality
control for RDR and PDR is not enough, and sometimes it
will cause a biased assessment. /en, it is essential to es-
tablish methods to discriminate and establish quality control
of RDR and PDR.

/e efficacy of TCM is the joint action of multicom-
ponents and multitargets, so it is difficult to reflect its in-
tegrity by determining a single component or several
indexes. Chromatographic fingerprint, based on a systematic
research on the chemical composition of analytes, is an
effective identification method for comprehensive quality
control of TCM. Moreover, the chemical composition,
quality, and efficacy of TCM may vary with the growth
environment, climatic conditions, harvest time, and pro-
cessing methods. Meanwhile, fingerprint techniques have
been used as a powerful tool in the characterization and
authentication of medicinal plants and herbal products
[20–22]. Principal component analysis (PCA) and hierar-
chical cluster analysis (HCA) are useful chemometric
models, which make it possible to analyze high-throughput
data of samples. /e combination of chromatographic fin-
gerprint and chemometrics has been increasingly applied to
the characterization and authentication of TCM [23–26].

In this study, HPLC fingerprints of the RDR and PDR
were compared, and the fingerprint data sets were applied
for classification by several chemometrics methods, such as
HCA, PCA, and partial least squares discriminant analysis
(PLS-DA). According to the statistical results combined with
the chromatographic fingerprints, peaks responsible for
discrimination between RDR and PDR were found and how
they change in the course of processing was also analyzed. In

addition, the changes in the main active components in RDR
and PDR were determined.

2. Materials and Methods

2.1. Materials and Reagents. HPLC grade methanol and
acetonitrile were obtained from Sigma-Aldrich (St. Louis,
MO, USA). Acetic acid of analytical grade was obtained from
Kemiou Co., Ltd. (Tianjin, China). Water was prepared
using a Milli-Q system (Millipore, MA, USA). Naringin,
neoeriocitrin, and 5-HMF (purity> 98%) were purchased
from Shanghai Yuanye Bio-Technology Co., Ltd. (Shanghai,
China). Twenty batches of RDR and PDR were collected
(Table 1) from different provinces of China and identified as
the dried rhizome of D. fortunei by Professor Wenyuan Gao
of Tianjin University.

2.2. Sample Preparation. Samples of RDR and PDR were
powdered and passed through a 24-mesh sieve. /en, each
sample powder (0.25 g) was weighed accurately and refluxed
in 30mL methanol solution for 3 h. All samples were ex-
amined in triplicate. Appropriate amounts of naringin,
neoeriocitrin, and 5-HMF reference standards were accu-
rately weighed and prepared to standard solutions.

2.3. Chromatographic Analysis. HPLC analysis was per-
formed on a Shimadzu HPLC system (Kyoto, Japan) with a
binary pump and a photodiode array detector. An Accurail
C18 column (5 μm, 4.6mm× 150mm) was used for sepa-
ration at 30°C. /e mobile phase was composed of aceto-
nitrile (A) and 0.4% acetic acid in water (B) using a gradient
program of 5% A in 0–5min, 5–30% A in 5–40min, 30–50%
A in 40–55min, and 50–80% A in 55–65min. /e detection
wavelength was set at 283 nm, and the flow rate was
1mL·min−1. A 10min re-equilibration time was used be-
tween HPLC runs. /e sample injection volume was 10 μL.

2.4. Methodological Evaluation. /e method was validated
for precision, repeatability, and stability. /e relative re-
tention time (RRT) and relative peak area (RPA) were
calculated by using naringin as the reference peak. /e
precision was evaluated by injecting the same sample so-
lution for six times. /e relative standard deviation (RSD)
for RRT and RPA was less than 1.3% and 1.9%, which in-
dicated good precision of the method. /e repeatability was
determined by analyzing six independently extracted sam-
ples from the same batch of DR.With RSD less than 1.3% for
RRT and 2.4% for RPA, the method showed good repeat-
ability. /e stability was analyzed by the same sample so-
lution at 0, 2, 4, 8, 12, and 24 h. /e RSD for the RRT and
RPA was less than 1.4% and 3.0%, indicating that the sample
solution was stable within 24 h.

2.5. Data Analysis. /e data were collected by LabSolutions
LC workstation software (version 2010; Kyoto, Japan). /e
fingerprint similarity was evaluated by Similarity Evaluation
System for Chromatographic Fingerprint software (version
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2012) [27]. /e HCA, PCA, and PLS-DA of samples were
performed using SPSS 21.0 (Chicago, USA) and SIMCA
software (version 14.1; Beijing, China).

3. Results and Discussion

3.1. Optimization of the Sample Extraction. In the experi-
ment, the extraction solvent, method, and time were opti-
mized. In ancient clinical practice, DRwasmostly taken after
water decoction. To extract as many active components as
possible from the medicinal materials, the extraction sol-
vents of water, methanol, and ethanol were compared [2, 8].
It was found that methanol extraction showed the largest
number of chromatographic peaks, the largest peak area, and
stable baseline. Moreover, soaking, ultrasonic, and reflux
extraction methods were compared, and the results showed
that the efficiency of reflux extraction was higher. /e ex-
traction time was further optimized, and the results showed
that exhaustive extraction could be achieved when 0.25 g
sample powder was extracted with 30mLmethanol by reflux
extraction for 3 h.

3.2. Similarity Evaluation. To find the difference before and
after processing, the chromatographic fingerprint of RDR
and PDR from various sources was evaluated by their
similarities. Chromatographic data from 20 batches of RDR
and PDR samples were collected, and RDR6 and PDR4 were
used as the referencemap./e chromatographic fingerprints
are shown in Figure 1. /e similarity results of RDR and
PDR samples were 0.936–0.996 and 0.980–0.995, respec-
tively. /e sample information and results are shown in
Table 1.

It can be seen that many chromatographic peaks
changed to varying degrees. For example, some peak (2, 13,
18) areas increased in PDR, and several peak (6, 8, 9, 16, 17)

areas declined obviously. Moreover, peak 14 disappeared
after processing. However, some peaks, such as 3 and 15,
were present in the PDR.

3.3. HCA Modeling. HCA is a means of structuring a
complex set of observations into unique, mutually exclusive
groups (clusters) of subjects similar to each other with re-
spect to certain characteristics [28]. We followed the
methods of Cao et al. (2018) [29]. /e results of HCA are
shown in Figure 2. When the distance level was approxi-
mately 12, RDR and PDR samples could be distinguishable.
It was evident that RDR and PDR samples were clearly
clustered into two groups, which means that the processing
procedures caused changes in the composition and/or
content of components in DR.

3.4. PCA Modeling. Principal component analysis (PCA) is
an unsupervised bilinear modeling method, which reduces
the dimension of data and finds combinations of variables
that describemajor trends among observations.We followed
the methods of Cao et al. (2018) and Zhou et al. (2015)
[29, 30]. /e first and second principal components (PCs)
describe the directions of the two greatest variances in the
data and were used to describe RDR and PDR samples. RDR
and PDR samples were composed of two separate classes
(RDR and PDR), and the results validated the HCA results
(Figure 3). Besides, the loading scatter plot shows how the X-
variables vary in relation to each other, which ones provide
similar information and which ones are negatively corre-
lated. It can be easily seen that many variables were re-
sponsible for the composition of PCs, among them peaks 3,
14, 15, 16, and 17 featured strongly in identifying RDR and
PDR.

3.5. PLS-DAModeling. As a supervised recognition pattern,
PLS-DA can maximize the difference among the groups and
aid in the screening of the markers responsible for classi-
fication rather than explaining the variations within a data
set [31]. In order to find the potential components for the
discrimination between the raw and processed samples, PLS-
DA was also performed. We followed the methods of Zhou
et al. (2015) [28]. First, the raw and processed products could
be well distinguished in the scatter plot (Figure 4(a)), in-
dicating that processing plays an important role in the
change of DR. Moreover, the samples of RDR clusters were
in a small region, while the PDR samples were clustered in a
relatively larger range, which illustrated that RDR samples
are more stable than PDR samples.

/e loading scatter plot was also conducted, which
represented the relation between theX-variables (18) and the
dummy Y-variables (2). By default, X-variables situated in
the vicinity of the Y-variables have the highest discrimi-
natory power. As shown in Figure 4(b), variables 2, 3, 8, 14,
15, 16, and 17 stand close to the Y-variables and far from the
origin, figuring that such variables were strongly responsible
for discrimination.

Table 1: Description and similarity evaluation of RDR and PDR
batches.

Batches Similarity Origin Source
R1 0.974 Yunnan RDR
R2 0.936 Yunnan RDR
R3 0.983 Yunnan RDR
R4 0.996 Yunnan RDR
R5 0.973 Yunnan RDR
R6 0.960 Yunnan RDR
R7 0.983 Hunan RDR
R8 0.991 Hunan RDR
R9 0.990 Sichuan RDR
R10 0.975 Sichuan RDR
P1 0.989 Yunnan PDR
P2 0.995 Yunnan PDR
P3 0.989 Yunnan PDR
P4 0.981 Yunnan PDR
P5 0.991 Yunnan PDR
P6 0.994 Hubei PDR
P7 0.984 Guangxi PDR
P8 0.986 Guangxi PDR
P9 0.980 Sichuan PDR
P10 0.987 Sichuan PDR
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Furthermore, in order to weigh the effect of importance
of every variable on discrimination, the variable importance
for the project (VIP) plot (Figure 5) was carried out, which
summarized the importance of the variables both to explain
X and to correlate to Y. According to the VIP plot, some
variables (peaks 2, 3, 8, 14, 15, 16, 17) had VIP values larger
than 1, which means that these variables were primarily
responsible for the discrimination. Among them, 2, 3, 14,
and 15 had the largest VIP values, keeping consistent with
the analytical result above. With R2X� 0.630, R2Y� 0.986,
and Q2� 0.951, the PLS-DA model was demonstrated to fit
the data and predict new data well. Naringin is considered to
be the main active constituent of DR, so the quality marker
of RDR and PDR is always chosen as naringin [4, 31–33].

Interestingly, the present study indicated that the compo-
nents significantly influenced by stir-frying processing are
peaks 2, 3, 14, and 15./erefore, the results will provide new
ideas for optimizing both stir-frying processing conditions
and quality control of DR.

In addition, the score scatter plot in PLS-DA was con-
structed to evaluate the differences among samples collected
from various geographic regions. /e results reveal that the
samples from different provinces in China could not be
clearly distinguished (Figure 5). /e samples (R1–R6) from
the Yunnan province are mostly in the right quadrant, while
the samples (R7–R10) from Sichuan and Hunan provinces
are in the left quadrant. /e samples (R7 and R8) obtained
from the Hunan province appear close to samples (R9 and
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Figure 1: HPLC chromatographic fingerprint of (a) RDR and (b) PDR.
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Figure 3: PCA score plot of RDR and PDR samples: (a) scores scatter plot and (b) loading scatter plot.
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Figure 4: PLS-DA scores plot and VIP (variable importance plot) of DR and PDR samples: (a) scores scatter plot; (b) loading scatter plot;
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R10) from the Sichuan province. To a certain extent, the
results may be related to the latitudinal location and climates
of the source areas.

3.6. Determination of Naringin, Neoeriocitrin, and 5-HMF.
Peak 3 (5-HMF) with a variable importance in the project
(VIP> 1) is the main compound that can be used to dif-
ferentiate between RDR and PDR. Moreover, peaks 11
(naringin) and 12 (neoeriocitrin) were identified as the main
active constituents, the presence of which can be used to
differentiate between DR and its related species [34, 35]. /e
linear regression equations for naringin, neoeriocitrin, and
5-HMF were established by plotting the peak area (y) versus
concentration (x). /e regression coefficients (r) are >0.999
for the components, indicating a good linearity within a
relatively wide range of concentrations. For the precision,
the RSD ranged from 0.78% to 0.99%./e samples had good
stability at 0, 2, 4, 8, 12, and 24 h, and the RSD (%) ranged
from 1.24% to 1.60%. /e sample recovery rates of the three
components were 99.21∼103.69%, 97.08∼101.24%, and
98.05∼102.02%, respectively. /e analyses were analyzed in
triplicate, and the results are shown in Table 2 and Figure 6.

As a result, there are both changes in contents and in
the composition between RDR and PDR samples. 5-HMF
was only detected in PDR products, not in RDR products.
5-HMF was considered a new pharmacological compo-
nent produced during thermal processing [36]. Studies
have demonstrated that 5-HMF inhibited the formation of
adipose cells obviously and stimulated the mineralized
nodule formation, which indicated that 5-HMF was a
powerful inhibitor of adipogenesis and an enhancer of
osteoblastogenesis [37]. Besides, 5-HMF improved the
morphology of H(2)O(2)-treated human L02 hepatocytes
and inhibited the level of caspase-9 and caspase-3 of them
[38]. On the other hand, HMF is formed by the degra-
dation of reducing sugars, via the Maillard or carameli-
zation reaction and HMF at high concentrations is
cytotoxic [39], which suggests that 5-HMF will help to
control the processing parameters of PDR. Moreover, the
results indicated that the content of naringin and neo-
eriocitrin in PDR was higher than RDR to a certain extent.
/us, the expansion of medicinal materials after stir-
frying processing may be conducive to the dissolution of
the ingredients. However, products from different origins
are quite different.
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Figure 5: PLS-DA score scatter plot of DR samples collected from different provinces in China: (1) Yunnan; (2) Hunan; and (3) Sichuan.
(R2X� 0.544, R2Y� 0.492, Q2� −0.0301)

Table 2: Regression equation, linear range, correlation coefficients (r), precision, repeatability, stability, and recovery of naringin, neo-
eriocitrin, and 5-HMF (n� 6).

Compounds Naringin Neoeriocitrin 5-HMF
Regression equation y� 1.69×103x− 1.75×104 y� 1.74×107x+ 6.27×104 y� 2.60×106x− 7.81× 103

Linear range (μg·mL−1) 10∼1000 5.8∼580 2.4–36
r 0.9999 0.9997 0.9999
Precision RSD (%) 0.78 0.99 0.88
Repeatability RSD (%) 1.60 1.24 1.12
Stability RSD (%) 0.52 0.32 0.36
Recovery (%) 99.21∼103.69 97.08∼101.24 98.05∼102.02
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4. Conclusions

A novel strategy was established to screen out the potential
chemical markers to discriminate RDR and PDR by HPLC
fingerprint coupled with multivariate statistical analysis. /e
results demonstrated that both the unsupervised HCA or PCA
and supervised PLS-DA are proved to be satisfactory for sep-
arating the samples into two clusters. Seven chemical markers
(VIP>1) were selected for discrimination, and these chemical
markers provide a more comprehensive way for the discrim-
ination and quality control of RDR and PDR. Moreover, the
content of 5-HMF, naringin, and neoeriocitrin was increased
after stir-frying processing. /e developed chemometric strat-
egy showed good prospects for the identification and quality
control of raw and processed herbal drugs andmay also be used
for the processing parameters control and investigation of
chemical transforming mechanisms underlying the processing.
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